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C1 extensions of functions and
stabilization of Glaeser refinements

Bo’az Klartag and Nahum Zobin

Abstract

Given an arbitrary set E ⊂ Rn, n ≥ 2, and a function f : E → R,
consider the problem of extending f to a C1 function defined on the
entire Rn. A procedure for determining whether such an extension
exists was suggested in 1958 by G. Glaeser. In 2004 C. Fefferman
proposed a related procedure for dealing with the much more diffi-
cult cases of higher smoothness. The procedures in question require
iterated computations of some bundles until the bundles stabilize.
How many iterations are needed? We give a sharp estimate for the
number of iterations that could be required in the C1 case. Some
related questions are discussed.

1. Introduction

In 1934 Hassler Whitney published three ground-breaking papers [10, 11, 12],
all dealing with various aspects of extending a function defined on a subset
of Rn to a smooth function on the whole Rn.

In [11] Whitney gave a complete description of traces of Cm functions
on an arbitrary compact subset E of the real axis R. It is well known that
Cm functions on R are characterized by continuity properties of their m-th
divided differences. These properties are obvious necessary conditions for
extendability of f to a Cm function on R. The fundamental result of [11]
asserts that these conditions are also sufficient for such an extension to exist.

A generalization of this result to higher dimensions turned out to be
very difficult. Only in 1958 was a significant progress made – G. Glaeser [8]
proved an analog of Whitney’s Theorem for C1 functions on Rn, n > 1.
Glaeser introduced the notion of a paratangent bundle which gave him the
tools to tackle the problem in the case of smoothness one.
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There was virtually no progress along these lines until 2002 when Bier-
stone, Milman and Paw�lucki [1] proved an analog of Whitney’s Theorem for
higher dimensions and higher smoothness, but only for an important special
class of sets – subanalytic subsets E of Rn. They introduced the notion of
iterated paratangent bundles which allowed them to formulate and prove
the result. See also [2] for further developments.

A different way of attacking the problem – based on Lipschitz selections
of set-valued mappings – was suggested and pursued by Yu. Brudnyi and
P. Shvartsman (see, e.g., [3, 4]). Their methods allowed them to settle
various cases of smoothness 2−ε (continuously differentiable functions with
Lipschitz-type conditions on the first derivatives).

A related Whitney problem, discussed in [12] – description of open sets
E ⊂ Rn, allowing extension of Cm−1 functions with bounded derivatives of
order m to functions of the same class on Rn – was solved by the second
author [13, 14] using quite different methods.

An impressive breakthrough was achieved in 2003-2005 by Charles Fef-
ferman. In a series of papers – [5, 6, 7] and others – Fefferman developed
a powerful approach which allowed him to prove a series of fundamental
results on Whitney problems and their far reaching generalizations.

In particular, he gave a remarkable extension of Whitney’s Theorem
to higher dimensions and higher degrees of smoothness – for an arbitrary
compact subset of Rn. This constitutes a solution to an old, fundamental
problem of Whitney.

A key ingredient in Fefferman’s description of traces of Cm(Rn) functions
on compact subsets of Rn was the notion of a Glaeser refinement. This
notion, introduced by Fefferman, is related to the notions of paratangent
and iterated paratangent bundles, introduced by Glaeser [8] and Bierstone–
Milman–Paw�lucki [1, 2].

In this article we study Glaeser refinements, in the case of smoothness
one. We are especially interested in their stabilization properties, and we
substantially improve some earlier results in this direction. Our main result
is a construction of a set E ⊂ Rn such that a special bundle, closely related
to C1 extensions, needs “almost maximal possible” number of refinements
until it stabilizes. We also present accompanying results, as well as another
proof of Glaeser’s Extension Theorem.

Acknowledgements. We are greatly indebted to Charles Fefferman for in-
teresting discussions, invaluable criticism, suggestions and remarks. His insp-
iring lectures at Princeton in 2004-05 were our main source of knowledge and
appreciation of the subject. A substantial part of this work was done while the
second author was at Princeton University on a research leave from College
of William and Mary; support of both institutions is greatly appreciated.
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2. Preliminaries

2.1. Bundles and sections

Let Pm
n denote the space of m-jets on Rn (= the space of polynomials on Rn

of total degree ≤ m). For any x ∈ Rn we have a ring structure on Pm
n , we

define Pm
n (x) to be the quotient ring of the polynomial ring R[x1, . . . , xn]

over the ideal of polynomials vanishing at x, together with all derivatives of
total order ≤ m.

Let E ⊂ Rn be a compact set, and for any x ∈ E let H(x) ⊂ Pm
n (x) be

a (non-empty) affine subspace. With some abuse of standard terminology,
we call the collection {H(x)}x∈E a bundle H(E) of m-jets over E. We shall
also use the term “m-bundle” for H(E). For x ∈ E, the set H(x) is called
the fiber of H(E) at x. In [7] the affine space H(x) is always a coset over
an ideal in Pm

n (x).

A section of an m-bundle H(E) is a Cm-function F : Rn → R such that
at each point x ∈ E we have

Jm
x F ∈ H(x).

Here Jm
x F denotes the m-jet of the function F at the point x, i.e.

(Jm
x F )(z) =

∑
β∈Z

n
+,|β|≤m

(∂βF )(x)
(z − x)β

β!
.

Here |β| stands for the sum of coordinates of β ∈ Zn
+.

An m-bundle whose fibers are linear (and not merely affine) subspaces
of Pm

n , is called a homogeneous m-bundle. A homogeneous bundle always
admits a section – the zero function.

2.2. Extension problems and standard bundles

All extension problems considered by Whitney (and many related problems,
see [7]) can be reformulated in terms of the existence of a section of a suitable
bundle. For example, the problem of extending a function f : E → R to a
function from Cm(Rn) translates into the problem of existence of a section
of the m-bundle Hf(E), whose fibers are defined as follows:

(2.1) Hf(x) = {P ∈ Pm
n (x) : P (x) = f(x)}.

We call Hf(E) a standard m-bundle. In [7] the space Hf(x) is called
a trivial holding space for f . In this paper we mostly deal with standard
1-bundles. These bundles, or holding spaces, are closely related to problems
of C1 extensions.
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We also consider particular standard m-bundles h(E) associated with
the function f = 0, i.e., bundles with fibers

h(x) = {P ∈ Pm
n (x) : P (x) = 0}.

These are obviously homogeneous bundles – fibers of these bundles are lin-
ear subspaces (even ideals) in Pm

n (x). We call such bundles homogeneous
standard m-bundles.

2.3. Glaeser refinements

Let us recall Fefferman’s definition of Glaeser refinements [7].

Let | · | be the standard Euclidean norm in Rn. Let B(x, δ) denote the
open ball in Rn, of radius δ, centered at x.

Let us note that we use the same symbol | · | to denote several similar
but different things – the standard Euclidean norm in Rn, the absolute value
in R, the sum of coordinates of a vector in Zn. It is always clear from the
context what is meant so we hope this does not cause any confusion.

Definition 2.1. Given an m-bundle H(E), an integer k ≥ 1, and x0 ∈ E,
define the set H ′

k(x0) as follows:

An m-jet P0 belongs to H ′
k(x0) if and only if P0 ∈ H(x0) and for any

ε > 0 there exists δ > 0 such that for any x1, . . . , xk ∈ E ∩ B(x0, δ) there
exist P1 ∈ H(x1), . . . , Pk ∈ H(xk) such that ∀ i, j, 0 ≤ i, j ≤ k, ∀α ∈ Zn

+,

(2.2) |α| ≤ m, |∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α|.

The set H ′
k(x0), if non-empty, is an affine subspace of Pm

n (x0).

If the sets H ′
k(x) are non-empty for all x ∈ E, then H ′

k(E) = {H ′
k(x)}x∈E

is an m-bundle, called the Glaeser k-refinement of H(E). In this case the
m-bundle H(E) is called k-refinable.

For the purpose of this definition, we agree that 00 = 0.

One can iterate this procedure, thus arriving at higher k-refinements
H i

k(E), i = 2, 3, . . . . More precisely, H i+1
k (E) is defined as the Glaeser k-

refinement of the bundle H i
k(E) :

H i+1
k (E) = (H i

k)′k(E).

Let us note that the refinement of a homogeneous m-bundle is again a
homogeneous m-bundle.
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2.4. Existence of sections

By Taylor’s Theorem, if there exists a section F of an m-bundle H(E), then
the jet Jm

x F belongs to H ′
k(x) for any x ∈ E, k ≥ 1. So, if a bundle admits a

section then this bundle is k-refinable for any k ≥ 1. Moreover, in this case F
is also a section of the bundle H ′

k(E), as well as of all higher refinements
H i

k(E). So, if for some i ≥ 1 the bundle H i
k(E) is k-nonrefinable then the

initial bundle H(E) does not allow sections.

For example, since a homogeneous bundle always admits a section, then
a homogeneous bundle has refinements of all orders.

As is described in [7] (see also [1, 8]), the iterated application of the
procedure of Glaeser k-refinement has an important stabilization property:
for any bundle H(E) and any k ≥ 1, after finitely many consecutive Glaeser
k-refinements, we either arrive at a k-nonrefinable bundle, or at a k-steady
bundle, i.e., a bundle which is its own Glaeser k-refinement. This observation
is crucial because of the following fundamental result [7]:

Theorem 2.2. (C. Fefferman [7]) There exists a constant k depending
only on m and n such that the following is true:

Let H(E) be an m-bundle over a compact subset E ⊂ Rn, such that

• H(E) is k-steady,

• The fibers H(x) are cosets over ideals in Pm
n (x).

Then H(E) admits a section.

One can show (see [7]) that fibers of all k-refinements of a standard
m-bundle are cosets over ideals in the corresponding Pm

n (x).

In particular, Theorem 2.2 suggests that the extendability of a given
function on E ⊂ Rn to a Cm function on Rn can be checked as follows:

Corollary 2.3. (Fefferman’s Extendability Test) Let f : E → R
be a function on a compact set E ⊂ Rn. Construct the initial m-bundle
H0(E) – the standard m-bundle Hf(E). Compute the consecutive Glaeser
k-refinements H i

k(E) (with constant k from Theorem 2.2) of the initial bun-
dle until you arrive either at a k-nonrefinable bundle, or at a k-steady bundle
H(E). The function f admits a Cm extension to Rn if and only if you arrive
at a steady bundle.

The case m = 1 in the above described procedure is essentially Glaeser’s
C1 Extension Theorem [8].
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2.5. Stabilization numbers and their estimates

The computation of Glaeser k-refinements is the central ingredient in Fef-
ferman’s Extendability Test. Its complexity depends upon the number k, so
one should try to take k (satisfying Fefferman’s Theorem 2.2) as small as
possible.

However, the complexity of Fefferman’s Extendability Test depends even
heavier upon the number of refinements needed to arrive at the steady bundle
or at a non-refinable bundle.

Definition 2.4. Consider a set E ⊂ Rn, integers m, k ≥ 1, and an m-
bundle H(E). Let st = st (n, m, k; H(E)) be the natural number such that
either Hst

k (E) is a k-nonrefinable bundle, or

Hst +1
k (E) = Hst

k (E) � Hst −1
k (E).

We call this number the stabilization number of the bundle H(E).

It follows from the considerations in [7] (see also [1, 8]) that for k ≥ 1,

(2.3) st (n, m, k; H(E)) ≤ 2 dimPm
n + 1

for any m-bundle H(E) over a compact E ⊂ Rn.

Definition 2.5.

ST (n, m, k) = max
Hf (E)

st (n, m, k; Hf(E))

the maximum is over all compact subsets E ∈ Rn and all standard m-
bundles over E. We call this quantity the standard stabilization number.

Since dimP1
n = n + 1, then for a 1-bundle H(E) over E ⊂ Rn we get

st (n, 1, k; H(E)) ≤ 2n + 3.

Therefore
ST (n, 1, k) ≤ 2n + 3.

There is an example (due to Glaeser) showing that

st (2, 1, k; h(E)) ≥ 2

for a homogeneous standard 1-bundle h(E) over a special subset E ⊂ R2

and all k ≥ 2, which, in particular, means that for n ≥ 2

ST (n, 1, k) ≥ 2.
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However, as C. Fefferman pointed out in his 2005 Princeton lectures,
there were no examples of bundles –in any dimension and any degree of
smoothness– that require at least three Glaeser refinements to arrive at
stabilization.

So we see a considerable gap between the known upper and lower bounds
for the standard stabilization numbers ST (n, 1, k) for n ≥ 2 :

2 ≤ ST (n, 1, k) ≤ 2n + 3.

3. Formulation of problems and results

There are two questions that one should answer in order to estimate the
degree of complexity of Fefferman’s Extendability Test:

Question 1. What is the minimal constant k = k(n, m) that we can
have in Fefferman’s extendability test?

Question 2. How many Glaeser k-refinements of a standard m-bundle
one could need before arriving at a k-steady bundle or at a k-nonrefinable
bundle?

In this paper we give quite complete answers to both of these questions
in the case m = 1, n ≥ 2 – see Theorems 3.1, 3.2 below. Let us note that
we may disregard the case n = 1, since in this case Whitney Theorem [11]
provides a much easier computable criterion of extendability.

Theorem 3.1. Let H(E) be a standard 1-bundle over E ⊂ Rn.

(a) H(E) is k-refinable (k ≥ 2) if and only if it is 2-refinable, and

∀ k ∈ Z+, k ≥ 2, H ′
2(E) = H ′

k(E).

(b) The bundles (H ′
2)

i
k(E), i = 0, 1, . . . , are k-refinable (k ≥ 1) if and only

if they are 1-refinable, and

∀ k ∈ Z+, k ≥ 1, (H ′
2)

i
k(E) = (H ′

2)
i
1(E).

Thus, in calculating Glaeser k-refinements of standard 1-bundles, it is
enough to consider k = 2 for the first refinement and k = 1 for the successive
refinements. These two numbers are optimal, as follows from Lemma 5.3.
Our main result is the following.

Theorem 3.2. n ≤ ST (n, 1, k) ≤ n + 1 for any k ≥ 2, n ≥ 2.

This result is proven in two steps. First, we prove the following:
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Theorem 3.3. There exists a compact set E ⊂ Rn, n ≥ 2, such that for the
homogeneous standard 1-bundle h(E)

st (n, 1, k; h(E)) ≥ n

for all k ≥ 2. In particular, ST (n, 1, k) ≥ n for n ≥ 2, k ≥ 1.

Our construction of the set E is inspired by a two-dimensional example
due to Glaeser [8].

Next, we improve the upper estimate (2.3), again concentrating on stan-
dard 1-bundles:

Theorem 3.4. Let H(E) be a standard 1-bundle over a compact set E ⊂ Rn.
Then

st (n, 1, k; H(E)) ≤ n + 1.

Theorem 3.3 and Theorem 3.4 give us the assertion of our main result,
Theorem 3.2.

Other results of this paper include a new simple proof of Glaeser’s C1

Extension Theorem.

The rest of the paper is organized as follows:
Section 4 deals with a reduction of the problem to homogeneous bundles.

In Section 5 we give a more convenient description of Glaeser refinements
of standard 1-bundles. In particular, we apply our description to prove
Theorem 3.1. In Section 6 we construct a special set E ⊂ Rn and, using
the results of Section 5, we compute the refinements of the homogeneous
standard 1-bundle over this set, thus proving Theorem 3.3. In Section 7
we prove Theorem 3.4. Using the results of Section 5 and, to a very small
extent, Section 7, we sketch another proof of Glaeser’s Theorem in Section 8.

4. Homogenization and Glaeser refinements

For any x ∈ Rn, the fiber of an m-bundle H(E) at x is an affine subspace in
Pm

n (x), i.e., a coset over a well defined linear subspace I(x) ⊂ Pm
n (x). As it

has been already mentioned, in [7] the subspace I(x) is always assumed to
be an ideal.

For a non-homogeneous m-bundle H(E) we consider the m-bundle

h(H)(E) = {I(x)}x∈E.

We call this bundle h(H)(E) the homogenization of the bundle H(E).
In particular, the homogeneous standard m-bundle h(E) is the homoge-

nization of any standard m-bundle Hf(E) : h(E) = h(Hf)(E).
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What are the relations between the operations of homogenization and of
k-refinement? Let us show that these operations commute (see also Theo-
rem 3.2 in [2] for a closely related result).

Lemma 4.1. Let H(E) be a k-refinable m-bundle. Let H ′
k(E) be its Glaeser

k-refinement. Then
[h(H)]′k(E) = h(H ′

k)(E).

Proof. We need to show that for any x ∈ E we have [h(H)]′k(x) = h(H ′
k)(x).

Choose x0 ∈ E. Since H ′
k(x0) �= ∅, we can choose Q0 ∈ H ′

k(x0) ⊂ H(x0).

To prove the inclusion [h(H)]′k(x0) ⊂ h(H ′
k)(x0), take p0 ∈ [h(H)]′k(x0),

and let us show that p0 ∈ h(H ′
k)(x0), i.e., that Q0 + p0 ∈ H ′

k(x0).

Choose any ε > 0. Take δ > 0 small enough so that for any x1, . . . , xk ∈
E ∩B(x0, δ) there exist pi ∈ I(xi), Qi ∈ H(xi), i = 1, 2, . . . , k, such that for
any |β| ≤ m, i, j = 0, 1, . . . , k, we have

|∂β(pi − pj)(xj)| <
1

2
ε|xi − xj |m−|β|,

|∂β(Qi − Qj)(xj)| <
1

2
ε|xi − xj |m−|β|.

This immediately implies that

|∂β((Qi + pi) − (Qj + pj))(xj)| < ε|xi − xj |m−|β|.

So Q0 + p0 ∈ H ′
k(x0).

To prove the inclusion [h(H)]′k(x0) ⊃ h(H ′
k)(x0), take p0 ∈ h(H ′

k)(x0),
and show that p0 ∈ [h(H)]′k(x0).

Consider Q̃0 = p0 + Q0 ∈ H ′
k(x0) ⊂ H(x0). Take any ε > 0, and choose

δ > 0 small enough so that for any x1, . . . , xk ∈ E ∩ B(x0, δ) there exist
Qi, Q̃i ∈ H(xi), i = 1, 2, . . . , k, such that for any |β| ≤ m, i, j = 0, 1, . . . , k,
we have

|∂β(Qi − Qj)(xj)| <
1

2
ε|xi − xj |m−|β|,

|∂β(Q̃i − Q̃j)(xj)| <
1

2
ε|xi − xj |m−|β|.

Consider pi = Q̃i − Qi ∈ I(xi), i = 1, . . . , k. We see that for any |β| ≤
m, i, j = 0, 1, . . . , k,

|∂β(pi − pj)(xj)| < ε|xi − xj |m−|β|,

which proves that p0 ∈ [h(H)]′k(x0). �
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Lemma 4.2. Let H(E) be an m-bundle over E ⊂ Rn. Let h(H)(E) be the
homogenization of this bundle. Then either

st (n, m, k; H(E)) = st (n, m, k; h(H)(E)),

or H i
k(E) is not k-refinable for some i ≤ st (n, m, k; h(H)(E)).

Proof. Assume that H i(E) is k-refinable for all i≤N = st (n, m, k; h(H)(E)).
Then for any x ∈ E there exists P (x) ∈ HN+1

k (x) ⊂ HN
k (x) ⊂ · · · ⊂ H(x).

Therefore for any i ≤ N + 1 and for any x ∈ E, due to the definition of
homogenization and Lemma 4.1,

H i
k(x) = P (x) + h(H i

k)(x) = P (x) + [h(H)]ik(x).

Since for any x ∈ E we have [h(H)]Nk (x) = [h(H)]N+1
k (x), we conclude

that HN
k (x) = HN+1

k (x). Also, since [h(H)]N−1
k (x) � [h(H)]Nk (x) for some

x ∈ E, we conclude that HN−1
k (E) � HN

k (E). �

Remark. Lemma 4.2 shows that in order to compute ST (n, m, k) we
may restrict ourselves to consideration of homogeneous standard bundles.

5. Analysis of refinements of a standard 1-bundle

5.1. The first refinement

Let H(E) = Hf (E) be a standard 1-bundle over E. A fiber Hf(x0) of such
bundle consists of 1-jets of the form f(x0)+ 〈u, x−x0〉, u ∈ Rn. We identify
this 1-jet with the vector u ∈ Rn, i.e.,

f(x0) + 〈u, x− x0〉 ↔ u.

Let us rewrite the definition of the Glaeser k-refinement for the case of a
standard 1-bundle: a 1-jet f(x0) + 〈u0, x − x0〉 belongs to H1

k(x0) if for any
ε > 0 there exists δ > 0 such that for any x1, . . . , xk ∈ E ∩B(x0, δ) one can
find u1, . . . , uk ∈ Rn such that

(5.1) ∀ i, j, 0 ≤ i, j ≤ k, |f(xi) + 〈ui, xj − xi〉 − f(xj)| < ε|xi − xj |

and

(5.2) ∀ i, j, 0 ≤ i, j ≤ k, |ui − uj| < ε.
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Lemma 5.1. Let H(E) = Hf(E) be a standard 1-bundle. Let x0 ∈ E and
k ≥ 2. A vector u ∈ Rn belongs to H1

k(x0) (meaning, the 1-jet f(x0) +
〈u, x − x0〉 belongs to H1

k(x0)) if and only if

(5.3) lim
δ→0+

sup
x,y∈E∩B(x0,δ)

|f(y) + 〈u, x − y〉 − f(x)|
|x − y| = 0.

In particular, for a standard 1-bundle, the Glaeser 2-refinement equals the
Glaeser k-refinement for any k ≥ 2.

Proof. Assume that (5.3) holds. Given ε > 0 choose δ > 0 so that

(5.4) sup
x,y∈E∩B(x0,δ)

|f(y) + 〈u, x− y〉 − f(x)|
|x − y| < ε.

For any x1, . . . , xk ∈ E ∩ B(x0, δ) put ui = u, for i = 1, . . . , k. Let us check
that conditions (5.1) and (5.2) hold. The left hand side of the inequality (5.2)
is simply zero, and hence it trivially holds. Regarding (5.1), condition (5.4)
implies that for i, j ∈ {0, . . . , k},

|f(xj) + 〈u, xi − xj〉 − f(xi)| < ε|xi − xj |
which is exactly (5.1). Hence the requirements of (2.2) are satisfied, and
u ∈ H1

k(x0).

We now move to the “only if” part. Assume that the converse is true.
Then u ∈ H1

k(x0) but there are sequences E � xν → x0, E � yν → x0 such
that for all ν,

(5.5) |f(yν) + 〈u, xν − yν〉 − f(xν)| > ε0|xν − yν |
for some ε0 > 0. Given ε, 0 < ε < ε0/2, we will show that (5.1), (5.2)
cannot be satisfied for any choice of δ > 0. For any δ > 0, take ν large
enough so that xν , yν ∈ B(x, δ). Assume we associate with xν , yν the vectors
uν ∈ Hf(xν), vν ∈ Hf(yν), respectively. Then by (5.2),

|uν − u|, |vν − u| < ε <
ε0

2

and hence

|f(yν) + 〈uν , xν − yν〉− f(xν)| > |f(yν) + 〈u, xν − yν〉 − f(xν)| − ε0

2
|xν − yν|.

Combining this with (5.5), we conclude that

|f(yν) + 〈uν, xν − yν〉 − f(xν)| >
1

2
ε0|xν − yν| > ε|xν − yν |.
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We conclude that it is impossible to associate vectors from Hf(xν), Hf(yν)
with xν , yν to satisfy (5.1) and (5.2), in contradiction to the assumption that
u ∈ H1

k(x0). This finishes the proof. �

For standard 1-bundles H(E) we define H1(E) := H1
k(E), where k is any

integer ≥ 2. This definition makes sense, as H1
k(E) does not depend on k,

as long as k ≥ 2, by Lemma 5.1.

Note that H1
1 (E) might be different from H1

2 (E), as follows from the
following lemma.

Lemma 5.2. Let h(E) be the homogeneous standard 1-bundle over the set

E = {(x, y) ∈ R2; |y| ≤ x2, 0 ≤ x ≤ 1}.
Then

h1
2(0, 0) = {0},

h1
1(0, 0) = {P ∈ P1

2 : P (0, 0) = 0, ∂xP (0, 0) = 0},
so

h1
2(0, 0) �= h1

1(0, 0).

The proof of this lemma is just a straightforward checking.

5.2. Tangent vectors and E-gradients

In this section we reformulate Lemma 5.1 in the terminology of Glaeser
paratangent bundles (see [8, 1]).

Definition 5.3. A vector v ∈ Rn is called tangent to the set E ⊂ Rn at
the point x ∈ E, if there exist yi, zi ∈ E, yi → x, zi → x, such that

|v| yi − zi

|yi − zi|
i→∞−→ v.

Let Tx(E) denote the set of all vectors tangent to E at x ∈ E.

Note that if a vector v is tangent to E at x then for any λ ∈ R the
vector λv is also tangent to E at x. On the other hand, a sum of two vectors
tangent to E at x is not necessarily tangent to E at x. So the set Tx(E) is
closed under dilation but not under addition.

In the case of a homogenous bundle, Lemma 5.1 can be rewritten as
follows:

Lemma 5.4. Let h(E) be a homogeneous standard 1-bundle. Then

∀x ∈ E h1(x) = Tx(E)⊥.

To obtain Lemma 5.4, simply plug in f = 0 in (5.3).
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Definition 5.5. A function f : E → R is called E-differentiable at x ∈ E
if there exists a vector u ∈ Rn such that for every vector v ∈ Tx(E), |v| = 1,
we have

〈u, v〉 = lim

{
f(yi) − f(zi)

|yi − zi| : yi, zi ∈ E, yi, zi −→ x,
yi − zi

|yi − zi| → v

}
.

This vector, if it exists, is uniquely defined modulo Tx(E)⊥.

We call such vector u an E-gradient of f at x ∈ E. The set of E-
gradients of f at x ∈ E is denoted by (∇Ef)(x).

Lemma 5.1 may be reformulated as follows:

Lemma 5.6. Let H(E) = Hf(E) be a standard 1-bundle over E ⊂ Rn. Then
H1(x0) �= ∅ if and only if f is E-differentiable at x0 ∈ E. If H1(x0) �= ∅,
then

{u ∈ Rn : f(x0) + 〈u, x − x0〉 ∈ H1(x0)} = (∇Ef)(x0).

5.3. Two examples of computation of the first refinement

An additional, more geometric, reformulation of Lemma 5.1 reads as follows:

Lemma 5.7. Let h(E) be a homogeneous standard 1-bundle over a compact
set E ⊂ Rn. Then a vector u belongs to h1(x) if and only if for any distinct
yi, zi ∈ E, yi → x, zi → x, the angle between u and the segment [yi, zi] goes
to π/2.

Definition 5.8. We say that an infinite set E ⊂ Rn is sticking to the
line l near x ∈ l if

• x is a non-isolated point in E,
• the acute angle between the segment [yi, zi] and the line l goes to zero,

as E � yi, zi → x.

In other words, E is sticking to a line l near x, if the set Tx(E) is the
line parallel to l. By Lemma 5.4 we arrive at the following:

Lemma 5.9. Let a compact set E ⊂ Rn stick to the line l near x ∈ E.
Consider the homogeneous standard 1-bundle h(E). Then

h1(x) = l⊥.

Definition 5.10. We say that an infinite set E ⊂ Rn is sparsely sticking
to the lines l1, l2 near x ∈ l1 ∩ l2, if

• x is a non-isolated point in E,

• The minimum, over ν = 1, 2 of the acute angles, formed by the segment
[yi, zi] with the line lν (ν = 1, 2), goes to zero as E � yi, zi → x,

• E is not sticking to the line 	1, nor to the line 	2, at x.
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In other words, E is sparsely sticking to lines l1, l2 near x, if the set
Tx(E) consists of two lines, one parallel to l1, the other parallel to l2. The
next lemma now follows from Lemma 5.4.

Lemma 5.11. Let a compact set E ⊂ Rn be sparsely sticking to the lines
l1, l2 near x ∈ E. Consider the homogeneous standard 1-bundle h(E). Then

h1(x) = l⊥1 ∩ l⊥2 .

5.4. Higher refinements

Our next lemma analyzes further refinements of our standard 1-bundle
H(E) = Hf(E).

Lemma 5.12. Let H(E) be a standard 1-bundle. Let i ≥ 2, k ≥ 1. Let
x0 ∈ E. Then a vector u belongs to H i

k(x0) (meaning, as always, that the
1-jet f(x0) + 〈u, x − x0〉 belongs to H i

k(x0)) if and only if

(5.6) lim
δ→0+

sup
x∈E∩B(x0,δ)

inf
v∈Hi−1

k (x)
|u − v| = 0.

In particular, the Glaeser 1-refinement of H1(E) of order i ≥ 1 equals the
Glaeser k-refinement of H1(E) of the same order i, for any k ≥ 1.

Proof. Assume that u ∈ H i
k(x0). Then by (5.2), for any ε > 0 there is δ > 0

such that for x ∈ E∩B(x0, δ) there exists v ∈ H i−1
k (x) with |u−v| < ε. Thus

supx∈E∩B(x0,δ) infv∈Hi−1
k (x) |u− v| < ε. This proves that (5.6) is necessary for

u to belong to H i
k(x0). Why is (5.6) sufficient? Suppose that (5.6) holds.

Then in particular,

0 ≤ inf
v∈Hi−1

k (x0)
|u − v| ≤ lim

δ→0+
sup

x∈E∩B(x0,δ)

inf
v∈Hi−1

k (x)
|u − v| = 0.

Since H i−1
k (x0) is an affine subspace, it is closed and u ∈ H i−1

k (x0). Given
ε > 0, fix δ > 0 so that

(5.7) sup
x∈E∩B(x0,δ)

inf
v∈Hi−1

k (x)
|u − v| <

ε

2
.

Note also that since u ∈ H i−1
k (x0) ⊂ H1

k(x0), by Lemma 5.1 we may assume
that δ > 0 is also chosen to satisfy

(5.8) sup
x,y∈E∩B(x0,δ)

x �=y

|f(y) + 〈u, x − y〉 − f(x)|
|x − y| <

ε

2
.
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Now, given x1, . . . , xk ∈ E∩B(x0, δ) select u1 ∈ H i−1
k (x1), . . . , uk ∈ H i−1

k (xk)
such that |ui − u| < ε/2. Condition (5.2) is automatically satisfied, and we
need to check condition (5.1). This follows from (5.8), as

|f(xi) + 〈ui, xj − xi〉 − f(xj)| < |f(xi) + 〈u, xj − xi〉 − f(xj)|+
+|〈u − ui, xj − xi〉| < ε|xi − xj |. �

For standard 1-bundles we define, for i ≥ 2,

H i(E) := H i
k(E)

for any k ≥ 1, and the definition makes sense.

Proof of Theorem 3.1. Lemmas 5.1 and 5.12 contain all assertions of
Theorem 3.1. Lemma 5.2 shows that the constants of Lemmas 5.1, 5.12 are
optimal. �

In all further considerations we skip the reference to the number k for
standard 1-bundles.

5.5. An example of computation of higher refinements

The following result directly follows from Lemma 5.12:

Corollary 5.13. Let h(E) be a homogeneous standard 1-bundle over E⊂ Rn

and i ≥ 2. Fix x ∈ E. Let k ≥ 1, and assume there exist finitely many sub-
sets Aj ⊂ E, j = 1, 2, . . . , k, integers S(j) ≥ 1, j = 1, . . . , k, and non-zero
vectors Ejs ∈ Rn for 1 ≤ j ≤ k, 1 ≤ s ≤ S(j), such that

(i) ∀ y ∈ Aj hi−1(y) =
⋂S(j)

s=1 ejs(y)⊥, for some vectors ejs(y) ∈ Rn

that satisfy the following: For any 1 ≤ j ≤ k, 1 ≤ s ≤ S(j) and ε > 0, there
exists δ > 0, such that

y ∈ Aj , |y − x| < δ ⇒ |ejs(y) − Ejs| < ε.

(ii) for some δ > 0 the set E ∩ B(x, δ) \ {x} is the disjoint union of
non-empty sets Aj ∩ B(x, δ), j = 1, 2, . . . , k.

Then

hi(x) = hi−1(x) ∩
( ⋂

j,s:1≤j≤k,
1≤s≤S(j)

E⊥
js

)
.

Proof. Let u ∈ hi−1(x) satisfies that u ⊥ Ejs for all 1 ≤ j ≤ k, 1 ≤ s ≤ S(j).
By (i) and (ii), it is easy to see that for any ε > 0 there exists δ > 0 such
that

y ∈ E ∩ B(x, δ) ⇒ inf
v∈hi−1(y)

|u − v| < ε

and hence u ∈ hi(x).
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For the other direction, assume on the contrary that u ∈ hi(x), but
〈u, Ejs〉 �= 0 for some 1 ≤ j ≤ k, 1 ≤ s ≤ S(j). Then there exists a sequence
y1, y2, . . . ∈ Aj such that ym → x, and such that |〈u, ejs(ym)〉| > ε for all
m. Therefore infv∈hi−1(ym) |u − v| does not tend to zero, in contradiction to
Lemma 5.12. �

Remark. Lemmas 5.1 and 5.12 suggest that the actual effect of Glaeser
refinements on standard 1-bundles is smaller than it seems at first glance.
The first refinement is geometric (dealing with the geometry of the set E
near the point x0), while all the higher refinements are merely concerned
with the selection of continuous sections of the bundle h1(E).

6. Proof of Theorem 3.3

6.1. An overview of the construction

We shall construct a compact set E ⊂ Rn, n ≥ 2, such that the following
holds:

Sticking Conditions. For each non-isolated point x of E (except of one)
there will be two lines l1(x) and l2(x) passing through x such that E is
sparsely sticking to these lines near x. At the only exceptional non-isolated
point (we choose it to be the origin) there will be only one line l1(0) such
that E will stick to it near the origin.

This will enable us to easily compute the first refinement of the homoge-
neous standard 1-bundle h(E) at all non-isolated points, using Lemma 5.9
and Lemma 5.11. Let Iso E denote the set of isolated points of E. Then

h1(0) = l1(0)⊥,

∀ 0 �= x ∈ E \ Iso E, h1(x) = l1(x)⊥ ∩ l2(x)⊥.

Obviously,

∀x ∈ Iso E, h1(x) = h(x) = Rn.

Higher refinements are easy to compute, thanks to Lemma 5.12 and
Corollary 5.13.

Let us fix the coordinates X1, . . . , Xn in Rn. We let e1, . . . , en denote the
unit vectors of the respective coordinate axis.

We choose the line l1(x) to be the same for all non-isolated points of E,
and we let it coincide with the X1-axis. In particular, all non-isolated points
of E will be on the X1-axis, and more precisely, we place all such points on
the positive X1-semi-axis.
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Let F be the part of E belonging to the X1-axis. F contains all non-
isolated points of E, and it will also contain some of the isolated points of E.
So for each non-zero non-isolated point x ∈ F we have h1(x) = e⊥1 ∩ l2(x)⊥.

6.2. Preparation for construction of F

Next, we will describe the construction of F . A quick definition of the set F
could have been

(6.1) {ai1 + ai1+i2 + ai1+i2+i3 + · · · + ai1+···+in ; i1, . . . , in ∈ {1, 2, . . .} ∪ {∞}}

where ak = 2−2k
for integer k and a∞ = 0. However, this definition is not

intuitive and its properties might not be clear for some readers, so in the
following few sections we present a detailed, instructive construction of a
set F in the spirit of (6.1). We will not use the set (6.1) in any place.

The set F is going to be the union of decreasing sequences, each imbedded
in its own open interval, which will be called cluster. Each such sequence
will be rapidly converging to the left end of the cluster. The sequences are
going to be the shifts and truncations of one basic sequence, and the clusters
are going to form a tree with respect to inclusion, with clusters “of the same
level” well separated from each other.

To define these we fix a pair of rapidly decreasing sequences of positive
numbers ak, bk, k = 1, 2, . . . , in the interval (0, 1) such that

(6.2) ∀ k ≥ 3 0 < bk < ak−1 − ak, bk ≤ a2
k, ak ≤ a2

k−1, ak <
1

10
ak−1,

(6.3) lim
k→∞

ak + bk

ak−1

= lim
k→∞

bk

ak − (ak+1 + bk+1)
= 0.

With such choices of sequences, intervals of the form (ak, ak +bk) are well
separated from each other, on scales proportional to their lengths.

For instance, we may set ak = 2−2k
, bk = 2−2k+1

. The basic sequence –
a building block of our construction – will be the set

B = {ak; k = 1, 2, . . .} ⊂ (0, 1).

For x = ak ∈ B we define C◦(x) to be the interval

C◦(x) = (ak, ak + bk) ⊂ (0, 1).

Note that {C◦(x)}x∈B is a disjoint family of intervals, that do not intersect B.
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Furthermore, given an interval (s, t) ⊂ R, s < t, we will denote by B(s,t)

a suitable adaptation (shift and truncation) of the set B to the interval (s, t),
namely,

B(s,t) = {s + x : x ∈ B, x < t − s}
= {s + ak : k = k0, k0 + 1, . . . , k0 = min{k : s + ak < t}} ⊂ (s, t).

So, the sequence B(s,t) is a subset of the interval (s, t), and it is rapidly
decreasing to s. Also, for x = s + ak ∈ B(s,t) we set

C(s,t)(x) = {s + y; y ∈ C◦(x − s), y < t − s}
= (s + ak, min{s + ak + bk, t}) ⊂ (s, t).

Note that x ∈ C(s,t)(x). Still, {C(s,t)(x)}x∈B(s,t)
is a disjoint family of well

separated intervals that do not intersect B(s,t).

6.3. Construction of F

The set F is the intersection of E with the X1-axis. In order to ease our
notation, we identify this axis with R, i.e., for t ∈ R, t ∈ F should be
interpreted as te1 ∈ F .

The construction of the set F is inductive. We define disjoint sets
F0, . . . , Fn ⊂ R, their union will constitute the set F . Additionally, for each
point x ∈ Fi, 0 ≤ i ≤ n, we define a cluster, an open interval C(x) ⊂ R.
The following properties will hold:

1. The clusters {C(x)}x∈Fi
are pairwise disjoint and do not intersect Fi.

2. All limit points of Fi lie in
⋃n

j=i+1 Fj , and every point of
⋃n

j=i+1 Fj will
be a limit point for Fi. The set ∪n

j=iFj is closed.

Having established these properties, we conclude that Fi is the set of isolated
points of

⋃n
j=i Fj , i.e. Fi = Iso

⋃n
j=i Fj . Start by setting

Fn = {0} ⊂ R.

The cluster C(0) that is associated with 0 ∈ Fn is the interval (0, 1). The
two properties above trivially hold.

Let 1 ≤ i ≤ n. Having constructed a set Fi and a family of disjoint clus-
ters {C(x)}x∈Fi

, let us describe the construction of Fi−1 and {C(x)}x∈Fi−1
.

We set
Fi−1 =

⋃
x∈Fi

BC(x).

This is a disjoint union, since the clusters {C(x)}x∈Fi
are disjoint. For any

y ∈ Fi−1 there is a unique x ∈ Fi such that y ∈ BC(x). We now define the
cluster of y to be

C(y) = CC(x)(y) ⊂ C(x).
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In other words, each cluster C(x), x ∈ Fi gives rise to a sequence of pair-
wise disjoint clusters, contained in C(x). Therefore the clusters {C(y)}y∈Fi−1

are disjoint. By the construction, the clusters {C(y)}y∈Fi−1
are also disjoint

from Fi−1.
It is also straightforward to verify that ∪n

j=i−1Fj is closed, that all limit
points of Fi−1 are in

⋃n
j=i Fj , and that every point of

⋃n
j=i Fj is a limit point

of Fi−1.
This finishes the construction of the sets F0, . . . , Fn.
Next, set

F =
n⋃

i=0

Fi.

Clearly, F0 is the set of isolated points of F . For any x ∈ F we have a cluster
C(x), that was defined in the construction of F0, . . . , Fn. See Figure 1 for a
schematic drawing of the clusters of the set F .

The following property of our construction will be substantially used later:

(6.4) ∀x ∈ Fi ∃ δ > 0 (F ∩ B(x, δ)) \ {x} ⊂
⋃

{C(y) : y ∈ BC(x)}.

In particular,

∀ {yk}∞k=1 ⊂ F, yk → x ∈ Fi yk �= x,(6.5)

∃ k0 ∈ N ∀ k > k0, yk > x, yk ∈
i−1⋃
j=1

Fj .

6.4. A tree structure on the set of clusters

Property (6.12) means that there is a natural tree structure, induced by the
inclusion relation, on the family of clusters {C(x)}x∈F . Indeed, we say that
C(y) is the child of C(x) if

y ∈ BC(x).
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We may of course also speak about parents, descendants and ancestors
of a cluster, as is customary when dealing with trees. Note that the root of
this tree is the cluster C(0) = (0, 1) that the leaves are {C(x)}x∈F0, and that
if C(y) is a child of C(x) then x < y ∈ C(x). There is a simple criterion to
check the tree relation between C(x) and C(y), for x, y ∈ F , to be described
as follows. The cluster C(y) is a descendant of C(x) if and only if

(6.6) C(y) ⊂ C(x).

As follows from (6.12), the cluster C(y) is not a descendant of C(x) and
C(x) is not a descendant of C(y) if and only if

(6.7) C(x) ∩ C(y) = ∅

Since there is a one-to-one correspondence x �→ C(x) between the points
of F and the clusters, we may transfer the tree structure from the set of
clusters to the set F .

6.5. The proximity function and properties of F

Definition 6.1. For x ∈ F let

p(x) = |C(x)|,

where |C(x)| denotes the length of the interval C(x). We call the function
p : F → R+ the proximity function.

An important property of the proximity function is the following:

(6.8) F � yk → x, yk �= x, ⇒ p(yk) → 0.

This property immediately follows from the observation that if F � yk→x,
then for every i, 0 ≤ i ≤ n, the subsequence {yk}∞k=1 ∩ Fi, if infinite, also
converges to x from the right. Since the clusters C(yk), yk ∈ Fi, whose left
ends are yk, are disjoint, then their lengths p(yk) must tend to zero.

Since BC(x) ⊂ C(x), and |C(x)| = p(x), then

(6.9) ∀ y = x + ak ∈ BC(x) ak ≤ p(x).

For a point x ∈ Rn and a set A ⊂ Rn we write dist (x, A) = infy∈A |x−y|
for the distance between x and A. The distance between two sets A, B ⊂ Rn

is of course dist (A, B) = infx∈A dist (x, B).
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The following statements can be verified in a straightforward manner,
from (6.2) and (6.3):

∀x, y ∈ F C(x) ∩ C(y) = ∅ ⇒ dist [C(x), C(y)] ≥ max{p(x), p(y)}.(6.10)

lim
C(x)�y1,y2→x
C(x)∩C(y) �=∅

dist (C(y1), C(y2))

max{p(y1), p(y2)} = ∞.(6.11)

A useful property that is evident from the construction of F is that

(6.12) ∀x, y ∈ F C(x) ∩ C(y) �= ∅ ⇒ C(x) ⊂ C(y) or C(y) ⊂ C(x).

6.6. Cylinders associated with clusters

Let C(x), x ∈ F, be a cluster. Then C(x) ⊂ Re1, |C(x)| = p(x). Consider
the cylinder P (x) ⊂ Rn, defined as follows:

(6.13) P (x) = {z ∈ Rn : 〈z, e1〉e1 ∈ C(x), dist (z, C(x)) ≤ p(x)2}
where C(x) is the closure of C(x). Note that x ∈ C(x). Note that the
cluster C(x) is the axis of the cylinder P (x). P (x) has height p(x) in the
e1-direction, its base is a ball in Rn−1 of radius p(x)2.

If C(y) ⊂ C(x) then p(y) ≤ p(x) and consequently P (y) ⊂ P (x). There-
fore, there is a one-to-one inclusion-preserving correspondence between the
set of clusters and the set of cylinders. So the set of all cylinders also gets
a tree structure. In particular, two cylinders are either disjoint or one is
contained in another. The cylinders P (x), x ∈ Fi, are disjoint, and for
each cylinder P (x), x ∈ Fi, i < n, there exists a unique parent cylinder
P (y), y ∈ Fi+1, such that P (x) � P (y). The disjoint cylinders are well
separated from each other:

P (x) ∩ P (y) = ∅ ⇒ dist (P (x), P (y)) ≥ max{p(x), p(y)}.
The following lemma will be needed for verification of the sticking prop-

erties of our construction.

Lemma 6.2. Let A ∈ P (x), B ∈ P (y), P (x) ∩ P (y) = ∅. Then the acute
angle α between the segment [A, B] and the vector e1 satisfies the estimate

| sin α| ≤ 2 max{p(x), p(y)}.
Proof.

| sin α| = max
e⊥e1,|e|=1

|〈B − A, e〉|
|B − A| ≤ dist (B, C(y)) + dist (A, C(x))

|B − A|
≤ p(y)2 + p(x)2

max{p(y), p(x)} ≤ 2 max{p(x), p(y)}.
�
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6.7. Construction of E \F

To each x ∈ ⋃n−1
j=1 Fj we assign a line l2(x), passing through x, in the direction

e(x) ∈ Rn. The choice of the direction vectors e(x) of the lines goes as
follows:

(6.14) ∀x ∈ F1 e(x) =
1√

1 + p(x)2
(e1 + p(x)e2),

(6.15) ∀x ∈ Fi, 2 ≤ i ≤ n − 1,

e(x) =
1√

1 + p(x)2 + p(x)4
(e1 + p(x)ei + p(x)2ei+1).

Let us note that the vectors e(x) are of unit lengths, and for the angle
γ(x) between the vectors e(x) and e1 we have

| tan γ(x)| ≤ 2p(x).

From this we deduce that

(6.16) | sin γ(x)| ≤ | tan γ(x)| ≤ 2p(x).

An important consequence of this and of (6.8) is the following:

(6.17) yk ∈ F, yk �= x, yk → x ∈ F ⇒ γ(yk) → 0.

Let us define another sequence of numbers:

λk =
√

ak−1(ak + bk).

This sequence is sparsely intertwined between the intervals {C0(ak)}k≥1, i.e.,

(6.18) ak + 2bk < λk < ak−1 − bk−1,

(6.19) lim
k→∞

λk

ak + bk

= ∞, lim
k→∞

λk

ak−1

= 0.

For each 0 �= x ∈ F \ F0 we will place a sequence of points Y (x), con-
verging to x, on the line l2(x):

(6.20) Y (x) = {x + λke(x) : k ≥ 1, x + λke(x) ∈ P (x)}.
Note that the condition x + λke(x) ∈ P (x) holds for all integers k > k0(x),
for an appropriate number k0(x) > 0. In addition, if C(y) is a descendant
of C(x), then the intertwining condition (6.18) on λk guarantees that

(6.21) Y (x) ∩ P (y) = ∅ and inf
z∈Y (x),w∈P (y)

|z − w| > 0

Finally, set

E = F ∪
( ⋃

0
=x∈F\F0

Y (x)

)
.
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6.8. Verification of the Sticking Conditions

For each z ∈ E there exists a unique smallest cylinder P (x(z)), x(z) ∈ F,
containing z. We call such cylinder the holder of z. If z ∈ F then x(z) = z,
and the cylinder P (z) is the holder of z. If z ∈ E \ F, then there exists a
unique y ∈ F such that z ∈ Y (y). In that case, by (6.21), we have x(z) = y,
and P (y) is the holder of z. Therefore, the holders of z1, z2 ∈ E coincide if
and only if z1, z2 belong to the same set Y (x) ∪ {x} for some x ∈ F. In this
case x(z1) = x(z2) = x. Note that for any z ∈ E we have that x(z) ≤ 〈z, e1〉.

Since z ∈ P (x(z)) then 〈z, e1〉e1 ∈ C(x(z)). Let E � zr
r→∞−→ x ∈ F . By

(6.5) and (6.21), necessarily zr ∈ P (x) for sufficiently large r. We conclude
that x(zr) ≥ x for r large enough. Note also that x(zr) ≤ 〈zr, e1〉 → x and
hence x(zr) → x. By (6.8) we see that

(6.22) E � zr → x, x(zr) �= x ⇒ p(x(zr)) → 0.

To verify the sticking conditions we need to estimate the angles between
segments [Ar, Br], where E � Ar, Br → x ∈ F, and at least one of the
vectors e1, e(x).

Lemma 6.2 tells us what happens if the holders P (x(Ar)), P (x(Br)) of
Ar, Br are disjoint.

What if the holders are not disjoint? Then the holders either coincide or
one is a proper part of another.

The first case is very easy.

Lemma 6.3. Let A, B ∈ E, A �= B, have the same holder: x(A) = x(B) = x.
Then the segment [A, B] is parallel to the vector e(x). In particular, the acute
angle between [A, B] and e1 satisfies the estimate

| sin α| ≤ 2p(x)

Now assume that A, B ∈ E have distinct intersecting holders. Then one
of the holders is a subset of the other, assume P (x(B)) � P (x(A)). We
conclude that A ∈ {x(A)} ∪ Y (x(A)), and B belongs to P (xk) for some
xk ∈ BC(x(A)).

Two case exist: either A = x(A) or otherwise A = x(A) = λ�e(x(A)) for
some 	. The first case is a limiting case of the second one, so we may confine
our attention to the case where A = x(A) + λ�e(x(A)) and B ∈ P (xk), xk =
x(A) + ake1 ∈ BC(x(A)).

Note that since x(A) + ake1 ∈ C(x(A)) then ak < |C(x(A))| = p(x(A)).
For 	 ≤ k, our definitions imply

|A − B| ≥ dist(A, P (xk)) ≥ dist(〈A, e1〉e1, C(xk))

≥ λ�√
1 + p(x)2 + p(x)4

− (ak + bk).
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Note that p(xk) ≤ bk and that p(x) ≤ 1. Combining with (6.2), we get that
when 	 ≤ k,

(6.23) |A − B| ≥
√

a�−1(a� + b�)

2
− (ak + bk) ≥

√
ak−1(ak + bk)

4

provided that k > k0 by (6.19), for some universal constant k0. Similarly, if
	 > k, then,

|A − B| ≥ dist (〈A, e1〉e1, C(xk)) ≥ ak − λ�√
1 + p(x)2

.

Combining with (6.2), we get that when 	 > k,

(6.24) |A − B| ≥ ak − λ� ≥ ak − λk+1 >
1

2
ak

provided that k > k0, by (6.19).

Lemma 6.4. Let A = x + λ�e(x) ∈ P (x), and B ∈ P (xk), xk = x + ake1 ∈
BC(x). Assume that 	, k ≥ k0, for some number k0. If 	 ≤ k then we have
for the angle α between [A, B] and e(x):

| sin α| ≤ τ(k0)

where τ(k0) is some function of k0 such that τ(k0) → 0 as k0 → ∞.
If 	 > k then we have for the angle α between [A, B] and e1,

| sin α| ≤ τ(k0)

for the same function τ(k0). Same holds also if A = lim�→∞ x + λ�e(x) = x.

Proof. Let 	 ≤ k. Recall that l2(x) is the line through x in direction e(x).
Then,

| sin α| =
dist(B, l2(x))

|A − B| ≤ dist(x, B)

|A − B| ≤ maxD∈P (xk) dist(x, D)

|A − B|

=

√
(ak + bk)2 + p(xk)4

|A − B| .

Combining with (6.23) and the fact that p(xk) ≤ bk,

| sin α| ≤ 8

√
ak + bk

ak−1
.

By (6.3), the right hand side tends to zero when k0 (and hence also k) tends
to infinity.
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Regarding the case 	 > k, recall that l1(x) is the line through x in
direction e1. Let l1(x) + B be the line through B in direction e1. Then,

| sin α| =
dist(A, B + l1(x))

|A − B| ≤ d(A, l1(x)) + d(B, l1(x))

|A − B|

≤ λl2p(x) + p(xk)2

|A − B| < 4
λk+1 + bk

ak
.

The right hand side tends to zero as k0, and hence k, tend to infinity. This
finishes the proof. The case

A = x = lim
�→∞

x(A) + λ�e(x)

follows by continuity. �

Now we can prove the following result:

Lemma 6.5. The set E sparsely sticks to the lines l1(x) (the X1-axis) and
l2(x) near every x, x �= 0, x ∈ F \F0. The set E also sticks to the line l1(0)
near 0.

Proof. Take any x ∈ F \ Iso F. Let E1 = Y (x), E2 = E \ E1. Obviously,
E1 sticks to l2(x) near x, since E1 ⊂ l2(x).

Let us show that E2 sticks to l1(x) near x. Let Ar, Br ∈ E2, Ar, Br → x.
Let P (yr) be the holder of Ar, let P (zr) be the holder of Br. Since the
projection of Ar onto the X1-axis belongs to C(yr) and these projections
converge to x from the right, then yr → x. Similarly, zr → x. Note that
yr, zr �= x, since Ar, Br /∈ E1. Therefore p(yr), p(zr) → 0. There are two
cases: If P (yr) and P (zr) are disjoint, then the angle between [Ar, Br] and e1

goes to zero because of Lemma 6.2. Otherwise, by Lemma 6.4, the minimal
angle between [Ar, Br] and the three lines e1, l2(yr), l2(zr) goes to zero as
r → 0. Since p(yr), p(zr) → 0, we conclude that the angle between [Ar, Br]
and e1 goes to zero as r → ∞.

We need to consider only the case where Ar ∈ E1, Br ∈ E2 are such
that Ar, Br → x. Since Ar ∈ E1 then Ar = x + λ�e(x). Since Br ∈ E2 then
Br ∈ P (xk), xk ∈ BC(x)). So we find ourselves in the situation of Lemma 6.4.
Applying this Lemma, we note that if 	 ≤ k and r is very large, then the
angle between [Ar, Br] and e(x) is very small. Similarly, if 	 > k, and r is
very large, then by Lemma 6.4 the angle between [Ar, Br] and e1 is very
small. We conclude that as r → ∞, the minimal angle of [Ar, Br] with the
directions e1, e2(x) goes to zero as r → ∞. The Lemma is proven. �
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6.9. Computation of refinements of h(E)

Using Lemmas 5.9 and 5.11, we are able to compute the first refinements of
h(E) at E \ Iso E =

⋃n−1
j=1 Fj :

Corollary 6.6.
h1(0) = e⊥1 ,

∀x ∈
n−1⋃
j=1

Fj h1(x) = e⊥1 ∩ l2(x)⊥.

Remark. Few features of the lines l2(x) were used in the construction. The
only important property is that

F � xn → x ∈ F ⇒ l2(xn) → sp{e1}.

Corollary 6.6 holds for any such choice of lines.

Using the locality of the definition of refinements, and the fact that
h0(x) = Rn for all x ∈ E for a homogeneous standard 1-bundle, we see that

(6.25) ∀x ∈ Iso E = (E \ F ) ∪ F0 h1(x) = h2(x) = · · · = Rn = 0⊥.

From Corollary 6.6 and the definition of e(x) we get

(6.26) ∀x ∈ F1 h1(x) = e⊥1 ∩ e(x)⊥ = e⊥1 ∩ e⊥2 ,

(6.27) ∀x ∈ Fj , 2 ≤ j ≤ n−1, h1(x) = e⊥1 ∩e(x)⊥ = e⊥1 ∩(ej +p(x)ej+1)
⊥.

From this we are able to compute higher refinements using Corollary 5.13,
since all first refinement fibers are represented in the form used in this Corol-
lary.

It is important to note that for every x ∈ Fj there exists a neighborhood
of this point which does not contain any other points from

⋃n
k=j Fj , so if

E � ys → x, ys �= x, then we may assume that all ys belong to E \⋃n
k=j Fj .

In the case n = 2, Corollary 6.6 implies that h1(0) = e⊥1 , while for
x ∈ F1 we have h1(x) = {0}. Since any neighborhood of zero contains points
from F1, Lemma 5.12 implies that h2(0) = {0} and thus h1(0) �= h2(0) and

st (2, 1; h(E)) ≥ 2,

as promised in Theorem 3.3.
We may confine our attention to the case n ≥ 3.



C1 extensions and Glaeser refinements 661

Lemma 6.7. Assume n ≥ 3.

(1) For each i = 2, . . . , n−1 and for each x ∈ Fj , j = i+1, i+2, . . . , n−1,
we have

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)
⊥,

hi(0) = e⊥1 ∩ · · · ∩ e⊥n−1.

(2) For each i = 2, . . . , and for each x ∈ Fj , j = 1, 2, . . . , min{i, n − 1},
we have

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ e⊥j ∩ e⊥j+1.

Proof. Induction by i.

Basis: i = 2.

• Proof of (2) for i = 2. We have to compute the second refinements at
the points of F1 and F2. Let first consider x ∈ F1.

Let A0 = Iso E. By (6.25),

∀ y ∈ A0 h1(y) = Rn = 0⊥.

There is a punctured neighborhood of x in which the only points from E
belong to A0. By Corollary 5.13,

∀x ∈ F1 h2(x) = h1(x) ∩ 0⊥ = e⊥1 ∩ e⊥2 ,

according to (6.26).

Let us compute h2(x) for x ∈ F2. Let A0 = Iso E, A1 = F1. It immedi-
ately follows from the construction that A0, A1 satisfy the condition (ii) of
Corollary 5.13. By (6.26),

∀ y ∈ A0 h1(y) = 0⊥,

∀ y ∈ A1 h1(y) = e⊥1 ∩ e⊥2 .

So we are in the situation considered in Corollary 5.13. Also, h1(x) =
e⊥1 ∩ e(x)⊥. By Corollary 5.13 we get

h2(x) = h1(x) ∩ (0⊥ ∩ e⊥1 ∩ e⊥2 ) = (e⊥1 ∩ e(x)⊥) ∩ (e⊥1 ∩ e⊥2 )

= (e⊥1 ∩ e⊥2 ) ∩ (e1 + p(x)e2 + p(x)2e3)
⊥ = e⊥1 ∩ e⊥2 ∩ e⊥3 .

The assertion (2) is proven for i = 2.
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• Proof of (1) for i = 2. Let x ∈ Fj for i + 1 ≤ j ≤ n (possibly x = 0).
Let A0 = Iso E, A1 = F1, . . . , Aj−1 = Fj−1. It immediately follows from the
construction that A0, A1, . . . , Aj−1 satisfy the condition (ii) of Corollary 5.13.
By (6.26), (6.27),

∀ y ∈ A0 h1(y) = 0⊥,

∀ y ∈ A1 h1(y) = e⊥1 ∩ e⊥2 ,

∀ y ∈ A2 h1(y) = e⊥1 ∩ (e2 + p(y)e3)
⊥,

...

∀ y ∈ Aj−1 h1(y) = e⊥1 ∩ (ej−1 + p(y)ej)
⊥,

and p(y) → 0, as y → x. Assume now that j ≤ n − 1. Then

h1(x) = e⊥1 ∩ e(x)⊥.

By Corollary 5.13

h2(x) = h1(x) ∩ (0⊥ ∩ (e⊥1 ∩ e⊥2 ) ∩ (e⊥1 ∩ e⊥3 ) ∩ · · · ∩ (e⊥1 ∩ e⊥j−1)
)

= e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)
⊥,

and the assertion (1) is proven for j ≤ n − 1.

The case j = n includes only the point x = 0. In this case h1(0) = e⊥1
and Corollary 5.13 imply

h2(0) = e⊥1 ∩ · · · ∩ e⊥j−1 = e⊥1 ∩ · · · ∩ e⊥n−1,

meaning that assertion (1) is proven for i = 2.

Inductive step i − 1 �→ i.

Assume we have already proven the Lemma for i − 1. Let us prove it
for i. Take any j ≥ 1, consider any x ∈ Fj.

Let A0 = Iso E, A1 = F1, . . . , Aj−1 = Fj−1.
We have to consider three cases: j > i, j = i and j < i.

• Case j < i. By our assumptions,

∀ y ∈ Ak, 1 ≤ k ≤ j − 1 < i − 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k+1.

Also,
hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j+1.

Applying Corollary 5.13 as before, we immediately conclude that

hi(x) = e⊥1 ∩ · · · ∩ e⊥j+1.
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• Case j = i. Again, by our assumptions

∀ y ∈ Ak, 1 ≤ k ≤ j − 1 = i − 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k+1.

Also, by our assumptions,

hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)
⊥.

So, using Corollary 5.13 we see that

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)
⊥ ∩

⋂
k≤j−1

ek+1 = e⊥1 ∩ · · · ∩ e⊥j ∩ e⊥j+1.

• Case j > i. By our assumptions,

∀ y ∈ Ak, 1 ≤ k ≤ i − 1 < j − 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k+1.

∀ y ∈ Ak, j > k > i − 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k−1 ∩ (ek + p(y)ek+1)
⊥,

In addition, if j ≤ n − 1 then

hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)
⊥.

and if j = n then x = 0 and

hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j−1.

Applying Corollary 5.13 as before, we immediately conclude that

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥ ∩
⋂

k≤i−1

e⊥k+1 ∩
⋂

i−1<k<j

e⊥k

= e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥

in the case j ≤ n − 1, and that

hi(0) = e⊥1 ∩ · · · ∩ e⊥j−1.

�

6.10. Completion of the proof of Theorem 3.3

By Lemma 6.7, for any x ∈ Fn−1 we have hn−1(x) = {0}. Since there is a
sequence x1, x2, · · · ∈ Fn−1 that tends to zero, Corollary 5.13 implies that
hn(0) = {0}. However, by Lemma 6.7 we have hn−1(0) �= {0} and hence
hn−1(0) � hn(0), so

st (n, 1; h(E)) ≥ n,

and Theorem 3.3 is proven. �
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7. Proof of Theorem 3.4

Let E ⊂ Rn be a compact set. Let h(E) be the homogeneous standard
1-bundle over E. We shall prove that

st (n, 1; h(E)) ≤ n + 1.

Due to Lemma 4.2, this will mean that

ST (n, 1) ≤ n + 1.

For x ∈ E and i ∈ N we denote

(7.1) J i(x) = hi(x)⊥.

For a subspace G ⊂ Rn, we denote S(G) = {x ∈ G; |x| = 1}, the unit
sphere in G.

Lemma 7.1. Fix i ≥ 1, x ∈ E and let u ∈ Rn. Then u ∈ hi+1(x) if and only
if, for any sequences xk ∈ E, vk ∈ S(Rn) such that xk → x and vk ∈ J i(xk),
we have

〈u, vk〉 k→∞−→ 0.

Proof. By Lemma 5.12, u ∈ hi+1(x) if and only if

lim
δ→0+

sup
y∈E∩B(x,δ)

inf
w∈hi(y)

|u − w| = 0.

The condition (7.1) implies that

inf
w∈Hi(y)

|u − w| = sup
v∈S(Ji(y))

|〈u, v〉| .

Therefore we may reformulate Lemma 5.12 as

u ∈ hi+1(x) ⇔ lim
δ→0+

sup
y∈E∩B(x,δ)

sup
v∈S(Ji(y))

|〈u, v〉| = 0,

and the lemma follows by a standard argument. �

Since E ⊂ Rn, we may view J i(E) as a subset of R2n:

J i(E) = {(x, y) ∈ Rn × Rn; x ∈ E; y ∈ J i(x)}.
We define J i(E) to be the closure of J i(E) ⊂ R2n. For x ∈ E we set

J̄ i(x) = {y ∈ Rn : (x, y) ∈ J i(E)}.
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Lemma 7.2. For i ≥ 2, x ∈ E,

J i(x) = span J̄ i−1(x).

Proof. Let u ∈ hi(x) and let 0 �= v ∈ J̄ i−1(x). We will show that 〈u, v〉 = 0.
By the definition of J̄ i−1(x), there exist a sequence E � xk → x and vectors
vk ∈ J i−1(xk) such that vk → v. We may assume that |vk| = |v| for all k.
Lemma 7.1 implies that〈

u,
v

|v|
〉

= lim
k→∞

〈
u,

vk

|vk|
〉

= 0.

Hence u ⊥ J̄ i−1(x) and consequently,

hi(x) ⊂ [J̄ i−1(x)
]⊥

.

Next, let u ∈ Rn be such that u ⊥ J̄ i−1(x). Assume on the contrary that u �∈
hi(x). By Lemma 7.1 there exist a sequence xk → x and vk ∈ S(J i−1(xk))
such that for all k,

|〈u, vk〉| > ε0

for some ε0 > 0. Passing to a subsequence, if necessary, we may assume that
there exists v ∈ S(Rn) such that vk → v. Note that by definition of J i−1 as
the closure, v ∈ J̄ i−1(x). Yet,

|〈u, v〉| = lim
k→∞

|〈u, vk〉| ≥ ε0 > 0

in contradiction to u ⊥ J̄ i−1(x). This shows that

hi(x) =
[
J̄ i−1(x)

]⊥
.

Since [J i(x)]
⊥

= hi(x), we conclude that

J i(x) = span J̄ i−1(x)

and the lemma is proven. �
Lemma 7.3. Let E � xr → x ∈ E, and let k, l > 0 be integers. Assume
that J̄k(xr) contains an l-dimensional subspace. Then J̄k(x) also contains
an l-dimensional subspace.

Proof. Choose an l-dimensional subspace Ur ⊂ J̄k(xr). Recall that the
Grassmannian Gn,l of l-dimensional linear subspaces in the n-dimensional
space is compact, with the Hausdorff metric

(7.2) dist (E1, E2) = max

{
sup

x∈S(E1)

inf
y∈S(E2)

|x − y|, sup
x∈S(E2)

inf
y∈S(E1)

|x − y|
}

.

Hence we may select a subsequence Urj
that converges to some l-dimensional

subspace U . The set J̄k(E) is closed, and hence necessarily U ∈ J̄k(x). �
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Let

Ek = {x ∈ E; J̄k(x) �= J̄k−1(x)},
and let Ek be the closure of Ek. We claim that Ek+1 ⊂ Ek (and hence also
Ek+1 ⊂ Ek). Indeed, if x �∈ Ek, then there is a neighborhood of x in which
Jk = Jk−1, and because our operations are local, we obtain J̄ l(x) = J̄k−1(x)
for any l ≥ k − 1.

Lemma 7.4. If x ∈ Ek then J̄k(x) contains a k-dimensional subspace.

Proof. By induction. Begin with the case k = 1. Note that for any
x ∈ E, u ∈ Rn and 0 �= t ∈ R,

(7.3) u ∈ J1(x) ⇔ tu ∈ J1(x)

because J1(x) is a subspace. The condition (7.3) is closed, and hence also

u ∈ J̄1(x) ⇔ tu ∈ J̄1(x).

Therefore, whenever x ∈ E1, we have J̄1(x) �= J̄0(x) = {0} and J̄1(x)
contains a one-dimensional subspace. If y ∈ E1 then there is a sequence
E1 � yr → y, and by Lemma 7.3, also J̄1(y) contains a one-dimensional
subspace.

Assume validity for k − 1, and prove for k. Let x ∈ Ek. If there was a
neighborhood B(x, δ) such that Jk(y) = J̄k−1(y) for any y ∈ E ∩ B(x, δ),
then J̄k(x) = J̄k−1(x) and x �∈ Ek, since our operations are local. We
conclude that for any δ > 0 there is yδ ∈ E ∩ B(x, δ) such that

(7.4) Jk(yδ) �= J̄k−1(yδ).

Hence yδ ∈ Ek ⊆ Ek−1. Note that Jk(yδ) = span J̄k−1(yδ), and that by
induction, J̄k−1(yδ) contains a k − 1 dimensional subspace.

Together with (7.4) we conclude that dim(Jk(yδ)) ≥ k. Clearly also
dim(J̄k(yδ)) ≥ k, and by Lemma 7.3, dim(J̄k(x)) ≥ k. Hence, when-
ever x ∈ Ek, necessarily dim(J̄k(x)) ≥ k. For x ∈ Ek take a sequence
Ek � xr → x and use Lemma 7.3 to obtain

dim(J̄k(x)) ≥ k. �

Proof of Theorem 3.4. Lemma 7.4 implies that En+1 = ∅. Hence, for
any x ∈ E we have J̄n+1(x) = J̄n(x). This implies by Lemma 7.2 that
Jn+2(x) = Jn+1(x) for any x ∈ E, and hence hn+2(E) = hn+1(E) and n + 1
Glaeser refinements are always sufficient. �
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8. A new proof of Glaeser’s Theorem

Let us sketch a quick proof of Glaeser’s C1 Extension Theorem [8], based
on Michael’s Continuous Selection Theorem (see, e.g., [9, pp. 181-184]) and
Whitney’s Extension Theorem ([10], case m = 1 of Theorem 1).

Theorem 8.1. (E. Michael) Let E ⊂ Rn, and for any x ∈ E let h(x) ⊂ Rn

be a non-empty convex set. Assume that for every x ∈ E and u ∈ h(x),

lim
δ→0+

sup
y∈E∩B(x,δ)

inf
v∈h(y)

|v − u| = 0.

Then there exists a continuous map p : E → Rn such that p(x) ∈ h(x) for
every x ∈ E.

Theorem 8.2. (H. Whitney) Let E ⊂ Rn. For any x ∈ E let px ∈ P1
n be

a 1-jet. Assume that for any x ∈ E and ε > 0 there exists δ > 0 such that
if x1, x2 ∈ E ∩ B(x, δ) then,

|(px1 − px2)(x2)| < ε|x1 − x2|, |∇(px1 − px2)(x2)| < ε.

Then there exists a C1 function f such that J1
xf = px for any x ∈ E.

Glaeser’s result [8] is equivalent to the following

Theorem 8.3. Consider a function f : E → R, where E ⊂ Rn, n ≥ 2.
Let H0(E) = Hf(E) be the standard 1-bundle. Let H1(E) be its Glaeser
2-refinement. For i > 1 let H i+1(E) be the Glaeser 1-refinement of H i(E).
The function f extends to a C1 function on Rn if and only if Hn(E) is
1-refinable.

Proof. If f extends to a C1 function on Rn, then the bundle H0(E) allows
a section, so it has refinements of all orders. Therefore Hn(E) is refinable.

Now assume that Hn(E) is 1-refinable. Therefore ∀x ∈ E, Hn+1(x) �= ∅.
By Theorem 3.4, Hn+2(E) = Hn+1(E).

As before, for each i ≥ 0 consider

hi(x) = {u ∈ Rn : f(x) + 〈u, y − x〉 ∈ H i(x)}.
Obviously,

∀x ∈ E hn+2(x) = hn+1(x).

Corollary 5.12 implies that the non-empty convex sets hn+1(x), x ∈ E, sat-
isfy the conditions of Theorem 8.1. Hence it is possible to choose a contin-
uous section, i.e. a continuous map E � x �→ ux ∈ hn+1(x). Therefore, for
any x0 ∈ E, ε > 0 there is δ1(ε, x) > 0 such that for x, y ∈ E∩B(x0, δ1(ε, x)),

|ux − uy| < ε.



668 B. Klartag and N. Zobin

For any x ∈ E, we know, in particular, that f(x) + 〈ux, y − x〉 ∈ H1(x).
By Lemma 5.1, for any ε > 0 there is δ2(ε, x) > 0 such that if x1, x2 ∈
E ∩ B(x, δ2(ε)), then

|f(x1) + 〈ux, x2 − x1〉 − f(x2)| < ε|x1 − x2|.

Let
δ(ε, x) = min

{
δ1

(ε

2
, x
)

, δ2

(ε

2
, x
)}

.

If x1, x2 ∈ E ∩ B(x, δ) then,

|f(x1) + 〈ux1, x2 − x1〉 − f(x2)|
≤ |f(x1) + 〈ux, x2 − x1〉 − f(x2)| + |x1 − x2||ux − ux1| < ε|x1 − x2|

and also |ux1 −ux2| < ε. We conclude that px(y) = f(x) + 〈ux, y−x〉 satisfy
the conditions of Theorem 8.2, and hence a C1 extension exists. �

Remark. We could avoid using Theorem 3.4, whose proof is quite com-
plicated, and use instead a much easier estimate (2.3). This will require
replacing the condition of refinability of Hn(E) by a seemingly stronger
(but, actually, equivalent – due to Theorem 3.4) condition of refinability
of H2n+2(E).
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