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Wavelet construction of Generalized
Multifractional processes

Antoine Ayache, Stéphane Jaffard and Murad S. Taqqu

Abstract

We construct Generalized Multifractional Processes with Random
Exponent (GMPREs). These processes, defined through a wavelet
representation, are obtained by replacing the Hurst parameter of
Fractional Brownian Motion by a sequence of continuous random
processes. We show that these GMPREs can have the most gen-
eral pointwise Hölder exponent function possible, namely, a random
Hölder exponent which is a function of time and which can be ex-
pressed in the strong sense (almost surely for all t), as a lim inf of an
arbitrary sequence of continuous processes with values in [0, 1].

1. Introduction and main results

Fractional Brownian Motion (FBM) on Rd with Hurst parameter H ∈ (0, 1)
will be denoted {BH(t)}t∈Rd . This continuous and nowhere differentiable
process can be represented for every t ∈ Rd, as the Wiener integral

BH(t) =

∫
Rd

eit·ξ − 1

|ξ|H+d/2
dW (ξ),(1.1)

where t ·ξ denotes the usual scalar product and | · | the usual Euclidian norm.
Throughout this article, the complex-valued Brownian measure dW is chosen
in a way that all the processes and the fields we consider are real-valued (see
for example [6] or [8]). FBM was introduced in 1940 by Kolmogorov as a way
to generate Gaussian “spirals” in Hilbert space [28] but its systematic study
started with the famous 1968 paper of Mandelbrot and Van Ness [31]. It has
been studied since then by many authors, such as Adler, Falconer, Kahane,
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Hölder regularity.



328 A. Ayache, S. Jaffard and M. S. Taqqu

Samorodnitsky, Talagrand and Taqqu [2, 17, 27, 36, 37]. FBM shares many
nice properties with the Wiener process but also has more flexibility since
it includes it. This is why FBM has now become a standard model: it
is used in many areas such as hydrology, economics, finance, physics and
telecommunications [1, 17, 26, 36]. The monograph of Doukhan, Oppenheim
and Taqqu [16] offers a systematic treatment of FBM, as well as an overview
of different areas of applications.

The process {BH(t)}t∈Rd is H-self-similar and with stationary incre-
ments [36]. H-self-similarity means that for all constants a > 0, the processes
{BH(at)}t∈Rd and {aHBH(t)}t∈Rd have the same finite-dimensional distrib-
utions. Because of its self-similarity, FBM has been frequently used for
the modelling of fractal signals. However, in many situations, such a mod-
elling is not realistic because, the pointwise Hölder exponent of a fractal
signal evolves in time, while that of FBM remains constant (see for in-
stance [5, 9, 10, 20, 26, 30, 34, 35]). The pointwise Hölder exponent of a
stochastic process {X(t)}t∈Rd will be denoted {αX(t)}t∈Rd . It measures the
local variation of {X(t)}t∈Rd : the larger it is the more regular is {X(t)}t∈Rd.
Since we focus here on the pointwise Hölder exponents of continuous and
nowhere differentiable stochastic processes, {αX(t)}t∈Rd has values in [0, 1]
and can be defined for every t ∈ Rd, as

(1.2) αX(t, ω) = sup
{
α, lim sup

h−→0

|X(t+ h, ω) −X(t, ω)|
|h|α = 0

}
.

Multifractional processes were introduced in order to overcome the lim-
itations resulting from the constancy of the pointwise Hölder exponent of
FBM. Their main features are the following: a) they extend FBM, b) almost
all their trajectories are continuous, c) their pointwise Hölder exponents can
be prescribed and are allowed to evolve in time.

The paradigmatic example of a Multifractional process is Multifractional
Brownian Motion (MBM). It was introduced in [13, 34] and can be obtained
by replacing the Hurst parameter in (1.1) by a continuous function t �→ H(t)
with values in (0, 1). The MBM {BH(t)(t)}t∈Rd will be denoted {P (t)}t∈Rd.
The assumption on the continuity of H(·) is needed to insure the continu-
ity of {P (t)}t∈Rd [6]. Moreover, when H(·) is a β-Hölder function (i.e for
all t1 and t2, one has |H(t1) −H(t2)| ≤ c|t1 − t2|β) satisfying the technical
assumption

sup
t
H(t) < β,(1.3)

then MBM satisfies the following two important properties:
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• At any point t, MBM is Locally Asymptotically Self-Similar with index
H(t) [13]. This means that

lim
r→0+

law
{P (t+ ru) − P (t)

rH(t)

}
u∈Rd

= law{BH(t)(u)}u∈Rd,(1.4)

where {BH(t)(u)}u∈Rd is an FBM with Hurst parameter H(t).

• The pointwise Hölder exponent of MBM can be prescribed via the
function H(·). More precisely, for all t, one has almost surely,

αP (t, ω) = H(t).(1.5)

MBM can be viewed as an extension of FBM for at least the following two
reasons:

• MBM reduces to an FBM when the function H(·) is constant.

• Relation (1.4) means that at each point t, there is an FBM with pa-
rameter H(t) tangent to the MBM. Thus MBM looks locally like an
FBM whose Hurst parameter changes with the location. We refer to
the recent works of Falconer [18, 19] for an extensive study of the
notion of tangent process.

Relation (1.5) has been established in the weak sense: for all t almost surely
in [13, 34]. By “in the weak sense” we mean that it holds on a set of
probability 1 which may depend on t. We will prove here that Relation (1.5)
remains true in the strong sense, almost surely for all t, that is it holds on
a set of probability 1 which does not depend on t. This together with the
continuity of the function H(·) imply that the pointwise Hölder exponent of
MBM, namely, the function t �→ αP (t, ω), cannot be discontinuous. This is a
strong limitation, both from an applied and theoretical perspective. Indeed,
on one hand, the pointwise Hölder exponent of a real-life signal appears
often erratic and on the other hand, Proposition 1.1 below implies that the
class of pointwise Hölder exponents of continuous and nowhere differentiable
functions is much larger than that of continuous functions.

Proposition 1.1 ([3, 15, 23]) A function H(·) with values in [0, 1] is the
pointwise Hölder exponent of a continuous and nowhere differentiable com-
plex-valued function f(·) defined over Rd, if and only if there is a sequence
of continuous functions (Hn(·))n∈N such that for every t,

H(t) = lim inf
n→∞

Hn(t).
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In view of this result, a function which is the lim inf of a sequence of
continuous functions with values in [0, 1] will be called a pointwise Hölder
exponent of the most general form. This is a slight abuse of language since we
consider only pointwise Hölder exponents of continuous functions f(·). If we
drop the assumption of continuity for f(·), then we could consider bounded
functions f(·), but the most general form of pointwise Hölder exponents of
functions that are merely bounded, is not known.

Observe that while the functions Hn(·), n ∈ N, in Proposition 1.1, are
continuous, their lim inf, namely H(·) may be discontinuous, in fact, quite
irregular, as for instance, the indicator function of any open set of Rd [7] or
the indicator function of the irrationals [23].

Continuous functions f(·) with a most general pointwise Hölder exponent
H(·) have been obtained in a deterministic context in [23, 15]. They are very
pecular and therefore cannot be used in any realistic simulation. This is why
the problem of finding a natural probabilistic construction for such functions
has been raised in [24]. A “natural probabilistic construction” means a
stochastic process extending a standard model such as Fractional Brownian
Motion, that is, a Multifractional process.

Note that it is not useful to force discontinuities in the pointwise Hölder
exponent of an MBM by simply taking a discontinuous H(·) defined as
H(t, ω) =

∑n
k=1 gk(t)χAk

(ω), where one of the gk is discontinuous at some
point t0. Indeed, while H(·, ω) is discontinuous, the trajectories of the
MBM {BH(t,ω)(t)} will also be discontinuous with probability 1 ([6, Propo-
sition 3.1]). A more refined approach is needed to construct a continuous
process with a most general pointwise Hölder exponent.

The problem mentioned above has motivated the introduction of the
Generalized Multifractional Brownian Motion (GMBM) {X(t)}t∈Rd [5, 7, 8].
This continuous Gaussian process is obtained, roughly speaking, by replacing
the Hurst parameter H in the harmonizable representation of FBM (1.1) by
an admissible sequence (Hn(·))n∈N of Lipschitz functions in the sense of
Definition 2.1 below. For every t ∈ Rd, the GMBM X(t) is defined, as the
Wiener integral

X(t) =

∫
Rd

K(t, {Hn(t)}, ξ) dW (ξ),(1.6)

with

K(t, {Hn(t)}, ξ) =

∞∑
n=0

(eit·ξ − 1)

|ξ|Hn(t)+d/2
f̂n−1(ξ),(1.7)

where {f̂n−1(·)}n∈N is a sequence of smoothing functions specified in Defini-
tion 2.2.
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To study the GMBM, Ayache [5] also introduced the Generalized Multi-
fractional Field

Y (x, y) =

∫
Rd

K(x, {Hn(y)}, ξ) dW (ξ)

=

∫
Rd

[

∞∑
n=0

(eix·ξ − 1)

|ξ|Hn(y)+d/2
f̂n−1(ξ)] dW (ξ), x, y ∈ Rd,(1.8)

and then set

(1.9) X(t) = Y (t, t), t ∈ Rd.

The GMBM can be viewed as an extension of FBM and MBM at least for
the following two reasons:

• GMBM reduces to an MBM with parameter H(·) (respectively an
FBM with parameter H) when all the functions Hn(·) are equal to a
same function H(·) (respectively to a same real H).

• Under some technical conditions on (Hn(·))n∈N, GMBM is Locally As-
ymptotically Self-Similar with index

H(t) = lim inf
n→∞

Hn(t)

at each point t (see [7, Proposition 3]).

Ayache [5] studied the pointwise Hölder regularity of the GMBM in dimen-
sion d = 1 and for (non-random) functions Hn(·) taking values in a compact
interval in (0, 1). Extending results of [7] and [8], Ayache showed that the
pointwise Hölder exponent of the GMBM satisfies in the weak sense, for
every t ∈ R1, almost surely,

(1.10) αX(t, ω) = lim inf
n→∞

Hn(t).

By using different techniques, we will prove here a much stronger result,
namely:

(a) Relation (1.10) holds in the strong sense and when t ∈ Rd.

(b) This happens also when the deterministic functions Hn(t) are replaced
by random functions Sn(t, ω) which need not to be independent of the
white noise dW .
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The process obtained by replacing the non-random functions Hn(t) by sto-
chastic processes Sn(t, ω) will be denoted {Z(t)}t∈Rd. It will be called the
Generalized Multifractional Process with Random Exponent (GMPRE) since
it extends not only GMBM but also the process introduced in [6]. Ob-
serve that the GMPRE uses an anticipative representation since the ran-
dom kernel {K(t, {Sn(t, ω)}, ξ)}ξ∈Rd is not adapted to the natural filtration
of {W (ξ)}ξ∈Rd. It is an open problem to determine whether there exists an
non-anticipative representation formulated as an Itô integral.

Using Proposition 6.1 which is a stochastic version of Proposition 1.1,
we will prove that the GMPRE can have a pointwise Hölder exponent of the
most general form:

Theorem 1.1 Let ({Sn(t)}t∈Rd)n∈N be a sequence of stochastic processes
whose trajectories are, with probability 1, continuous functions with values in
[0, 1]. Then one can construct an almost sure continuous process {Z(t)}t∈Rd,
called a GMPRE, which satisfies almost surely for all t0 ∈ Rd,

(1.11) lim sup
t→t0

|Z(t) − Z(t0)|
|t− t0| = ∞,

and whose pointwise Hölder exponent {αZ(t)}t∈Rd satisfies, in the strong
sense, (almost surely for every t)

(1.12) αZ(t, ω) = lim inf
n→∞

Sn(t, ω).

Our goal is to prove Theorem 1.1. Here are some consequences of this
theorem.

Corollary 1.1 (a) Almost all the trajectories of the process {Z(t)}t∈Rd

are nowhere differentiable functions.

(b) Relations (1.5) and (1.10) hold in the strong sense almost surely for
all t.

(c) The class of pointwise Hölder exponents of GMPREs coincides with
the class of pointwise Hölder exponents of continuous and nowhere
differentiable processes.

Part (a) follows from (1.11), Part (b) from (1.12) and Part (c) from
Theorem 1.1 and Proposition 6.1 below.

In view of Part (c) one can restrict oneself to GMPREs if one is in-
terested in a continuous and nowhere differentiable process with the most
general pointwise Hölder exponent possible. Recall that while the processes
{Sn(t)}t∈Rd , n ∈ N, in Theorem 1.1 are continuous, the resulting pointwise
Hölder exponent {αZ(t)}t∈Rd can be discontinuous and rather erratic.
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As indicated above, we have restricted our study to processes with contin-
uous trajectories because the class of pointwise Hölder exponents of bounded
functions has not been identified even in the deterministic case, and there-
fore, it is premature to construct bounded processes with a most general
exponent.

To study the GMPRE, we will introduce the corresponding field called
the Generalized Multifractional Field with Random Exponent (GMFRE).
The GMFRE is to the GMPRE as Y is to X in (1.8) and (1.9). The main
ingredient of the proof of Theorem 1.1 will be the following theorem.

Theorem 1.2 Let {V (x, y)}(x,y)∈Rd×Rd be a GMFRE. Then almost surely,
for all t0 ∈ Rd,

lim sup
t→t0

|V (t, t0) − V (t0, t0)|
|t− t0| = ∞

and the pointwise Hölder exponent at t0 of the process {V (t, t0)}t∈Rd equals
lim infn→∞ Sn(t0).

The paper is structured as follows. We present the construction of the
GMPRE and GMFRE in Section 2. Theorem 1.2 is proved in Sections 3
and 4, Theorem 1.1 in Section 5 and auxiliary results are proved in Section 6.
Section 7 contains some final remarks.

2. Construction of the GMFRE and the GMPRE

Here are the basic ideas underlying the construction of the Generalized Mul-
tifractional Field with Random Exponent (GMFRE) and the Generalized
Multifractional Process with Random Exponent (GMPRE):

• Start with Fractional Brownian Motion (1.1).

• Replace the single H by a sequence {Hn} as in (1.6).

• Allow the sequence {Hn} to be random (call it {Sn}) and not neces-
sarily independent of the measure W .

• Use a wavelet representation instead of the representation (1.6).

• Focus on the GMFRE {V (x, y)}(x,y)∈Rd×Rd and define the GMPRE to
be the diagonal process Z(t) = V (t, t), t ∈ Rd.

We first introduce the wavelet representation. Throughout this article

(2.1) {ψl,j,k(x); 1 ≤ l ≤ 2d − 1, j ∈ Z, k ∈ Zd}
will denote a Lemarié-Meyer wavelet basis of the Hilbert space L2(Rd) (see
for example [32]). This basis has the following properties:
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(a) The functions ψl,j,k are real valued and belong to the Schwartz class
S(Rd). Recall that S(Rd) is the space of infinitely differentiable func-
tions f whose partial derivatives of any order decrease at infinity, faster
than any polynomial, i.e for any multi-index α = (α1, . . . , αd) ∈ Nd and
for every integer m ∈ N, there exist c > 0 (a constant that generally
depends on α and m), such that for any ξ ∈ Rd,

|∂αf(ξ)| =

∣∣∣∣ ∂α1+...+αdf

(∂ξ1)α1 . . . (∂ξd)αd
(ξ)

∣∣∣∣ ≤ c(1 + |ξ|)−m.

(b) The functions ψl,j,k are generated by dilations and translations of a
finite number of functions. Namely, one has

(2.2) ψl,j,k(x) = 2jd/2ψl(2
jx− k).

Thus the Fourier transforms of the ψl,j,k also belong to the Schwartz
class and satisfy

ψ̂l,j,k(ξ) = 2−jd/2e−ik·2−jξψ̂l(2
−jξ).

(c) For all l, j, k one has

supp ψ̂l,j,k ⊂ Dj+2 \Dj,(2.3)

where

(2.4) Dj =
[
− 2j+1π

3
,
2j+1π

3

]d

and Dj+2 \Dj = {ξ ∈ Dj+2; ξ /∈ Dj}.

In view of (2.3) and (2.4), high values of j correspond to high “frequen-
cies” |ξi|, i = 1, . . . , d. Since the Fourier transform is an isometry of L2(Rd),
the system

{ψ̂l,j,k(−ξ); 1 ≤ l ≤ 2d − 1, j ∈ Z, k ∈ Zd}
is also an orthonormal bases for L2(Rd) (up to the multiplicative factor
(2π)−d/2 that we will neglect). We use the basis

{ψ̂l,j,k(−ξ)}l,j,k = {ψ̂l,j,k(ξ)}l,j,k

instead of {ψ̂l,j,k(ξ)}l,j,k for convenience, in order to avoid having to add
constantly the complex conjugate sign.
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To motivate the wavelet representation, we will start with the random
field {Y (x, y)}(x,y)∈Rd×Rd in (1.8). One fixes (x, y) ∈ Rd × Rd, and decom-
poses its kernel, namely the function g : ξ �→ K(x, {Hn(y)}, ξ) in the basis

{ψ̂l,j,k(−ξ)}l,j,k. Then we apply the integral
∫

R
g(·)dW to this decomposi-

tion. Since, this integral is an isometry from the Hilbert space L2(Rd) into
the Hilbert space L2(Ω) of square integrable, mean-zero random variables,
we obtain in view of (1.8)

Y (x, y) =

2d−1∑
l=1

∑
j∈Z

∑
k∈Zd

al,j,k(x, {Hn(y)})εl,j,k,(2.5)

where {εl,j,k}l,j,k is a sequence of independent N (0, 1) Gaussian random vari-
ables and where the non-random coefficients al,j,k(x, {Hn(y)}) are given by

al,j,k(x, {Hn(y)}) =

∫
Rd

K(x, {Hn(y)}, ξ)ψ̂l,j,k(−ξ) dξ

=

∫
Rd

K(x, {Hn(y)}, ξ)ψ̂l,j,k(ξ) dξ.(2.6)

sing techniques similar to those of the Proof of Proposition 2.2 of [6], one
can show that the series (2.5) is with probability 1, uniformly convergent
for all (x, y) ∈ K × Rd, where K is an arbitrary compact subset of Rd.
The Generalized Multifractional Field with Random Exponent (GMFRE)
will be obtained by substituting to the deterministic functions {Hn} in (2.5)
admissible stochastic processes {Sn}.
Definition 2.1 A sequence ({Sn(t)}t∈Rd)n∈N of stochastic processes is ad-
missible if for almost all ω, it satisfies the following conditions:

(i) S0(., ω) takes values in (−∞, 1) and for all n ≥ 1, Sn(., ω) takes val-
ues in

(2.7)
[ 1

log(64 + n)
, 1 − 1

log(64 + n)

]
.

(ii) Sn(., ω) is a Lipschitz function, more precisely, a C(n, ω)-Lipschitz
function (that is, |Sn(t, ω)−Sn(t′, ω)| ≤ C(n, ω)|t−t′| for all t, t′ ∈ R).

(iii) The Lipschitz constants Cn(ω) depend on n and increase slower than
n, that is, lim

n→∞
n−1Cn(ω) = 0.

(iv) For all integers q ≥ 1, S3q(·, ω) = S3q+1(·, ω) = S3q+2(·, ω). See Re-
mark 3.1 for the motivation behind this technical condition.

S0 will be related to the small frequency behavior of the process and will
not play an important role, while the range of Sn, n ≥ 1, increases with n
and tends to (0, 1) as n→ ∞.
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We are now in position to define the GMFRE and the GMPRE.

Definition 2.2 The GMFRE with parameter (Sn)n∈N is the continuous field
defined for almost all ω and each (x, y) ∈ Rd × Rd as the random series

V (x, y, ω) =
2d−1∑
l=1

∑
j∈Z

∑
k∈Zd

al,j,k(x, {Sn(y, ω)})εl,j,k(ω),(2.8)

where

• {εl,j,k} is a sequence of N (0, 1) independent Gaussian random variables

• (Sn)n∈N is admissible in the sense of Definition 2.1.

• for almost all ω and every 1 ≤ l ≤ 2d − 1, j ∈ Z, k ∈ Zd and
(x, y) ∈ Rd × Rd,

(2.9) al,j,k(x, {Sn(y, ω)}) =

∫
Rd

[ ∞∑
n=0

(eix.ξ − 1)

|ξ|Sn(y,ω)+d/2
f̂n−1(ξ)

]
ψ̂l,j,k(ξ)dξ

• {f̂n−1(·)}n∈N is a sequence of functions of the Schwartz class S(Rd),
with values in [0, 1], that satisfy for every ξ = (ξ1, . . . , ξd) ∈ Rd,

f̂−1(ξ) =

{
1 if |ξi| ≤ 2π/3, for all i = 1, . . . d,
0 if |ξi| ≥ 4π/3, for some i

(2.10)

f̂0(ξ) = f̂−1(2
−1ξ) − f̂−1(ξ),(2.11)

and, more generally, for all n ∈ N,

f̂n(ξ) = f̂−1(2
−n−1ξ) − f̂−1(2

−nξ) = f̂0(2
−nξ).(2.12)

Remark 2.1 As in the proofs of Part (b) of Proposition 3.3 and Lemma 4.2,
one can show that the series in (2.8) is, with probability 1, uniformly conver-
gent in (x, y) on every compact subset of Rd×Rd. This is why the definition
of GMFRE makes sense.

Observe that the functions f̂n are compactly supported and if Dn, n ∈ N,
denotes the compact cube defined in (2.4), then one has

(2.13) supp f̂−1 ⊂ D1

and for every n ∈ N,

(2.14) supp f̂n ⊂ Dn+2 \Dn.
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Since the support of f̂n moves towards the high frequency range as n
increases, it is Sn with large n which determines the high frequency behavior
of the process V (·, y). Observe finally that

(2.15)

∞∑
n=0

f̂n−1(ξ) = 1.

Definition 2.3 The GMPRE with parameter (Sn)n∈N is the continuous
process {Z(t)}t∈Rd defined for almost all ω and all t ∈ Rd as

Z(t, ω) = V (t, t, ω).(2.16)

The conditions (i) to (iv) in Definition 2.1 are not restrictive because:

Proposition 2.1 Let {S(t)}t∈Rd be a stochastic process taking values in
[0, 1] that satisfies almost surely, for all t ∈ Rd,

S(t) = lim inf
n→∞

S̃n(t)

where ({S̃n(t)}t∈Rd)n∈N is a sequence of continuous processes. Then there
exists an admissible sequence ({Sn(t)}t∈Rd)n∈N which satisfies, almost surely
for all t ∈ Rd,

S(t) = lim inf
n→∞

Sn(t).

Proof of Proposition 2.1. First, replacing S̃0(t) by min(1
2
, S̃0(t)) and

S̃n(t) with n ≥ 1 by

max

(
2

log(64 + n)
, min

(
S̃n(t), 1 − 2

log(64 + n)

))
,

one may suppose that for every t ∈ Rd,

(2.17) S̃0(t) ∈
(
−∞,

1

2

]
and

(2.18) S̃n(t) ∈
[

2

log(64 + n)
, 1 − 2

log(64 + n)

]
.

Thus the sequence ({S̃n(t)}t∈Rd)n∈N satisfies condition (i). Next we are

going to construct a new sequence having the same lim inf as ({S̃n(t)}t∈Rd)n∈N

and satisfying conditions (i)-(iv). First, observe that, using Stone-Weierstrass
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approximation theorem, one can show that any process {Q(t)}t∈Rd with con-
tinuous paths has the following property. For every compact cube K ⊂ Rd

and for every ε > 0, there is a stochastic process {QK,ε(t)}t∈Rd with polyno-
mial paths (depending on K and ε) such that

(2.19) sup
t∈K

|Q(t) −QK,ε(t)| ≤ ε.

The measurability of QK,ε follows from the fact that for each t, QK,ε(t) can
be expressed as a linear combination of random variables Q(s). For example,
when K = [0, 1]d, one may choose

(2.20) QK,ε(t) =

p∑
k1,...,kd=0

(
d∏

i=1

(
p
ki

)
tki (1 − ti)

p−ki

)
Q
(k1

p
, . . . ,

kp

p

)
.

In this case, for all ω, QK,ε(., ω) is called the pth Bernstein polynomial of
the function Q(., ω).

Now, taking in (2.19), for every n ∈ N, Q(t) = S̃n(t), K = [−n−1, n+1]d

and ε = 1
2 log(64+n)

, it follows that there is ({S̃I(t)}t∈Rd)n∈N a sequence of
processes with polynomial paths such that

(2.21) sup
t∈Kn

|S̃n(t) − S̃I(t)| ≤ 1

2 log(2 + n)
.

Now let θ : R → [0, 1] be a compactly supported deterministic C∞ function,
which satisfies

(2.22) θ(x) =

{
1 if |x| ≤ 1
0 if |x| ≥ 3/2

and for every n ∈ N and t ∈ Rd, let us set

(2.23) S̃II
n (t) = S̃I

n(t) θ
( ‖t‖2

(n+ 1)2

)
+

1

2 log(64 + n)
.

It follows from (2.17) and (2.18) that the process {S̃II
n (t)}t∈Rd verifies (i). It

also verifies (ii). Indeed, its paths are C(n)-Lipschitz functions, since they
are C∞ functions and such that

sup
{∣∣∣∂S̃II

n

∂ti
(t)

∣∣∣; t ∈ Rd, i = 1, . . . , d
}
<∞.

Observe that this inequality follows from (2.22) and (2.23). Now we are

going to construct a sequence {S̃III
n (t)}t∈Rd that has the same lim inf as

{S̃n(t)}t∈Rd and satisfies (i), (ii) and (iii).
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To do so we need to introduce the sequence of random variables (τn)n∈N

defined by induction as τ0 = 0 and for every integer n ≥ 1, as

(2.24) τn =

{
τn−1 if C(τn−1 + 1) >

√
n

τn−1 + 1 if C(τn−1 + 1) ≤ √
n .

Then, for every n ∈ N and t ∈ Rd, we set

S̃III
n (t) = S̃II

τn
(t).

Clearly, S̃III
0 (t) ∈ (0, 1) and for every n ≥ 1,

S̃III
n (t) ∈

[
1

log(64 + n)
, 1 − 1

log(64 + n)

]
.

It is also clear that the paths of the {S̃III
n (t)}t∈Rd are C(τn)-Lipschitz func-

tions. So, all we need to prove is that, for almost all ω,

(2.25) lim
n→∞

n−1C(τn) = 0

and that for every t ∈ Rd,

(2.26) lim inf
n→∞

S̃III
n (t, ω) = lim inf

n→∞
S̃n(t, ω).

Relation (2.25) will result from the following inequality. For every n ∈ N
and for almost all ω,

(2.27) C(τn(ω)) ≤ A(ω)
√

1 + n,

where A = 1+C(0). To prove this last inequality, we will argue by induction.
It holds when n = 0, so suppose that for some integer n ≥ 1 and almost
all ω,

(2.28) C(τn−1(ω)) ≤ A
√
n,

and let us show that (2.27) holds for almost all ω. We need to consider two
cases: C(τn−1(ω) + 1) ≤ √

n and C(τn−1(ω) + 1) >
√
n.

When C(τn−1(ω)+1)≤√
n, it follows from (2.24) that τn(ω) = τn−1(ω)+1.

Therefore, we have that

C(τn(ω)) = C(τn−1(ω) + 1) ≤ √
n ≤ A(ω)

√
1 + n.

When C(τn−1(ω) + 1) >
√
n, it follows from (2.24) that τn(ω) = τn−1(ω).

Then, using the induction hypothesis, namely the inequality (2.28), one
obtains that

C(τn(ω)) = C(τn−1(ω)) ≤ A(ω)
√
n ≤ A(ω)

√
n + 1.
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To show that Relation (2.26) holds for almost all ω and every t ∈ Rd,
it is sufficient to show that the sequence {τn(ω)}n∈N takes all the integer
values, that is for every k ∈ N, there is n ∈ N such that τn(ω) = k. We will
argue by induction on k. When k = 0, set n = 0. Suppose that k ≥ 1 and
there is n1 ∈ N, such that τn1(ω) = k − 1 and let us prove that there exists
n2 ∈ N for which τn2(ω) = k. Set

n2 = min{n ∈ N; n > n1 and C(τn1(ω)) ≤ √
n},

which is always possible because n1 is fixed and
√
n increases with n. Define

finally for all t ∈ Rd, the sequence ({Sn(t)}t∈Rd)n∈N as S0(t) = S̃III
0 (t),

S1(t) = S̃III
1 (t), S2(t) = S̃III

2 (t) and for all integer q ≥ 1 as S3q(t) =

S3q+1(t) = S3q+2(t) = S̃III
q (t). It clearly satisfies (i), (ii), (iii) and (iv)

and has the same lim inf as {S̃III
n (t)} and hence as {S̃n(t)}. �

3. The low and high frequency components

We now turn to the proof of Theorem 1.2 about GMFREs. The idea is to
fix t0 ∈ Rd and to set

W (t) := V (t, t0) = R(t) + T (t), t ∈ Rd,(3.1)

where {R(t)}t∈Rd and {T (t)}t∈Rd are respectively the low frequency and the
high frequency components of {W (t)}t∈Rd (see Proposition 3.2). We analyze
the pointwise Hölder exponent of R in this section and that of T in the next
section.

We need some preliminary results. As indicated in Section 2, we use the
Lemarié-Meyer wavelet basis of the space L2(R d) (see [29]) which is of the
form:

(3.2) {2jd/2ψl(2
jx− k); 1 ≤ l ≤ 2d − 1, j ∈ Z, k ∈ Zd}

with ψl ∈ S(Rd). To simplify the notations, set for every j ∈ N,

sj = Sj(t0) and µj = min(sj, sj+1, sj+2).(3.3)

In view of Part (iv) of Definition 2.1, one has

(3.4) lim inf
j→∞

sj = lim inf
j→∞

µj = lim inf
q→∞

µ3q.

We will need the following definitions.
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Definition 3.1 For every integers j ≥ 1 and 1 ≤ l ≤ 2d − 1 let ψj
s,l and ψ̃j

s,l

be the real-valued functions of the Schwartz class S(Rd) whose Fourier trans-
forms are defined, for every ξ ∈ R d, by

ψ̂j
s,l(ξ) =

( 2∑
p=0

2−j(sj+p−µj)
f̂0(2

1−pξ)

|ξ|sj+p+d/2

)
ψ̂l(ξ)(3.5)

and ̂̃
ψj

s,l(ξ) =

( 2∑
p=0

2−j(sj+p−µj)
f̂0(2

1−pξ)

|ξ|sj+p+d/2

)−1

ψ̂l(ξ).(3.6)

Definition 3.2 Two families of functions (en)n∈N and (fn)n∈N are biorthog-
onal systems in L2(Rd) if for any n ∈ N and m ∈ N∫

Rd

en(x)fm(x) dx = δn,m.

Remark 3.1 Observe that in view of Part (iv) of Definition 2.1 one has,
for all integers q ≥ 1 and 1 ≤ l ≤ 2d − 1 and every ξ ∈ Rd,

ψ̂3q
s,l(ξ) =

ψ̂l(ξ)

|ξ|s3q+d/2
and

̂̃
ψ3q

s,l(ξ) = |ξ|s3q+d/2ψ̂l(ξ).

Proposition 3.1 The functions ψj
s,l and ψ̃j

s,l have the following properties:

(a) The systems

{2jd/2ψj
s,l(2

jt− k); j ≥ 1, 1 ≤ l ≤ 2d − 1, k ∈ Zd}
and

{2jd/2ψ̃j
s,l(2

jt− k); j ≥ 1, 1 ≤ l ≤ 2d − 1, k ∈ Zd}
are biorthogonal.

(b) The functions ψj
s,l belong to the Schwartz class uniformly in j, i.e.

∀α ∈ N d, ∀L ≥ 0, ∃a > 0, one has

∀j ≥ 1, 1 ≤ l ≤ 2d − 1, x = (x1, . . . , xd) ∈ R d,

|∂αψj
s,l(x)| ≤ a

[
d∏

r=1

(2 + |xr|)
]−L

.(3.7)

(c) The functions ψ̃3q
s,l belong to the Schwartz class uniformly in j, i.e.

∀α ∈ N d, ∀L ≥ 0, ∃b > 0, one has

∀j = 3q, q ≥ 1, 1 ≤ l ≤ 2d − 1, x ∈ R d,

|∂αψ̃3q
s,l(x)| ≤ b

[
d∏

r=1

(2 + |xr|)
]−L

.(3.8)
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Proof of Proposition 3.1. We first prove Part (a). It follows from Parseval
formula that

I(l, j, k; l′, j′, k′) = 2(j+j′)d/2

∫
Rd

ψj
s,l(2

jt− k)ψ̃j′
s,l′(2

j′t− k′) dt

= 2−(j+j′)d/2

∫
Rd

e−i(2−jk−2−j′k′)·ξψ̂j
s,l(2

−jξ)
̂̃
ψj′

s,l′(2
−j′ξ) dξ.(3.9)

This last integral vanishes when j′ /∈ {j − 1, j, j + 1} since (3.5), (3.6)

and (2.3) imply that the Lebesgue measure of the set supp ψ̂j
s,l(2

−j ·) ∩
supp ψ̂j′

s,l′(2
−j·) is equal to zero.

We will show next that I(l, j, k; l′, j, k′) = δ(l, j, k; l′, j, k′). Using (3.5),
(3.6), (3.9) and the orthonormality of the functions 2jd/2ψl(2

jt − k) and
2jd/2ψl′(2

jt− k) we obtain that

I(l, j, k; l′, j, k′) = 2−jd

∫
Rd

e−i(k−k′)·(2−jξ)ψ̂j
s,l(2

−jξ)
̂̃
ψ

j

s,l′(2
−jξ) dξ,

= 2−jd

∫
Rd

e−i(k−k′)·(2−jξ)ψ̂l(2
−jξ)ψ̂l′(2−jξ) dξ

= 2jd

∫
Rd

ψl(2
jt− k)ψl′(2jt− k′) dt

= δ(l, j, k; l′, j, k′).

To conclude the proof of Part (a), it is sufficient to show that I(l, j, k; l′, j+
1, k′) = 0 since one can get I(l, j, k; l′, j − 1, k′) = 0 in the same way. It
follows from (2.3) that

supp ψ̂j
l,s(2

−j.) ∩ supp ψ̂j+1
l,s (2−j−1.) ⊂ Dj+2 \Dj+1.

Since by (2.14), supp f̂0(2
−n·) ⊂ Dn+2 \ Dn, we get up to a multiplicative

constant that we neglect,

I(l, j, k; l′, j + 1, k′)

=

∫
Dj+2\Dj+1

(
2−j(sj+1−µj)

f̂0(2
−jξ)

|2−jξ|sj+1+d/2
+ 2−j(sj+2−µj)

f̂0(2
−j−1ξ)

|2−jξ|sj+2+d/2

)

·
(

2−(j+1)(sj+1−µj+1) f̂0(2
−jξ)

|2−j−1ξ|sj+1+d/2
+ 2−(j+1)(sj+2−µj+1) f̂0(2

−j−1ξ)

|2−j−1ξ|sj+2+d/2

)−1

· e−i(2−jk−2−j−1k′).ξψ̂l(2
−jξ)

̂̃
ψl′(2−j−1ξ) dξ

=

∫
Rd

e−i(2−jk−2−j−1k′).ξψ̂l(2
−jξ)ψ̂l′(2−j−1ξ) dξ

=

∫
Rd

ψl(2
jt− k)ψl′(2j+1t− k′) dt = 0.
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We now prove Part (b). We will only show that the inequality (3.8)
holds since the inequality (3.7) can be obtained in the same way. One has,

up to the multiplicative factor (2π)−d/2, ψ̃3q
l,s(x) =

∫
Rd e

ix·ξ ̂̃ψ3q

l,s(ξ) dξ, and

hence ∂αψ̃(x) = i|α|
∫

Rd e
ix·ξξα1

1 ξα2
2 . . . ξαd

d
̂̃
ψl,s(ξ) dξ, where |α| =

∑d
r=1 αr.

Set eiδ·ξ̂̃φ3q,α(ξ) = ξα1
1 ξα2

2 . . . ξαd
d

̂̃
ψl,s(ξ), where the multi-index δ = (δ1, . . . δd)

is such that for every i, δi = 2 when xi ≥ 0 and δi = −2 otherwise. Observe
that δi + xi equals 2 + |xi| if xi ≥ 0 and equals −(2 + |xi|) if xi < 0.

Integrating Ld times by parts we obtain

|∂αψ̃3q
l,s(x)| =

∣∣∣∣∫
Rd

ei(δ+x)·ξ̂̃φ3q,α(ξ) dξ

∣∣∣∣
=

(
d∏

r=1

(2 + |xr|)
)−L ∣∣∣∣∫

Rd

ei(δ+x)·ξ∂λ̂̃
φ3q,α(ξ) dξ

∣∣∣∣ ,(3.10)

where λ is the multi-index whose components are equal to L. Let us now

bound |∂λ̂̃
φ3q,α(ξ)| when ξ ∈ D2 \ D0. Relations (3.3), (3.6), (2.15) and

Part (iv) of Definition 2.1 imply that
̂̃
ψ3q

l,s(ξ) = |ξ|s3q+d/2ψ̂l(ξ), and hence

eiδ·ξ̂̃φ3q,α(ξ) = ξα1
1 ξα2

2 . . . ξαd
d |ξ|s3q+d/2ψ̂l(ξ). Applying Leibniz formula one can

show that the function |∂λ̂̃
φ3q,α(ξ)| is bounded by a linear combination of

functions of the form |ξµ1
1 ξ

µ2
2 . . . ξµd

d ||ξ|s3q+d/2−p|∂νψ̂l(ξ)|, where (µ1, . . . , µd) ∈
Nd, ν ∈ Nd and p ∈ N. Moreover, ψ̂l has support on D2 \ D0 (see (2.3))
and (2.4) implies that for every ξ ∈ D2 \D0, one has |ξ| > 1 and

|ξµ1

1 . . . ξµd

d ||ξ|s3q+d/2−p|∂νψ̂l(ξ)|

≤
(

8π

3

)|µ| (
8π

3

√
d

)s3q+d/2

sup
ξ∈D2

|∂νψ̂l(ξ)| ≤ c1,(3.11)

where c1 > 0 is a constant that does not depend on q and where we used (2.7).
Finally (3.10) and (3.11) entail that for every integer q ≥ 1 and x ∈ Rd,

|∂αψ̃3q(x)| ≤
d∏

r=1

(2 + |xr|)−L

∫
D2\D0

|eiδ·ξ∂λ̂̃
φ3q,α(ξ)| dξ

≤ c2

d∏
r=1

(2 + |xr|)−L,

where c2 > 0 is a constant that does not depend on q. �
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The next result provides a wavelet decomposition of the process {W (t)}.
Whereas usually wavelets are independent of the scale j ∈ Z, here they
depend on j. When j ≥ 1, the wavelets are ψj

s,l (defined in (3.5) ); when

j = 0 and j = −1, they are ψ0
s,l and ψ−1

s,l (defined in (3.12) and (3.13));

when j ≤ −2, we have a single wavelet ψ−2
s,l (defined in (3.14)). Note that

in the decomposition (3.17) below we change the sign of the indices, so that∑0
j=−∞ becomes

∑∞
j=0.

Definition 3.3 Let ψ0
s,l, ψ

−1
s,l , ψ

−2
s,l be the functions of S(Rd) defined for

every x ∈ Rd as,

ψ0
s,l(x) =

∫
Rd

eix·ξ
(
f̂−1(ξ)

|ξ|s0+d/2
+

f̂0(ξ)

|ξ|s1+d/2
+

f̂1(ξ)

|ξ|s2+d/2

)
ψ̂l(ξ) dξ,(3.12)

ψ−1
s,l (x) =

∫
Rd

eixξ (f̂−1(2
−1ξ) + f̂0(2

−1ξ))ψ̂l(ξ)

|ξ|s0+d/2
dη,(3.13)

and

ψ−2
s,l (x) =

∫
Rd

eixξ ψ̂l(ξ)

|ξ|s0+d/2
dξ.(3.14)

Proposition 3.2 For every t ∈ Rd, one has

W (t) = R(t) + T (t),(3.15)

where

T (t) =

2d−1∑
l=1

∞∑
j=1

∑
k∈Zd

2−jµjψj
s,l(2

jt− k)εl,j,k,(3.16)

and, with the convention that m(0)=0, m(1)=1 and for all j ≥ 2, m(j) = 2,

R(t) =

2d−1∑
l=1

∞∑
j=0

∑
k∈Zd

2js0(ψ
−m(j)
s,l (2−jt− k) − ψ

−m(j)
s,l (−k))εl,−j,k

+
2d−1∑
l=1

∞∑
j=1

∑
k∈Zd

2−jµjψj
s,l(−k)εl,−j,k.(3.17)

Here {εl,j,k} is a sequence of independent N (0, 1) Gaussian random variables,
ψj

s,l with j ≥ 1, the functions introduced in (3.5).
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The processes {R(t)}t∈Rd and {T (t)}t∈Rd can be viewed respectively as
the low frequency and the high frequency components of {W (t)}t∈Rd.

Proposition 3.3 The processes {R(t)}t∈Rd and {T (t)}t∈Rd have the follow-
ing properties:

(a) With probability 1, the paths of {R(t)}t∈Rd are C∞ functions.

(b) With probability 1, the series (3.16) and (3.17) are uniformly conver-
gent in t, on every compact subset of Rd.

(c) For all l, j, k one has

2jd

∫
Rd

T (t)ψ̃j
s,l(2

jt− k) dt = 2−jµjεl,j,k.(3.18)

We will use the following lemma of [5] in the proof of Proposition 3.2.

Lemma 3.1 Let {εM ; M = (m1, . . . , md) ∈ Zd} be a sequence of N (0, 1)
Gaussian random variables (not necessarily independent). Then there exist
random variables C,C ′ > 0 with finite moments of any order such that,
almost surely for all M ∈ Zd,

|εM | ≤ C

√√√√log

(
2 +

d∑
k=1

|mk|
)

≤ C ′

√√√√ n∏
k=1

log(2 + |mk|)(3.19)

Proof of Proposition 3.2. Let us prove (3.15), (3.16) and (3.17). It follows
from (2.8), (3.1) and (3.3) that the process {W (t)}t∈Rd can be represented
as the random series

W (t, ω) =
2d−1∑
l=1

∑
j∈Z

∑
k∈Zd

al,j,k(t, {sn(ω)})εl,j,k(ω),(3.20)

which is, as we will show, a.s. uniformly convergent in t on every com-
pact subset of Rd. We first want to determine the random coefficients
al,j,k(t, {sn}). Using the inclusions,

• supp f̂−1 ⊂ D1,

• for all n ≥ 0, supp f̂n ⊂ Dn+2 \Dn,

• for all j ∈ Z, k ∈ Zd and 1 ≤ l ≤ 2d − 1, supp ψ̂l,j,k ⊂ Dj+2 \Dj ,
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we obtain that for every k ∈ Zd and 1 ≤ l ≤ 2d − 1,

al,−j,k(t, {sn}) =

∫
Rd

eit·ξ − 1

|ξ|s0+d/2
(f̂−1(ξ) + f̂0(ξ))ψ̂l,−j,k(ξ) dξ(3.21)

if j ≤ −1,

al,0,k(t, {sn}) =

=

∫
Rd

(eit·ξ − 1)

(
f̂−1(ξ)

|ξ|s0+d/2
+

f̂0(ξ)

|ξ|s1+d/2
+
f̂0(2

−1ξ)

|ξ|s2+d/2

)
ψ̂l,0,k(ξ) dξ(3.22)

if j = 0, and

(3.23) al,j,k(t, {sn}) =

∫
Rd

(eit·ξ − 1)

(
2∑

p=0

f̂0(2
−j+1−pξ)

|ξ|sj+p+d/2

)
ψ̂l,j,k(ξ) dξ

if j ≥ 1.

Next, by setting η = 2jξ in (3.21) and using the equality ψ̂l,j,k(ξ) =

2−jd/2e−ik.(2−jξ)ψ̂l(2
−jξ), (3.22), (2.3), we get

al,−j,k(t, {sn}) = 2js0(ψ
−m(j)
s,l (2−jt− k) − ψ

−m(j)
s,l (−k)).(3.24)

Similarly, (3.23) yields

al,j,k(t, {sn}) = 2−jµj(ψj
s,l(2

jt− k) − ψj
s,l(−k)),(3.25)

where ψj
s,l is defined in (3.5). �

Proof of Proposition 3.3. Let us prove (a). It is sufficient to show that
the series (3.17) and the series

2d−1∑
l=1

∞∑
j=0

∑
k∈Zd

2j(s0−|α|)∂αψ
−m(j)
s,l (2−jt− k),(3.26)

where the multi-index α = 0 is arbitrary, are with probability 1, uniformly
convergent in t on every compact subset B of Rd. There is no restriction to
suppose that B = [0, 1]d. Since the functions ψ

−m(j)
s,l , j ∈ N belong to S(Rd),

for every multi-index β ∈ Nd and real L > 0, there is a constant c1 > 0,
such that the inequality

|∂βψ
−m(j)
s,l (x)| ≤ c1

(
d∏

r=1

(2 + |xr|)
)−L

,(3.27)

holds for every x = (x1, . . . , xd) ∈ Rd and j ∈ N. Observe that the constant
c1 does not depend on j, since the range of m(j) is finite.
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Applying the Mean Value Theorem one gets that for any integer j ≥ 1,
t ∈ B and k ∈ Zd, there is a real θ ∈ (0, 1) such that

ψ
−m(j)
s,l (2−jt− k) − ψ

−m(j)
s,l (−k) = 2−j

d∑
r=1

∂ψ
−m(j)
s,l

∂xr
(θ2−jt− k)tr.

Using this last equality and (3.27) one obtains that

|ψ−m(j)
s,l (2−jt− k) − ψ

−m(j)
s,l (−k)| ≤ c1d2

−j

(
d∏

r=0

(2 + |θ2−jtr − kr|)
)−L

≤ c22
−j

d∏
r=1

(1 + |kr|)−L,(3.28)

where c2 > 0 is a constant (which does not depend on j). It then follows
from Part (i) of Definition 2.1, Lemma 3.1 and (3.28), that there is a random
variable C3 > 0 such that with probability 1, for all t ∈ B,

|R(t)| ≤ C3

∞∑
j=0

∑
k∈Zd

2−j(1−s0) log1/2(2 + j)

d∏
r=1

log1/2(2 + |kr|)
(1 + |kr|)L

+ C3

∞∑
j=0

∑
k∈Zd

2−j/ log(64+j) log1/2(2 + j)

d∏
r=1

log1/2(2 + |kr|)
(1 + |kr|)L

<∞,

by choosing L sufficiently large, which proves that, with probability 1, the
series (3.17) is uniformly convergent in t ∈ B. One can prove similarly that
the series (3.26) is with probability 1, uniformly convergent in t ∈ B.

To prove (b), note that the uniform convergence of R(t) follows from the
proof of (a) and the uniform convergence of T (t) is established in the proof
of Lemma 4.2.

(c) is a straightforward consequence of the biorthogonality condition
and (3.16). Observe that the existence of the integral in (3.18) is assured by
the biorthogonality condition and Lemma 4.2 below. �

Observe that (a) of Proposition 3.3 implies

Corollary 3.1 Let {αW (t)}t∈Rd and {αT (t)}t∈Rd be respectively the point-
wise Hölder exponent of the processes {W (t)}t∈Rd and {T (t)}t∈Rd defined
in (3.1) and in (3.16). Then almost surely for all t ∈ Rd, one has

(3.29) αW (t) = αT (t).
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4. Analysis of the high frequency component T (t)

In view of (3.29), we need now to determine the pointwise Hölder exponent
at t0 of the process {T (t)}t∈Rd. defined in (3.16). We first provide an upper
bound to this exponent.

Proposition 4.1 There exists Ω∗
1, an event of probability 1, which does not

depend on t0 and such that the relations

αT (t0, ω) ≤ lim inf
j→∞

sj(ω)(4.1)

and

lim sup
t→t0

|T (t, ω) − T (t0, ω)|
|t− t0| = ∞(4.2)

holds for all ω ∈ Ω∗
1.

To prove Proposition 4.1, we need the following lemma which shows that
after rescaling the indices of a sequence of independent Gaussian random
variables one can always find a large component whose index is “close” to
any t0 ∈ R.

Lemma 4.1 Let {εl,j,k} be a sequence of independent N (0, 1) Gaussian ran-
dom variables. There is Ω∗

1, an event of probability 1, which is independent
of t0 ∈ R and satisfies the following property. For all ω ∈ Ω∗

1 and every

integers 1 ≤ l ≤ 2d − 1 and j big enough, there is k̂j ∈ Zd such that

(4.3) |t0 − 2−jk̂j | ≤ cj2−j

where c > 0 is a constant (independent of ω) and

(4.4) |εl,j,�kj
(ω)| ≥ 1/4.

Proof of Lemma 4.1. Given t0 ∈ Rd there is m0 ∈ N such that t0 ∈
[−m0, m0]

d. Consider the set of all dyadic numbers of order j in (−m0, m0)
d,

namely the set {2−jk; k ∈ ∆j} where

∆j = {−m0(2
j − 1), . . . , m0(2

j − 1)}d.

Clearly, there is k̃j ∈ ∆j such that

|t0 − 2−jk̃j| ≤
√
d2−j .(4.5)

We shall now introduce sets Dq
m0,j and Im0,j such that, by letting

∆j ⊂
⋃

q∈Im0,j

Dq
m0,j,

we will have

(4.6) k̃j ∈ D
�qj

m0,j for some q̃j ∈ Im0,j.
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Heuristically, if d = 1, Dq
m0,j are those numbers in ∆j whose ratio is

q ∈ Z when divided by j (i.e k = qj + r, r denoting the remainder). We
let Im0,j be the set of all such ratios q. To gain some flexibility, we relax
these heuristic definitions and use the following formal definitions of Im,j

and Dq
m,j. For every integers m ≥ 1 and j ≥ 1, we let

(4.7) Im,j =

{
−

[
m2j

j

]
,−

[
m2j

j

]
+ 1, . . . ,

[
m2j

j

]
− 1,

[
m2j

j

]}d

and for every q ∈ Im,j, we let

(4.8) Dq
m,j =

{
jq +

d∑
i=1

niei; ∀ i, ni ∈ {−(j − 1), . . . , j − 1}
}
,

where ei is the element of Zd whose i-th component equals 1 and the other
components equal 0 (

∑d
i=1 niei denotes the “remainder”). Now fix the in-

dex l in {εl,j,k}. We want to show that the events

(4.9) Am,j =
⋃

q∈Im,j

⋂
k∈Dq

m,j

(|εl,j,k| < 1/4)

satisfy

(4.10)

∞∑
j=1

P (Am,j) <∞.

Since the εl,j,k are independent N (0, 1) Gaussian random variables, it follows
that for all q,

P
( ⋂

k∈Dq
m,j

(|εl,j,k| < 1/4)
)

=
∏

k∈Dq
m,j

P (|εl,j,k| < 1/4) ≤ (2
√

2π)−(2j−1)d

.

Hence

P (Am,j) ≤
∑

q∈Im,j

P
( ⋂

k∈Dq
m,j

(|εl,j,k| < 1/4)
)
≤

(m2j+1

j
+ 1

)d

(2
√

2π)−(2j−1)d

and (4.10) results from this last inequality. The Borel-Cantelli lemma implies
that for every integer m ≥ 1,

P
( ∞⋃

J=1

∞⋂
j=J

Ac
m,j

)
= 1,

where Ac
m,j denotes the complementary of the event Am,j , namely the event

Ac
m,j =

⋂
q∈Im,j

⋃
k∈Dq

m,j

(|εl,j,k| ≥ 1/4).
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Now consider

Ω∗
1 =

⋂
m≥1

⋃
J≥1

⋂
j≥J

Ac
m,j ,

an event with probability 1. Fix ω ∈ Ω∗
1. There is an m = m0 and an

integer j big enough, so that |εl,j,�kj
(ω)| ≥ 1/4, where k̂j ∈ D

�qj

m0,j by (4.6).

Relations (4.8) and (4.5) imply that

|t0 − 2−j k̂j| ≤ |t0 − 2−jk̃j|+ 2−j|k̃j − k̂j| ≤
√
d2−j +

√
d2−j(2j − 1) ≤ cj2−j,

which completes the proof. �

The following lemma controls how fast the paths of the process {T (t)}t∈Rd

increase as t→ ∞.

Lemma 4.2 There is a random variable C > 0 with finite moments of any
order such that almost surely for all t ∈ Rd,

|T (t)| ≤ C log1/2(2 + |t|).(4.11)

Proof of Lemma 4.2. If x = (x1, . . . , xd) is a vector of Rd, then [x] will
denote the vector whose components are the integer parts of the component
of x i.e [x] = ([x1], . . . , [xd]). It follows from Relations (3.3), (3.7), (3.16)
and (3.19), from Part (i) of Definition 2.1, from the sub-additivity of the
function y �→ log1/2(2 + y) and from the inequality

√
a+ b ≤ √

a+
√
b, that

almost surely for all t ∈ Rd,

|T (t)| ≤
2d−1∑
l=1

∞∑
j=1

∑
k∈Zd

2−jµj |εl,j,k||ψj
s,l(2

jt− k)|

≤ C1

∞∑
j=1

∑
k∈Zd

2−j/ log(64+j) log1/2(2 + j + |k|)
(2 + |2jt− k|)d+1

= C1

∞∑
j=1

2−j/ log(64+j)
∑
k∈Zd

log1/2(2 + j + |k + [2jt])

(2 + |2jt− [2jt] − k|)d+1

≤ C2

∞∑
j=1

2−j/ log(64+j) log1/2(2 + j) + C2

∞∑
j=1

2−j/ log(64+j) log1/2(2 + 2j)

+C2(
∞∑

j=1

2−j/ log(64+j)) log1/2(2 + |t|),

where C1 > 0 is a random variable with finite moments of any order and

C2 = C1 supx∈[0,1]d

{∑
k∈Zd

log1/2(2+|k|)
(2+|x−k|)d+1

}
. �
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Lemma 4.3 For each j = −2,−1, 0, 1, . . . the moments of any order of the
functions ψj

s,l and ψ̃j
s,l vanish, namely one has∫

Rd

tn1
1 t

n2
2 . . . tnd

d ψ
j
s,l(t) dt =

∫
Rd

tn1
1 t

n2
2 . . . tnd

d ψ̃
j
s,l(t) dt = 0,(4.12)

for all (n1, . . . , nd) ∈ Nd.

Proof of Lemma 4.3. One has up to a multiplicative factor∫
Rd

tn1
1 t

n2
2 . . . tnd

d ψ
j
s,l(t) dt = ∂(n1,...,nd)ψ̂j

s,l(0) = 0

and this partial derivatives is equal to 0 since the function ψ̂j
s,l vanishes in

the neighborhood of 0. One can similarly show that ∂(n1,...,nd) ̂̃ψj
s,l(0) = 0. �

Let us now introduce the pointwise Hölder spaces.

Definition 4.1 Let f be a complex-valued, continuous and nowhere differ-
entiable function defined on Rd, t0 be a point of Rd and α ∈ [0, 1). One says
that f belongs to the pointwise Hölder space Cα(t0) if there is a constant
c > 0 such that the inequality

(4.13) |f(t) − f(t0)| ≤ c|t− t0|α,
holds for every |t − t0| small enough (the constant c generally depends on
the point t0).

Remark 4.1 Because of the embedding

Cα2(t0) ⊂ Cα1(t0), 0 ≤ α1 ≤ α2 < 1,(4.14)

the pointwise Hölder exponent αf (t0) of the function f at t0 can be ex-
pressed as

(4.15) αf (t0) = sup{α; f ∈ Cα(t0)},
Now we can prove Proposition 4.1.

Proof of Proposition 4.1. Pick ω0 ∈ Ω∗
1 where Ω∗

1 is the event of
probability 1, introduced in Lemma 4.1. Assume that (4.2) is satisfied
(we will show below that this is indeed the case). Then αT (t0, ω0) ≤ 1,
which implies that (4.1) holds when lim infj→∞ sj(ω0) = 1. Suppose that
lim infj→∞ sj(ω0) < 1. We shall assume ad absurdum that for some γ0 ∈
(0, 1) satisfying

γ0 > lim inf
j→∞

sj(ω0),(4.16)

the function t �→ T (t, ω) belongs to Cγ0(t0).
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It follows from the definition of the space Cγ0(t0), that there is a constant
c1 > 0 such that for any |t− t0| small enough,

(4.17) |T (t, ω0) − T (t0, ω0)| ≤ c1|t− t0|γ0 .

Because of (4.11), this inequality holds as well for any t ∈ Rd. Then us-
ing (3.18), (4.12), (4.17) and (3.8) one obtains that for all integers q ≥ 1
and 1 ≤ l ≤ 2d − 1 and all k ∈ Zd,

2−3qµ3q ||εl,3q,k(ω0)| = 23qd

∣∣∣∣∫
Rd

T (t, ω0)ψ̃
3q
s,l(2

3qt− k) dt

∣∣∣∣
= 23qd

∣∣∣∣∫
Rd

(T (t, ω0) − T (t0, ω0))ψ̃
3q
s,l(2

3qt− k) dt

∣∣∣∣
≤ 23qd

∫
Rd

|T (t, ω0) − T (t0, ω0)||ψ̃3q
s,l(2

3qt− k)| dt

≤ c12
3qdb

∫
Rd

|t− t0|γ0

(2 + |23qt− k|)L
dt,

where the real L has been chosen such that L ≥ γ0 + d to ensure that the
last integral converges. Setting u = 23qt− k in the last integral, one gets

2−3qµ3q |εl,3q,k(ω0)| ≤ c1b

∫
Rd

|2−3q(u+ k) − t0|γ0

(2 + |u|)L

≤ c2b

(∫
Rd

|2−3qu|γ0

(2 + |u|)L
du+ |2−3qk − t0|γ0

∫
Rd

du

(2 + |u|)L

)
≤ c3b2

−3qγ0(1 + |23qt0 − k|)γ0 .(4.18)

Now set in Relation (4.18) k = k̂3q (where k̂3q was introduced in Lemma 4.1).
Relations (4.3) and (4.4) then imply that for all integer q ≥ 1 and n ≥ 1,

2−3qµ3q

4
≤ c4bq2

−3qγ0(1 + q)γ0 ≤ c52
−3qγ0(1 + q)n+γ0.(4.19)

In view of (3.4), the inequalities (4.19) and (4.16) cannot both hold.
We prove finally that (4.2) is satisfied. Suppose ad absurdum that for

some constant c5 > 0 and all |t− t0| small enough,

(4.20) |T (t, ω0) − T (t0, ω)| ≤ c5|t− t0|.

Then, applying the same methods as before, one can show that (4.20) and
the relation sj(ω0) ∈ [ 1

log(64+j)
, 1 − 1

log(64+j)
], j ≥ 1, cannot both hold. �
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Our goal now is to show that lim infj→∞ sj is a lower bound to the point-
wise Hölder exponent of the process {T (t)}t∈Rd at t0. In fact, we will show
more generally, that this quantity is a lower bound to the uniform Hölder
regularity of {T (t)}t∈Rd. We first recall the definition of the uniform Hölder
spaces and some elementary results about them.

Definition 4.2 Let U be a nonempty open subset of Rd and γ ∈ (0, 1). One
says that a complex valued function f defined over U belongs to the uniform
Hölder space Cγ(U) if and only if f satisfies the following conditions: there
is a constant c > 0, such that the inequality

|f(t′) − f(t′′)| ≤ c|t′ − t′′|γ,(4.21)

holds for all t′ ∈ U and t′′ ∈ U .

Lemma 4.4 (a) Let U be an open nonempty subset of Rd, the inclusion

Cγ2(U) ⊂ Cγ1(U)(4.22)

holds for all reals 0 < γ1 ≤ γ2 < 1.

(b) When a function f belongs to Cγ(U) then, for all t0 ∈ U , it belongs to
the pointwise Hölder space Cγ(t0) and its pointwise Hölder exponent
at t0 is at least γ.

Proposition 4.2 There is Ω∗
2, an event of probability 1, which does not

depend of t0 and satisfies the following property. For any ω ∈ Ω∗
2 such that

lim infj→∞ sj(ω) > 0 and for any real τ > 0, the function t �→ T (t, ω) belongs
to the Hölder space Cγ((−τ, τ)d) when γ ∈ (0, lim infj→∞ sj(ω)). Therefore,
the inequality

lim inf
j→∞

sj(ω) ≤ αT (t0, ω),(4.23)

holds for any ω ∈ Ω∗
2.

Proof of Proposition 4.2. We will show that almost surely, for any r ∈
(0, lim infj→∞ sj(ω)), ε > small enough and t′, t′′ ∈ (−τ, τ)d,

|T (t′) − T (t′′)| ≤ C1|t′ − t′′|r−ε,(4.24)

where C1 > 0 is a random variable that only depends on r and ε.
As lim infj→∞ µj = lim infj→∞ sj > r, there is an integer j0 such that the

inequality µj > γ, holds for all j ≥ j0 + 1. Writing
∑∞

j=0 =
∑j0

j=1 +
∑∞

j0+1

and majorizing
∑∞

j=j0+1, one has that, for every t′, t′′ ∈ (−τ, τ)d,

(4.25) |T (t′) − T (t′′)| ≤ G(t′, t′′) + L(t′, t′′)
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where

G(t′, t′′) =

∣∣∣∣ 2d−1∑
l=1

j0∑
j=1

∑
k∈Zd

2−jµjεl,j,k(ψ
j
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k))

∣∣∣∣(4.26)

L(t′, t′′) =
2d−1∑
l=1

∞∑
j=1

∑
k∈Zd

2−jr|εl,j,k||ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|.(4.27)

We first consider G and show that there is a random variable C3 > 0,
such that almost surely for all t′, t′′ ∈ (−τ, τ)d,

(4.28) G(t′, t′′) ≤ C3|t′ − t′′|.
In fact it is sufficient to show that with probability 1, for all real ρ > 0,

all multi-index β ∈ Nd and all integers j ≥ 1 and 1 ≤ l ≤ 2d − 1, the
series

∑
k∈Zd εl,j,k∂

βψj
s,l(x − k) is uniformly convergent in x, when |x| ≤

ρ. Indeed, this result implies that, with probability 1, x �→ gj,l(x) =∑
k∈Zd εl,j,k∂

αψj
s,l(x − k) is a C∞ function over (−τ − 1, τ + 1)d and conse-

quently a Lipschitz function over [−τ, τ ]d . It follows from (3.7) and (3.19),
that there is a random variable C2 > 0 (depending on j) such that, with
probability 1,∑

k∈Zd

|εl,j,k||∂βψj
s,l(x− k)| ≤ C2

∑
k∈Zd

log1/2(2 + |k|)
(1 + ρ+ |x− k|)d+1

≤ C2

∑
k∈Zd

log1/2(2 + |k|)
(1 + |k|)d+1

<∞,

since ρ+ |x−k|≥ρ+ |k|−|x|≥|k|. The random variable C2 depends on l and
j but since these have a finite range in (4.26) we conclude that (4.28) holds.
We now turn to L and show that for any arbitrarily small real ε > 0, there
is a random variable C24>0 such that almost surely for all t′, t′′∈(−τ, τ)d,

L(t′, t′′) ≤ C24|t′ − t′′|r−ε.(4.29)

There is no restriction to suppose that 0 < |t′ − t′′| < 1/2. Let j1 ≥ 1 be
the integer such that

(4.30) 2−j1−1 ≤ |t′ − t′′| < 2−j1.

For all integers j ≥ 1 and 1 ≤ i ≤ d let

(4.31) Dj,i = {k = (k1, . . . , kd) ∈ Zd; |ki| ≥ 2j+1τ}
and let

(4.32) Dj =

d⋃
i=1

Dj,i.
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Dc
j,i and Dc

j will respectively denote the complements of Dj,i and Dj.
One has

(4.33) L(t′, t′′) =
4∑

n=1

Ln(t′, t′′)

where

L1(t
′, t′′) =

2d−1∑
l=1

j1∑
j=1

∑
k∈Dj

2−jr|εl,j,k||ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|,(4.34)

L2(t
′, t′′) =

2d−1∑
l=1

j1∑
j=1

∑
k∈Dc

j

2−jr|εl,j,k||ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|,(4.35)

L3(t
′, t′′) =

2d−1∑
l=1

∞∑
j=j1+1

∑
k∈Dj

2−jr|εl,j,k||ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|(4.36)

L4(t
′, t′′) =

2d−1∑
l=1

∞∑
j=j1+1

∑
k∈Dc

j

2−jr|εl,j,k||ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|.(4.37)

Let us bound
∑

k∈Dj
|εl,j,k||ψj

s,l(2
jt − k)| when t ∈ (−τ, τ)d. It follows

from (3.7) and (3.19) that there is C4 > 0 a random variable such that
almost surely for all t ∈ (−τ, τ)d and j ≥ 1,∑

k∈Dj

|εl,j,k| |ψj
s,l(2

jt− k)|

≤ C4 log1/2(2 + j)

d∑
i=1

∑
k∈Dj,i

d∏
n=1

(
log1/2(2 + |kn|)

(5 + |2jtn − kn|)L

)
.(4.38)

Moreover, for all integers 1 ≤ i ≤ d and j ≥ 1, one has∑
k∈Dj,i

d∏
n=1

( log1/2(2 + |kn|)
(5 + |2jtn − kn|)L

)
=

( ∑
|ki|≥2j+1τ

log1/2(2 + |ki|)
(5 + |2jti − ki|)L

)
×

∏
1≤n≤d,n �=i

( ∑
kn∈Z

log1/2(2 + |kn|)
(5 + |2jtn − kn|)L

)
(4.39)

and for every |ti| ≤ τ , one has∑
|ki|≥2j+1τ

log1/2(2 + |ki|)
(5 + |2jti − ki|)L

≤
∑

|ki|≥2j+1τ

log1/2(2 + |ki|)
(5 + |ki| − 2jτ)L

≤ 2
∞∑

ki=[2j+1τ ]

log1/2(2 + ki)

(4 + ki − [2jτ ])L
.
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Now set m = ki − [2jτ ]. When ki ≥ [2j+1τ ], one has m ≥ [2j+1τ ] − [2jτ ] ≥
2j+1τ − 1 − 2jτ ≥ 2jτ − 1 ≥ [2jτ ] − 2. Thus,∑

|ki|≥2j+1τ

log1/2(2 + |ki|)
(5 + |2jti − ki|)L

≤ 2
∞∑

m=[2jτ ]−2

log1/2(2 +m+ [2jτ ])

(4 +m)L

≤ C5 log1/2(2 + 2jτ)

∞∑
m=[2jτ ]−2

log1/2(2 +m)

(4 +m)L

≤ C6 log1/2(2 + 2jτ)
∑

m=[2jτ ]−2

(4 +m)−L+ε

≤ C6 log1/2(2 + 2jτ)

∫ +∞

2jτ

(1 + x)−L+ε dx

≤ C7 log1/2(2 + 2jτ)(1 + 2jτ)−L+1+ε,(4.40)

where one supposes that L ≥ 2 and ε > 0 is arbitrarily small. Observe
that the bound in (4.40) does not involve i anymore. Hence it follows
from (4.38), (4.39) and (4.40) that there is a random variable C8 > 0, such
that almost surely for all t ∈ Rd with |t| ≤ τ and for all integers j ≥ 1 and
1 ≤ l ≤ 2d − 1, one has∑

k∈Dj

|εl,j,k||ψj
s,l(2

jt− k)|

≤ C8

(
log1/2(2 + j) log1/2(2 + 2jτ)

)
(1 + 2jτ)−L+1+ε.(4.41)

Using this last inequality and (4.36) one obtains that

L3(t
′, t′′) ≤

2d−1∑
l=1

∞∑
j=j1+1

∑
k∈Dj

2−jr|εl,j,k|
(
|ψj

s,l(2
jt′ − k)| + |ψj

s,l(2
jt′′ − k)|

)
≤ C9

∞∑
j=j1+1

(
log1/2(2 + j) log1/2(2 + 2jτ)

)
2−j(r+L−1−ε)

≤ C102
−(j1+1)(r+L−1−2ε)

≤ C10|t′ − t′′|r+L−1−2ε,(4.42)

where, by (4.30), C10 > 0 is a random variable which does not depend on j1.
Let us now bound L1(t

′, t′′). By the Mean Value Theorem, for all integer
j ≥ 1 and all k ∈ Zd, there is θ ∈ (0, 1) (depending on t′, t′′, j and k)
such that

ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)

= 2j
d∑

r=1

∂erψj
s,l(2

jt′ − k + θ2j(t′′ − t′)).(t′r − t′′r),(4.43)
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where for all r, er ∈ Nd is the multi-index whose r-th component equals 1
and whose other components equal 0. Relation (3.7) implies that

|ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|

≤ c112
j|t′ − t′′| ×

d∏
r=1

(
2 + |2jt′r − kr + 2jθ(t′′r − t′r)|

)−L
,(4.44)

where c11 > 0 is a constant depending on j, k, t′ and t′′. When j ≤ j1,
using (4.30) one has that 2j |t′ − t′′| ≤ 1 and so it follows from (4.44) that

|ψj
s,l(2

jt′ − k) − ψj
s,l(2

jt′′ − k)|

≤ c112
j|t′ − t′′| ×

d∏
r=1

(2 + |2jt′r − kr| − 2j |t′′r − t′r|)−L

≤ c112
j|t′ − t′′| ×

d∏
r=1

(1 + |2jt′r − kr|)−L.(4.45)

Relations (4.34), (3.19) and (4.45) imply that

L1(t
′, t′′)

(4.46) ≤ c12

j1∑
j=1

∑
k∈Dj

2−(r−1)j log1/2(2+ j)×
d∏

r=1

( log1/2(2 + |kr|)
(1 + |2jt′r − kr|)L

)
×|t′− t′′|.

Using a method similar to the one that led to the inequality (4.41), one can
show that for any arbitrary small real ε > 0 and all integer j ≥ 1,

∑
k∈Dj

2−(r−1)j log1/2(2 + j)

d∏
r=1

( log1/2(2 + |kr|)
(1 + |2jt′r − kr|)L

)
≤ c132

−(r−1)j log1/2(2 + j) log1/2(2 + 2jτ)(1 + 2jτ)−L+1+ε

≤ c142
−(r+L−2−2ε)j ,(4.47)

where c13 > 0 and c14 > 0 are two constants that depend on ε. It then
follows from (4.46) and (4.47) that

(4.48) L1(t
′, t′′) ≤ c15

( j1∑
j=1

2−j(L+r−2−2ε)
)
|t′ − t′′| ≤ c16|t′ − t′′|,

where c16 = c15
∑∞

j=0 2−j(L+r−2−2ε).
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Let us now study L4(t
′, t′′). It is convenient to bound∑

k∈Dc
j

2−jr|εl,j,k||ψj
s,l(2

jt− k)|

when t ∈ (−τ, τ)d.
Since onDc

j one has |ki| < 2j+1τ , Relations (3.7), (3.19), (4.31) and (4.32)
imply that almost surely for all integer j ≥ 1 and t ∈ (−τ, τ)d,∑

k∈Dc
j

2−jr|εl,j,k||∂αψj
s,l(2

jt− k)| ≤ C17

∑
k∈Dc

j

2−jr log1/2(2 + j + |k|)
(2 + |2jt− k|)L

≤ C17

∑
k∈Zd

2−jr log1/2(2 + j + 2j+1τd)

(2 + |2jt− k|)L

≤ C182
−jr log1/2(2 + j + 2j+1τd),(4.49)

where C17 > 0 is a random variable and

C18 = C17 sup
x∈Rd

{ ∑
k∈Zd

(2 + |x− k|)−L
}
.

It follows from (4.37), (4.49) and (4.30) that

(4.50) L4(t
′, t′′) ≤ C19

∞∑
j=j1+1

2−j(r−ε) ≤ C192
−(j1+1)(r−ε) ≤ C19|t′ − t′′|r−ε,

where ε > 0 is arbitrarily small and C19 > 0 is a random variable that only
depends on ε.

Let us now bound L2(t
′, t′′). Relations (4.35), (4.45), (4.31) and (4.32)

imply that

L2(t
′, t′′) ≤ C20|t′ − t′′|

j1∑
j=1

∑
k∈Dc

j

2−(r−1)j log1/2(2 + j + |k|)
2 + |2jt− k|)L

≤ C20|t′ − t′′|
j1∑

j=1

∑
k∈Dc

j

2−(r−1)j log1/2(2 + j + d2j+1τ)

(2 + |2jt− k|)L

≤ C21|t′ − t′′|
j1∑

j=1

2−(r−1)j log1/2(2 + j + d2j+1τ)

where C20 > 0 is a random variable and

C21 = C20 sup
x∈Rd

{ ∑
k∈Zd

(2 + |x− k|)−L
}
.
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Finally, for all arbitrarily small ε > 0, there is a random variables C22 > 0
and C23 > 0, which only depends on ε, such that

L2(t
′, t′′) ≤ C22|t′ − t′′|

j1∑
j=0

2−(r−1−ε)j ≤ C23|t′ − t′′|r−ε(4.51)

where the last inequality follows from (4.30). Relations (4.25), (4.33), (4.42),
(4.48), (4.50) and (4.51) imply the bound (4.24). This completes the proof. �

Proof of Theorem 1.2. Corollary 3.1, Proposition 4.1 and Proposition 4.2
imply the theorem. �

5. Going from the GMFRE to the GMPRE

The following proposition shows how a result on the pointwise Hölder expo-
nent of the GMFRE implies a corresponding one on the GMPRE. We shall
use the following lemma whose proof is similar to that of Proposition 1 of [5].

Lemma 5.1 Let K be an arbitrary compact subset of Rd. Then with proba-
bility 1, y �→ V (x, y, ω) is a Lipschitz function over K. More precisely, there
is a random variable C > 0 of finite moments of any order, such that almost
surely, for all y, y′ ∈ K, one has

sup
x∈K

|V (x, y′, ω) − V (x, y′′, ω)| ≤ C(ω)|y′ − y′′|.(5.1)

Proposition 5.1 Let {V (x, y)}(x,y)∈Rd×Rd be a GMFRE and suppose that,
almost surely for all t0,

lim sup
t→t0

|V (t, t0) − V (t0, t0)|
|t− t0| = ∞,

and that the pointwise Hölder exponent at t0 of the process {V (t, t0)}t∈R d

equals lim infn→∞ Sn(t0). Then, almost surely for all t0,

lim sup
t→t0

|Z(t) − Z(t0)|
|t− t0| = ∞,

and the pointwise Hölder exponent at t0 of the GMPRE {Z(t)}t∈Rd equals
lim infn→∞ Sn(t0).

Proof of Proposition 5.1. Let Ω∗ be an event with probability 1, such
that for all ω ∈ Ω∗ and all t0 ∈ R d,

lim sup
t→t0

|V (t, t0) − V (t0, t0)|
|t− t0| = ∞,

and the pointwise Hölder exponent at t0 of the function t �→ V (t, t0, ω)
equals lim infn→∞ Sn(t0, ω). Fix ω ∈ Ω∗.
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We first prove that

(5.2) lim sup
t→t0

|Z(t, ω) − Z(t0, ω)|
|t− t0| = ∞

and

(5.3) αZ(t0, ω) ≤ lim inf
n→∞

Sn(t0, ω).

Assume in the mean time that (5.2) is satisfied. Then αZ(t0, ω) ≤ 1,
which implies that (5.3) holds when lim infn→∞ Sn(t0, ω) = 1. We can thus
restrict ourselves to the case lim infn→∞ Sn(t0, ω) < 1. Suppose, ad absur-
dum, that lim infn→∞ Sn(t0, ω) < αZ(t0, ω). The function t �→ Z(t, ω) then
belongs to a space Cσ(t0) for some real σ satisfying lim infn→∞ Sn(t0, ω) <
σ. We can take σ < 1 because of the inclusion (4.14) and the fact that
lim infn→∞ Sn(t0, ω) ≤ b < 1, where b is defined in (2.7). Thus, the defini-
tion of Cσ(t0) implies that that there is a constant C1(ω) > 0 such that the
inequality

|Z(t0 + h, ω) − Z(t0, ω)| = |V (t0 + h, t0 + h, ω) − V (t0, t0, ω)|
≤ C1(ω)|h|σ,(5.4)

holds for all |h| ≤ 1. By using this last inequality and applying Lemma 5.1
with the compact set B = {x ∈ Rd, |x− t0| ≤ 1}, we get

|V (t0 + h, t0, ω) − V (t0, t0, ω)|
≤ |V (t0+h, t0+h, ω)−V (t0, t0, ω)| + |V (t0+h, t0 + h, ω) −V (t0+h, t0, ω)|
≤ C1(ω)|h|σ + C(ω)|h| ≤ C3(ω)|h|σ,

that is, the function t �→ V (t, t0, ω) belongs to the space Cσ(t0). This
contradicts the assumption of the proposition, that the pointwise Hölder
exponent of this function at t0, equals lim infn→∞ Sn(t0, ω).

Let us now show that (5.2) holds. Assume it does not, that is, for
some constant C4(ω) > 0 and all |h| small enough, we have |Z(t0 + h, ω) −
Z(t0, ω)| ≤ C4(ω)|h|. Using this inequality and Lemma 5.1 we obtain that
for some constant C5(ω) > 0 and all |h| small enough, we have |V (t0 +
h, t0, ω) − V (t0, t0)| ≤ C5(ω)|h|. This contradicts the assumption that

lim sup
t→t0

|V (t, t0, ω) − V (t0, t0, ω)|
|t− t0| = ∞.

We prove next that

αZ(t0, ω) ≥ lim inf
n→∞

Sn(t0, ω).

This inequality is clearly satisfied when lim infn→∞ Sn(t0, ω) = 0.
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To show that it is also true when lim infn→∞ Sn(t0, ω) > 0, it is sufficient
to prove that the function t �→ Z(t, ω) belongs to Cs(t0) for any real s sat-
isfying 0 ≤ s < lim infn→∞ Sn(t0, ω) ≤ 1. Since the function t �→ V (t, t0, ω)
belongs to the space Cs(t0), there is a constant C6(ω) > 0 such that the
inequality

|V (t0 + h, t0, ω) − V (t0, t0, ω)| ≤ C6(ω)|h|s,(5.5)

holds for all |h| ≤ 1. Lemma 5.1 implies

|Z(t0 + h, ω) − V (t0, t0, ω)|
= |V (t0 + h, t0 + h, ω) − V (t0, t0, ω)|
≤ |V (t0 + h, t0 + h, ω) − V (t0 + h, t0, ω)| + |V (t0 + h, t0, ω) − V (t0, t0, ω)|
≤ sup

x∈B
|V (x, t0 + h, ω) − V (x, t0, ω)| + C4(ω)|h|s

where B = {x ∈ Rd, |x− t0| ≤ 1}. Hence

|Z(t0 + h, ω) − V (t0, t0, ω))| ≤ C2(ω)|h| + C4(ω)|h|s ≤ C5(ω)|h|s,

which proves that the function t �→ Z(t, ω) belongs to the space Cs(t0). �

Proof of Theorem 1.1. The result follows from Theorem 1.1 and Propo-
sition 5.1. �

6. Auxiliary results

The following proposition is the stochastic version of Proposition 1.1 and its
proof is structured as the proof of the direct part of Theorem 1 of [15].

Proposition 6.1 Let {X(t)}t∈Rd be a stochastic process satisfying the fol-
lowing property: there is Ω∗

5 an event of probability 1, such that for any
ω ∈ Ω∗

5 the path x �→ X(x, ω) is continuous and nowhere differentiable. Set,
for any n ∈ N, any t ∈ Rd and any ω,

(6.1) αn,X(t, ω) =

=

⎧⎪⎨⎪⎩
min

(
1,max

(
0, inf2−n−2≤|h|<2−n−1

{
log(|X(t+h,ω)−X(t,ω)|+2−n2

)
log |h|

}))
if ω∈Ω∗

5,

0 else.
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Then,

(i) For each n ∈ N and each t ∈ Rd, αn,X(t) is a random variable with
values in [0, 1].

(ii) For every ω ∈ Ω∗
5 and n ∈ N the function t �→ αn,X(t, ω) is continuous

over Rd.

(iii) For all ω ∈ Ω∗
5 and t ∈ Rd,

(6.2) αX(t, ω) = lim inf
n→∞

αn,X(t, ω),

where {αX(t)}t∈Rd denotes the pointwise Hölder exponent of {X(t)}t∈Rd.

Proof. We will suppose throughout that ω ∈ Ω∗
5 and we let Ω will denote

the probability space.

Part (i). As the function x �→ X(x, ω) is continuous over Rd, for every
t ∈ Rd and every n ∈ N, one has

αn,X(t, ω) =(6.3)

= min
(
1,max

(
0, inf

h∈Gn

{ log(|X(t+ h, ω) −X(t, ω)| + 2−n2
)

log |h|
}))

,

where

(6.4) Gn = {h ∈ Qd; 2−n−2 ≤ |h| < 2−n−1}.
Next, observe that for every n ∈ N and t ∈ Rd,

(6.5) Wn(t) = inf
h∈Gn

{ | log(|X(t+ h) −X(t)| + 2−n2
)|

| log |h||
}

is a random variable over Ω∗
5 since it is the infimum of a sequence of random

variables over Ω∗
5. Relations (6.3) and (6.1) imply therefore that αn,X(t) is

a random variable over Ω with values in [0, 1].

Part (ii). It is sufficient to show that the function t �→ Wn(t, ω) is
continuous over Rd, i.e. for any t0 ∈ Rd and ε > 0, there is η > 0 such that
for all k ∈ Rd satisfying |k| ≤ η, one has

(6.6) |Wn(t0 + k, ω) −Wn(t0, ω)| ≤ ε.

Let gn,t0 be the function defined over the compact domain

∆ = {k ∈ Rd; |k| ≤ 1} × {h ∈ Rd; 2−n−2 ≤ |h| ≤ 2−n−1}
as the function

(6.7) gn,t0(k, h, ω) = | log(|X(t0 + k + h, ω) −X(t0 + k, ω)| + 2−n2

)|.
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Observe that one has for every |k| ≤ 1,

(6.8) Wn(t0 + k, ω) = inf
h∈Gn

{gn,t0(k, h, ω)

| log |h||
}
.

As the function gn,t0 is uniformly continuous over ∆, there is an α ∈ (0, 1/2)
such that for any (k1, h1) ∈ ∆ and (k2, h2) ∈ ∆ satisfying |k1 − k2| ≤ α and
|h1 − h2| ≤ α, one has

|gn,t0(k1, h1, ω) − gn,t0(k2, h2, ω)| ≤ ε

(n+ 2) log 2
.

Consequently, for all |k| ≤ α and 2−n−2 ≤ |h| ≤ 2−n−1,

|gn,t0(k, h, ω) − gn,t0(0, h, ω)|
| log |h|| ≤ ε.

Using the last inequality and the fact that gn,t0 is a nonnegative function,
one obtains that

gn,t0(k, h, ω)

| log |h|| ≤ ε+
gn,t0(0, h, ω)

| log |h||
and

gn,t0(0, h, ω)

| log |h|| ≤ ε+
gn,t0(k, h, ω)

| log |h|| ,

which entails that

inf
h∈Gn

gn,t0(k, h, ω)

| log |h|| ≤ ε+ inf
h∈Gn

gn,t0(0, h, ω)

| log |h||
and

inf
h∈Gn

gn,t0(0, h, ω)

| log |h|| ≤ ε+ inf
h∈Gn

gn,t0(k, h, ω)

| log |h|| .

Finally, the last two inequalities and (6.8) imply that for every |k| ≤ α,

|Wn(t0 + k, ω) −Wn(t0, ω)| ≤ ε.

Thus, taking η = α one gets (6.6).

Part (iii). First we show that if the function x �→ X(x, ω) does not
belong to a space Cγ(t) where γ ∈ (0, 1), then

(6.9) lim inf
n→∞

αn,X(t, ω) ≤ γ.

It follows from (4.13) that there is a constant c1 > 0, a sequence (kp)p∈N

of vectors of Rd and an increasing sequence (np)p∈N of nonnegative integers
such that for every p ∈ N,

(6.10) 2−np−2 ≤ |kp| < 2−np−1 and c1|kp|γ ≤ |X(t+kp, ω)−X(t, ω)| ≤ 1/4.



364 A. Ayache, S. Jaffard and M. S. Taqqu

Therefore, one has for every p ∈ N,

inf
2−np−2≤|h|≤2−np−1

{ log(|X(t+ h, ω) −X(t, ω)| + 2−n2
p)

log |h|
}

≤ log(|X(t+ kp, ω) −X(t, ω)|+ 2−n2
p)

log |kp|

≤ − log(c1|kp|γ + 2−n2
p)

(np + 1) log 2

≤ − log(c12
−(np+2)γ + 2−n2

p)

(np + 1) log 2
.

Hence,

lim inf
p→∞

inf
2−np−2≤|h|≤2−np−1

{ log(|X(t+ h, ω) −X(t, ω)| + 2−n2
p)

log |h|
}
≤ γ

and (6.9) results from this last inequality and (6.1).
We now show that if the function x �→ X(x, ω) belongs to a space Cγ′

(t0)
where γ′ ∈ (0, 1), then

(6.11) lim inf
n→∞

αn,X(t, ω) ≥ γ′.

It follows from (4.13) that there is a constant c2 > 0 such that for every
integer n big enough and every h ∈ Rd satisfying 2−n−2 ≤ |h| < 2−n−1, one
has

(6.12) |X(t+ h, ω) −X(t, ω)| ≤ c2|h|γ′
< c22

−(n+1)γ′ ≤ 1/4.

This implies that

log(|X(t+ h, ω) −X(t, ω)|+ 2−n2
)

log |h| ≥ − log(c22
−(n+1)γ′

+ 2−n2
)

(n + 2) log 2

and consequently that

inf
2−n−2≤|h|≤2−n−1

{ log(|X(t+ h, ω) −X(t, ω)|+ 2−n2
)

log |h|
}

≥ − log(c22
−(n+1)γ′

+ 2−n2
)

(n+ 2) log 2
.

Then (6.11) follows from this last inequality and (6.1).
Finally, using (6.9), (6.11) and the fact that the function x �→ X(x, ω)

is nowhere differentiable (which implies that for every t ∈ Rd, αX(t, ω) ≤ 1)
one obtains (6.2). �
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Proposition 6.2 Let {X(t)}t∈Rd be a continuous and nowhere differentiable
Gaussian process and {αX(t)}t∈Rd be its pointwise Hölder exponent. Then
for any t0, the random variable αX(t0) is deterministic.

Proof of Proposition 6.2. Notice first that as the paths of the process
{X(t)}t∈Rd are nowhere differentiable with probability 1, one has almost
surely for every t0 ∈ Rd,

(6.13) αX(t0) ≤ 1.

Next, fix t0 ∈ Rd and, for every s ∈ [0, 1], denote by

P (αX(t0) ≥ s)

the probability that the pointwise Hölder exponent at t0 of the process
{X(t)}t∈Rd is greater than s. Clearly, one has

(6.14) P (αX(t0) ≥ s) = P
( ⋂

n∈N

{
sup
t∈B

( |X(t) −X(t0)|
|t− t0|γn

)
<∞

})
,

where B = {t ∈ Rd, |t − t0| ≤ 1} and, for every n ∈ N, γn < γn+1 < s and
limn→∞ γn = s. Moreover,

P
( ⋂

n∈N

{
sup
t∈B

|X(t) −X(t0)|
|t− t0|γn

<∞
})

(6.15)

= inf
n∈N

P
(

sup
t∈B

|X(t) −X(t0)|
|t− t0|γn

<∞
)
,

since ({
sup
t∈B

|X(t) −X(t0)|
|t− t0|γn

})
n∈N

is a decreasing sequence of events.
Next, observe that the zero-one law for Gaussian processes implies that

for every n ∈ N, the probability

P
(

sup
t∈B

|X(t) −X(t0)|
|t− t0|γn

<∞
)

can only be equal to zero or one. Relations (6.14) and (6.15) entail therefore
that P (αX(t0) ≥ s) = 0 or 1. If we let

(6.16) g(t0) = sup{s ∈ [0, 1], P (αX(t0) ≥ s) = 1},
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then a.s,

(6.17) αX(t0) = g(t0).

Indeed, on one hand a.s,

(6.18) αX(t0) ≥ g(t0).

On the other hand, when g(t0) = 1, Relations (6.13) and (6.18) entail that
almost surely αX(t0) = g(t0) = 1. When g(t0) < 1, one has that

(6.19) g(t0) = inf{s ∈ [0, 1], P (αX(t0) < s) = 1}.
Thus (6.17) follows from (6.16) and (6.18). �.

By using Proposition 6.2 and Fubini Theorem, we conclude the following:

Corollary 6.1 Let {X(t)}t∈Rd be a continuous and nowhere differentiable
Gaussian process and {αX(t)}t∈Rd be its pointwise Hölder exponent. Then,
there is a non-random function H(t), t ∈ Rd such that, almost surely, almost
everywhere, αX(t, ω) = H(t).

7. Conclusion

We have formed a Generalized Multifractional Processes with Random Ex-
ponent (GMPRE) by introducing randomness in the pointwise Hölder ex-
ponent of a Generalized Multifractional Brownian Motion (GMBM) and we
have showed that Relation (1.12) holds in the strong sense for a GMPRE.
This is desirable for the following reasons:

1) It is natural in many situations to model the pointwise Hölder ex-
ponent of a real-life signal as a stochastic process. In the case of fully
developped turbulence, for example, the dependence on initial conditions,
boundary values and the injection of energy is so instable that the Hölder
exponent can hardly be viewed as a deterministic function, see [21].

2) For analyzing the irregularity of a signal {X(t)}t∈Rd having a very er-
ratic pointwise Hölder exponent, one often uses some multifractal spectrum
of {X(t)}t∈Rd, for example the singularities spectrum {θX(γ)}γ∈[0,1] which is
a measure of the geometric repartition of the pointwise Hölder exponents of
{X(t)}t∈Rd [4, 11, 12, 20, 22, 25]. Namely, for any γ ∈ [0, 1] and for any ω,
the quantity θX(γ, ω) is defined as the Hausdorff dimension of the level set
{t ∈ Rd, αX(t, ω) = γ}. In order to obtain information about the singular-
ities spectrum of GMPRE one needs to show that Relation (1.12) holds in
the strong sense: almost surely for all t.
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3) Because of the randomness of its pointwise Hölder exponent, the con-
struction of a GMPRE with a prescribed singularities spectrum seems to
be less difficult than that of a GMBM. Indeed, many results on the almost
sure Hausdorff dimensions of the level sets of stochastic processes have been
already obtained (see for example [2, 14, 27, 33]) and, generally speaking,
the estimation of these Hausdorff dimensions seems to be more accessible
than that of the level sets of deterministic functions.

4) It is quite easy to construct a GMPRE {Z(t)}t∈Rd whose singularities
spectrum is constant over (0, 1) with values in (d − 1, d), that is, which
satisfies in the strong sense, almost surely for any γ ∈ (0, 1),

(7.1) θZ(γ, ω) = d−H,

where H ∈ (0, 1) is a constant. This can be done as follows. Monrad and
Pitt [33] have proved that the Hausdorff dimensions of the level sets of the
FBM {BH(t)}t∈Rd satisfy in the strong sense, almost surely, for any γ ≥ 0,

(7.2) dimH{t ∈ Rd, BH(t) = γ} = d−H.

But, in view of Theorem 1.1, one can construct a GMPRE {Z(t)}t∈Rd whose
pointwise Hölder exponent equals

(7.3) Q(t) = max{0,min(BH(t), 1)}, t ∈ Rd,

in the strong sense: almost surely for all t. Therefore, (7.2) and (7.3) imply
that the singularities spectrum of {Z(t)}t∈Rd satisfies (7.1), almost surely,
for any γ ∈ (0, 1).

5) An interesting feature of the GMPRE process is that it is typically non-
Gaussian. If it were Gaussian, then according Proposition 6.2, its pointwise
Hölder exponent, at a fixed point t, would be deterministic.
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