
Rev. Mat. Iberoamericana 22 (2006), no. 2, 455–487

Superposition operators and functions
of bounded p -variation

Gérard Bourdaud, Massimo Lanza de Cristoforis, Winfried Sickel

Abstract

We characterize the set of all functions f of R to itself such that
the associated superposition operator Tf : g → f ◦ g maps the class
BV 1

p (R) into itself. Here BV 1
p (R), 1 ≤ p < ∞, denotes the set of

primitives of functions of bounded p-variation, endowed with a suit-
able norm. It turns out that such an operator is always bounded and
sublinear. Also, consequences for the boundedness of superposition
operators defined on Besov spaces Bs

p,q(R
n) are discussed.

1. Introduction

If f is a function defined on the real line, the superposition operator asso-
ciated with f (sometimes also called composition operator) is defined by
Tf (g) := f ◦ g. In general, Tf is a nonlinear operator. The Superposition
Operator Problem (S.O.P.) for a given function space E consists in finding
the set S(E) of all functions f such that Tf (E) ⊆ E. The set S(E) has been
characterized only in a very limited number of cases, (cf. e.g., Appell and
Zabrejko [1], [6], and [25, chap. 5].) In addition to the acting property of Tf ,
also the regularity of Tf turns out to be of interest. So boundedness, con-
tinuity and differentiability of Tf are properties which have been commonly
investigated. In this paper, we concentrate on the boundedness properties
of Tf . In particular, we shall analyze the inequalities describing the bound-
edness of Tf in a qualitative way. We now turn to explain a specific issue in
this direction. Clearly, under reasonable conditions on f and g, we have

(f ◦ g)′ = (f ′ ◦ g) g′

(f ◦ g)′′ = (f ′′ ◦ g) (g′)2 + (f ′ ◦ g) g′′ .
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Then if E1 is a function space defined by properties involving only derivatives
up to the first order, such as the Sobolev space W 1

p (R), we would expect the
validity of an inequality of the type

‖Tf (g) ‖E1 ≤ cf (1 + ‖ g ‖E1) ∀g ∈ E1 ,

for a suitable constant cf > 0. Instead, if E2 is a function space defined by
properties involving also second order derivatives, such as the Sobolev space
W 2

p (R), then we would expect the validity of an inequality of the type

(1.1) ‖Tf (g) ‖E2 ≤ cf

(
1 + ‖ g ‖2

E2

)
∀g ∈ E2 .

We say that an operator T of a normed space E to itself is sublinear, provided
that there exists a constant c such that

‖T (g) ‖E ≤ c (1 + ‖ g ‖E) ∀g ∈ E .

Thus for example, superposition operators associated with Lipschitz contin-
uous functions are sublinear on W 1

p (Rn) (cf. Marcus and Mizel [21]), while
in case of E = W 2

p (Rn) inequality (1.1) holds (cf. [5] and [25, 5.2.4].)

Superposition operators associated with affine functions are trivially sub-
linear. Then a natural question occurs. Namely, do there exist nontrivial
sublinear superposition operators in a given function space E? For Sobolev
spaces Wm

p (Rn), m ∈ N , 1 ≤ p ≤ ∞, the answer is known. Such super-
position operators exist if and only if m = 0, or m = 1, or m = 2 and
p = 1 (cf. [5] and Proposition 1 below). Thus inequality (1.1) can be im-
proved in W 2

1 (Rn) but not in W 2
p (Rn) for p > 1. A good way to explain the

atypical behaviour of W 2
1 (Rn) is to switch to function spaces of fractional

order of smoothness such as the Besov spaces Bs
p,q(R

n) (see Section 4 for
the definition). Thus s = 1 + (1/p) reveals to be the critical value for the
sublinearity of superposition operators in Besov spaces. More precisely, we
have the following.

Proposition 1 Let 1 < p ≤ +∞, and s > 1 + (1/p). Let N be a norm on
D(Rn). Let E be a normed function space such that D(Rn) ⊆ E ⊆ W 1

1,�oc(R
n)

and such that there exists a positive constant A such that

(1.2) sup
h�=0

|h|1−s

(∫
Rn

∣∣∣ ∂g

∂xi
(x + h) − ∂g

∂xi
(x)
∣∣∣p dx

)1/p

≤ A ‖ g ‖E ∀g ∈ E

for all i = 1, . . . , n.
If there exist a continuously differentiable function f : R → R and a

constant B > 0 such that Tf maps D(Rn) into E, and such that the inequality

(1.3) ‖ f ◦ g ‖E ≤ B (N(g) + 1) ∀g ∈ D(Rn)

holds, then f must be an affine function.
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For t > 1 + 1/p, it is immediate to verify that Besov spaces Bt
p,q(R

n)
satisfy condition (1.2) with 1 + (1/p) < s < min(t, 2). For a proof of Propo-
sition 1, we refer the reader to Subsection 5.1, where a proof is provided
under more general assumptions. Also, in Subsection 5.1 we provide further
nontrivial examples of function spaces which fail to have sublinear superpo-
sition operators.

Of course, in Proposition 1 only a necessary condition is given. Looking
back in history, most attention has been paid to the example f(t) = |t|, and
to the associated superposition operator. Bourdaud and Meyer [9] and Os-
wald [22] have proved independently, and by exploiting different arguments,
that the following holds. If 1 ≤ p, q ≤ ∞ and 0 < s < 1 + (1/p), then there
exists a constant c > 0 such that

‖ |g| ‖Bs
p,q(Rn) ≤ c ‖ g ‖Bs

p,q(Rn) ∀g ∈ Bs
p,q(R

n) .

Later, such statement has been generalized to superposition operators Tf as-
sociated to functions f such that the second derivative f ′′ is a finite measure
( cf. [6].) Combining Proposition 1 with such positive results, we understand
that the limiting case s = 1+(1/p) is still open. The following two negative
results are well known (cf. [9] and Oswald [22].)

Proposition 2 There exists a function g ∈ D(Rn) such that |g| /∈ B
1+ 1

p
p,q (Rn),

for all p ∈ [1, +∞] and q ∈ [1, +∞[.

Thus we cannot hope that T|.| maps B
1+ 1

p
p,q (Rn) to B

1+ 1
p

p,r (Rn) for some
p, q, r ∈ [1, +∞], unless r = +∞.

Proposition 3 Let p ∈ [1, +∞]. There exists a function g such that g ∈
B

1+ 1
p

p,q (Rn), for all q ∈]1, +∞], and |g| /∈ B
1+ 1

p
p,∞ (Rn).

Thus we can hope that T|.| maps a Besov space B
1+ 1

p
p,q (Rn) with p, q ∈

[1, +∞] to B
1+ 1

p
p,∞ (Rn) only if q = 1. Indeed, such hope has been confirmed

to be founded by Savaré [26] for n = 1, who has proved the following result.

Proposition 4 For all p ∈ [1, +∞[, there exists a constant c such that

(1.4) ‖ |g| ‖
B

1+ 1
p

p,∞ (R)
≤ c ‖g‖

B
1+ 1

p
p,1 (R)

∀g ∈ B
1+ 1

p

p,1 (R) .

As a matter of fact, Proposition 4 is just a corollary of the following
stronger result of Savaré [26].
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Theorem 1 For all p ∈ [1, +∞[, there exists a Banach space Z1+(1/p),p(R)
such that the following continuous embeddings hold

(1.5) B
1+ 1

p

p,1 (R) ↪→ Z1+ 1
p
,p(R) ↪→ B

1+ 1
p

p,∞ (R) ,

and such that there exists a positive constant c satisfying

(1.6) ‖ |g| ‖Z1+(1/p),p(R) ≤ c ‖g‖Z1+(1/p),p(R) ∀g ∈ Z1+(1/p),p(R) .

By Propositions 2 and 3, Z1+(1/p),p(R) cannot be a Besov space. For
p = 1 it is the space of all functions f ∈ W 1

1 (R) such that f ′ is a function
of bounded variation. For 1 < p < ∞, Z1+(1/p),p(R) has been introduced by
Tartar [28], using real interpolation (cf. Subsection 4.3.) As far as we know,
no elementary description of the spaces Z1+(1/p),p(R) for p > 1 is available.

In the present paper, we consider the space BV 1
p (R) of primitives of func-

tions of bounded p-variation in the sense of Wiener. The space BV 1
p (R) re-

veals to be a good substitute of Z1+(1/p),p(R), for we can replace Z1+(1/p),p(R)
by BV 1

p (R) in (1.6). In this case, we have the following chain of continuous
embeddings

(1.7) Ḃ
1+ 1

p

p,1 (R) ↪→ BV 1
p (R) ↪→ Ḃ

1+ 1
p

p,∞ (R) ,

where Ḃs
p,q(R) denotes the homogeneous counterpart of the Besov space

Bs
p,q(R) (cf. Theorem 5). Furthermore, we will prove the following sharp

result.

Theorem 2 Let 1 ≤ p < ∞. For all functions f , g in BV 1
p (R), the com-

posite f ◦ g belongs to BV 1
p (R) and

‖f ◦ g‖BV 1
p (R) ≤ ‖f‖BV 1

p (R)

(
1 + 21/p‖g‖BV 1

p (R)

)
.

We note that in case p = 1, Theorem 2 is due to Savaré and Tomarelli [27].

A few further remarks are in order. From the point of view of the S.O.P.
the spaces BV 1

p (R) have some extraordinary properties. They combine sim-
plicity and beauty. It is a remarkable property that the composition of any
pair of functions f, g belonging to BV 1

p (R) still remains in the same class.

The corresponding property is not shared by the Besov spaces B
1+(1/p)
p,q (R),

no matter what q is. We do not know whether the same is true for the Tar-
tar spaces. Also, Theorem 2 and the membership of the identity function
in BV 1

p (R) imply immediately that S(BV 1
p (R)) coincides with BV 1

p (R) (cf.
Theorem 4.)
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Moreover, as explained above, the classes BV 1
p (R) represent a limiting

case for sublinear estimates. As the Tartar spaces, the classes BV 1
p (R) can be

used as a starting point to derive estimates for the superposition operator
in Besov spaces both in the limiting case s = 1 + (1/p), and in the case
0 < s < 1 + (1/p). This explains why we have turned our attention to
the S.O.P. in the classes BV 1

p (R). For instance, by the embeddings (1.7)
and by Theorem 2, it follows that if f ∈ BV 1

p (R) and f(0) = 0, then Tf

maps B
1+(1/p)
p,1 (R) to B

1+(1/p)
p,∞ (R). Such result can be improved by replacing

BV 1
p (R) by the strictly larger class U 1

p (R) introduced by Bourdaud and
Kateb [8], in order to obtain superposition operators on Besov spaces of
order s < 1 + (1/p) (cf. Theorems 7-10).

In a forthcoming paper we also investigate continuity and differentiability
properties of the superposition operator in BV 1

p (R).

Contents of the paper

In Section 2, we give the definition and basic properties of functions of
bounded p-variation and their primitives. In Section 3, we prove Theorem 2
in a more precise form. In Section 4, we recall some basic facts on Besov
spaces, with a special attention to the fundamental theorem of Peetre, which
allows a comparison of the space BVp(R) of functions of bounded p-variation
and the homogeneous Besov spaces of order 1/p. Section 5 contains new
results on the superposition operator in Besov spaces of order s ≤ 1+(1/p).
In Section 6, we extend a part of our results to the n-dimensional setting.

Notation

We denote by C(R) the set of continuous real valued functions on the
real line. We denote by Cb(R) the Banach space of the bounded functions
of C(R) endowed with the sup-norm, and by C0(R) the Banach subspace
of the functions of Cb(R) with 0 limiting value at infinity. We denote by
Pm the set all polynomials of degree at most m. We denote by ‖ · ‖p, with
p ∈ [1, +∞] the standard Lp norm. For any admissible couple of Banach
spaces (A0, A1) and for p ∈ [1, +∞], t ∈]0, 1[, (A0, A1)t,p denotes the Lions-
Peetre interpolation space (cf. [3, par. 3.1] or [29, 1.3.2]). Function spaces
considered in this paper are distribution spaces, with the notable exceptions
of Vp and Up. Thus in most cases the word “function” must be understood as
“equivalence class of functions with respect to almost everywhere equality”.
We denote by N the set of nonnegative integers.

Acknowledgements. We thank Bernard Maurey for a discussion which led
us to an important simplification in the statement and proof of Theorem 3.
Also, we are indebted to Djalil Kateb, whose work on superposition operators
was a source of inspiration and motivation for us.
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2. Functions of bounded p-variation and their primi-
tives

2.1. Functions of bounded p-variation

Let p ∈ [1, +∞[. Let I be an interval of R. We consider the space Vp(I)
of functions of bounded p-variation introduced by Wiener [32]. A function
f : I → R belongs to Vp(I) if there exists c > 0 such that

N∑
k=1

|f(tk) − f(tk−1)|p ≤ cp ,

for all finite sequences t0 < t1 < · · · < tN in I. The infimum of such
constants c is denoted by νp(f, I). We note that in the above definition, we
could as well take t0 ≤ t1 ≤ · · · ≤ tN , without effecting νp(f, I). We use
the abreviations Vp := Vp(R) and νp(f) := νp(f, R). By considering a finite
sequence with only two terms, we obtain

|f(x) − f(y)| ≤ νp(f, I) ,

for all x, y ∈ I. Hence, every element of Vp(I) is a bounded function. One
can easily prove that Vp(I) becomes a Banach space if endowed with the
following norm

‖f‖Vp(I) := sup
x∈I

|f(x)| + νp(f, I) .

According to Wiener [32], the right limit of f ∈ Vp(I) exists at each point
of I which is not the right endpoint. Moreover,

N∑
k=1

|f(tk+) − f(tk−1+)|p ≤ νp(f, I)p ,

for all finite sequences t0 < t1 < · · · < tN in I, such that tN is not the
right endpoint of I, and a corresponding property holds for left limits. We
complete the family Vp by defining V∞(I) as the set of bounded functions of
I to R, having discontinuities only of the first kind. Then V∞(I) is a Banach
space for the norm

ν∞(f, I) := sup
x∈I

|f(x)| .

Definition 1 Let f : R → R be a function having discontinuities only of
the first kind. Then f is said to be normalized if

f(x) =
1

2
(f(x+) + f(x−)),

for all x in R.
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Now we have the following results, which are of straightforward verifica-
tion.

Proposition 5 Let f : R → R be a normalized function. If f vanishes
almost everywhere, then f vanishes everywhere. Moreover, we have f ∈
L∞(R) if and only if f is bounded. If f is bounded, then

‖f‖∞ = sup
x∈R

|f(x)| .

Proposition 6 Let p ∈ [1, +∞] and f ∈ Vp. Let f̃ : R → R be the function
defined by

f̃(x) =
1

2
(f(x+) + f(x−))

for all x ∈ R. Then the function f̃ is normalized, and belongs to Vp, and
satisfies the following inequality

νp(f̃) ≤ νp(f) .

Proposition 7 Let f : R → R be a measurable function. Then there exists
at most one normalized function f̃ : R → R such that f = f̃ almost every-
where in R. If f̃ exists and if g : R → R is a measurable function equal to
f almost everywhere, then g̃ exists and is equal to f̃ .

For further properties of functions of bounded p-variation, we refer to
the comprehensive study of Bruneau [11].

2.2. Functions of bounded p-variation as distributions

Since Vp is evidently not a space of distributions, it is sometimes desirable
to replace it by a space of distributions having similar properties. For p = 1
we refer to Federer [14], Giusti [18] and Savaré [26].

Definition 2 Let p ∈ [1, +∞]. We denote by BVp(R) the set of functions
f : R → R such that there exists a function g ∈ Vp which coincides with f
almost everywhere, and we set

εp(f) := inf {νp(g) : g ∈ Vp , g = f a.e.} ∀f ∈ BVp(R) .

We denote by BVp(R) the quotient set of BVp(R) modulo equality almost
everywhere. If h ∈ BVp(R), we still denote by εp(h), the number εp(f), for
any of the representatives f of h.
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Remark. As customary, we denote by BV (R) the set of all f ∈ L1
�oc(R)

such that

(2.1) sup
{∫ ∞

−∞
f(x) Φ′(x) dx : Φ ∈ D(R), |Φ(x)| ≤ 1 for all x ∈ R

}
is finite or, equivalently, such that the distributional derivative of f is a finite
Borel measure. Then BV1(R) = BV (R) as sets and the number ε1(f) coin-
cides with the expression (2.1) and with the total variation of the measure f ′

(cf. e.g. Giusti [18, p. 29]).

By Proposition 7, one can easily derive the following statement.

Proposition 8 Let p ∈ [1, +∞]. If f ∈ BV p(R), then f has a unique
normalized representative f̃ ∈ Vp. Moreover, we have εp(f) = νp(f̃).

From now on, we shall consider BVp(R) as a Banach space of distribu-
tions, endowed with the following norm

‖f‖BVp(R) := εp(f) + ‖f‖∞ = νp(f̃) + sup
x∈R

|f̃(x)| ∀f ∈ BVp(R)

if p < ∞, and

‖f‖BV∞(R) := ‖f‖∞ = sup
x∈R

|f̃(x)| ∀f ∈ BV∞(R) .

2.3. Primitives of functions of bounded p-variation

Definition 3 Let p ∈ [1, +∞]. We say that a function f : R → R belongs
to BV 1

p (R) if f is Lipschitz continuous and if its distributional derivative
belongs to BVp(R).

By classical properties of Lipschitz continuous functions and by Propo-
sition 8, we derive the following alternative definition of BV 1

p (R).

Proposition 9 Let p ∈ [1, +∞]. Then the following statements hold.

(i) If h ∈ BVp(R), and α ∈ R, then the function f : R → R defined by

(2.2) f(x) := α +

∫ x

0

h(t) dt ∀x ∈ R

belongs to BV 1
p (R).

(ii) If f ∈ BV 1
p (R), then there exists an unique normalized function h ∈

Vp, and a real number α, such that (2.2) holds.

We endow BV 1
p (R) with the norm

‖f‖BV 1
p (R) := |f(0)| + ‖f ′‖BVp(R) ∀f ∈ BV 1

p (R) ,

which renders BV 1
p (R) a Banach space.
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3. Superposition in BV 1
p

3.1. A basic inequality

In the following theorem, we introduce an inequality which is most helpful
in estimating the derivative of the composition of two functions.

Theorem 3 Let p ∈ [1,∞[. Then the inequalities

νp((f ◦ g)h, I) ≤ νp(f, g(I))

(
sup

I
|h| + 21/pνp(h, I)

)
+ νp(h, I) sup

g(I)

|f | ,(3.1)

‖(f ◦ g)h‖Vp(I) ≤ 21/p‖f‖Vp(g(I))‖h‖Vp(I) ,(3.2)

where

g(t) := α +

∫ t

t0

h(x) dx ∀t ∈ I,

hold for all intervals I of R, and for all t0 ∈ I, and for all α ∈ R, and for
all functions h ∈ Vp(I), and for all functions f ∈ Vp(g(I)).

Proof. We first prove inequality (3.1). Let t0 < · · · < tN be points of I.
Then we have(

N−1∑
k=0

|f(g(tk+1))h(tk+1) − f(g(tk))h(tk)|p
)1/p

≤(3.3)

≤
(

N−1∑
k=0

|f(g(tk+1)) − f(g(tk))|p |h(tk)|p
)1/p

+

(
N−1∑
k=0

|f(g(tk+1))|p |h(tk+1) − h(tk)|p
)1/p

.

We now denote by A
1/p
1 the first term in the right hand side of (3.3) and we

note that the second term is less or equal to(
sup
g(I)

|f |)νp(h, I).

We now turn to estimate A1. We first split the set {0, . . . , N} of indexes
into J subsets of consecutive indexes on each of which the finite sequence
(g(tk))k=0,...,N is monotone. More precisely, it is easily seen that there exist
integer numbers

0 = n0 < n1 < · · · < nJ = N ,

such that the following two conditions hold.
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(I) The restriction sj of the sequence (g(tk))0≤k≤N to the set

{k ∈ N : nj−1 ≤ k ≤ nj}

is monotone for each index j = 1, . . . , J .

(II) The restriction of the sequence (g(tk))0≤k≤N to the set

{k ∈ N : nj−1 ≤ k ≤ nj + 1}

is not monotone for any of the indices j = 1, . . . , J − 1.

Clearly,

A1 =
J−1∑
j=1

nj−1∑
k=nj−1

|f(g(tk+1)) − f(g(tk))|p |h(tk)|p(3.4)

+

nJ−1∑
k=nJ−1

|f(g(tk+1)) − f(g(tk))|p |h(tk)|p ,

with the understanding that if J = 1, then we omit the first term in the
right hand side. We now assume that J > 1, and we turn to estimate the
first sum in the right hand side of (3.4), which we denote by A2. For each
1 ≤ j ≤ J − 1, we define an integer kj such that

nj−1 ≤ kj < nj and |h(tkj
)| = max{|h(tk)| : nj−1 ≤ k < nj} .

Then we have

(3.5) A2 ≤ νp
p(f, g(I))

J−1∑
j=1

|h(tkj
)|p .

In order to estimate the right hand side of (3.5), we exploit the following
lemma, which is of straightforward verification.

Lemma 1 Let a, b, c ∈ R, a < b < c. Let h be a measurable real valued
function on [a, c], such that∫ b

a

h(x) dx ≥ 0 and

∫ c

b

h(x) dx < 0 .

Then there exist numbers u, v in ]a, c[ such that h(u)h(v) ≤ 0.
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We now claim that for all j = 1, . . . , J − 1, there exists aj ∈]tkj
, tnj+1[

such that

(3.6) h(aj)h(tkj
) ≤ 0 .

The existence of aj is obvious if h(tkj
) = 0, or if h vanishes at some

t ∈]tkj
, tnj+1[. Otherwise, we apply Lemma 1 to the functions ±h in the

interval [tkj
, tnj+1], and deduce the existence of a′

j, a′′
j ∈]tkj

, tnj+1[ such that
h(a′

j)h(a′′
j ) < 0. As we shall see in a moment, it is convenient to split the

sum in (3.5), into a sum on the even terms, and into a sum on the odd terms.
Thus we define M to be the largest integer such that 2M + 1 ≤ J . Clearly,

J−1∑
j=1

|h(tkj
)|p =

{ ∑2M
j=1 |h(tkj

)|p if J − 1 is even,∑2M
j=1 |h(tkj

)|p + |h(tkJ−1
)|p if J − 1 is odd.

Then inequality (3.6) implies that

2M∑
j=1

|h(tkj
)|p ≤

M∑
l=1

|h(tk2l
) − h(a2l)|p +

M∑
l=1

|h(tk2l−1
) − h(a2l−1)|p ,

|h(tkJ−1
)|p ≤ |h(tkJ−1

) − h(aJ−1)|p .

By inequalities

tnj−1
≤ tkj

< tnj
, tkj

< aj < tnj+1

for j = 1, . . . , J − 1, it follows that

aj < tnj+1 ≤ tnj+1
≤ tkj+2

,

for J ≥ 4 and j = 1, . . . , J − 3. Then the intervals [tk2l
, a2l] are pairwise

disjoint for l = 1, . . . ,M . In the same way, the intervals [tk2l−1
, a2l−1] are

pairwise disjoint for l = 1, . . . ,M , if J is odd, and for l = 1, . . . ,M + 1, if J
is even. Thus we conclude that

(3.7)
J−1∑
j=1

|h(tkj
)|p ≤ 2νp

p(h, I) .

Then, by the monotonicity of sJ , by relations (3.3), (3.4), (3.5), (3.7), we
conclude that

(3.8) νp((f ◦g)h, I) ≤ νp(f, g(I))

[
2νp

p(h, I) + sup
I

|h|p
]1/p

+νp(h, I) sup
g(I)

|f | ,

and thus inequality (3.1) holds. Inequality (3.2) is an immediate consequence
of inequality (3.1).
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3.2. The main theorem on the S.O.P in BV 1
p

By applying Theorem 3, we obtain the following more complete formulation
of Theorem 2.

Theorem 4 Let 1 ≤ p < ∞. Then the following statements hold.

(i) If f, g ∈ BV 1
p (R), then f ◦ g ∈ BV 1

p (R), and

‖f ◦ g‖BV 1
p (R) ≤ ‖f‖BV 1

p (R)

(
1 + 21/p‖g‖BV 1

p (R)

)
.

(ii) Let f : R → R be a Borel measurable function. Then the operator Tf

maps BV 1
p (R) to itself if and only if f ∈ BV 1

p (R).

Proof. We first prove statement (i). By Rademacher’s Theorem, and by De
La Vallée Poussin’s Theorem, we deduce that the distributional derivative
of f ◦ g is (f ′ ◦ g)g′, where f ′, g′ denote the normalized representatives of
the distributional derivatives of f , g, respectively. Moreover,

(f ◦ g)(x) = (f ◦ g)(0) +

∫ x

0

f ′(g(t))g′(t) dt.

Since f ′, g′ ∈ Vp, then we can apply Theorem 3, and conclude that (f ′◦g)g′ ∈
Vp, and that ‖(f ′ ◦ g)g′‖Vp ≤ 21/p‖f ′‖Vp‖g′‖Vp. Then f ◦ g ∈ BV 1

p (R),
and statement (i) follows. We now prove statement (ii). Sufficiency is an
immediate consequence of statement (i). For the necessity, we note that the
identity map in R belongs to BV 1

p (R). Then assumption Tf

(
BV 1

p (R)
) ⊆

BV 1
p (R) implies f ∈ BV 1

p (R). �
Remark. Theorem 4 shows that for a superposition operator defined on
BV 1

p (R) the acting condition implies boundedness.

Example. We now consider the family uα(x) := |x + α| − |α| for x, α ∈ R.
A simple calculation yields ‖u′

α‖BVp(R) = 3, for p ∈ [1, +∞[. Applying The-
orem 4, we obtain the estimate

‖ |g + α| − |α| ‖BV 1
p (R) ≤ cp‖g‖BV 1

p (R) ∀g ∈ BV 1
p (R) ,

for a constant cp independent of α. Such inequality, together with a standard
argument (cf. e.g., [6]), can be used to deduce that for all f ∈ BV 1

1 (R) there
exists a constant cp,f such that the following inequality holds

‖ f ◦ g ‖BV 1
p (R) ≤ cp,f

(
1 + ‖g‖BV 1

p (R)

)
∀g ∈ BV 1

p (R) .

Such argument has been employed by Savaré and Tomarelli [27, lem. 2.5] in
case p = 1. We note that our Theorem 4 is stronger. Indeed, BV 1

1 (R) is
properly embedded in BV 1

p (R), for p > 1.
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4. Besov spaces

We now compare the spaces Vp and BVp with Besov spaces and with Tartar
spaces, which have been used in the literature in connection with the S.O.P..
Since the norm of Vp is obviously dilation invariant, it is natural to compare
Vp with the homogeneous Besov spaces Ḃs

p,q(R), which we now introduce, at
least for the values of the exponents that we need in the sequel.

4.1. Definition of Besov spaces

Let p, q ∈ [1, +∞]. If s ∈]0, 1[, then we denote by Ḃs
p,q(R

n) the set of
tempered distributions f of Lp

�oc(R
n) such that

‖f‖Ḃs
p,q(Rn) :=

(∫
Rn

(
1

|h|s
(∫

Rn

|f(x + h) − f(x)|pdx

)1/p
)q

dh

|h|n
)1/q

<+∞ .

We denote by Ḃ1
p,q(R

n) the set of tempered distributions f of Lp
�oc(R

n)
such that

‖f‖Ḃ1
p,q(Rn) :=

(∫
Rn

(
1

|h|
(∫

Rn

|f(x+ h) + f(x−h) − 2f(x)|pdx

)1/p
)q

dh

|h|n
)1/q

< +∞ .

Both in case s ∈]0, 1[, and in case s = 1, usual modifications hold if p =
+∞ or q = +∞. If s ∈]1, 2], we denote by Ḃs

p,q(R
n) the set of tempered

distributions f of Lp
�oc(R

n) such that ∂jf ∈ Ḃs−1
p,q (Rn), for all j = 1, . . . , n,

and we set

‖f‖Ḃs
p,q(Rn) :=

n∑
j=1

‖∂jf‖Ḃs−1
p,q (Rn) ∀f ∈ Ḃs

p,q(R
n) .

Clearly, ‖ · ‖Ḃs
p,q(Rn) is a seminorm on Ḃs

p,q(R
n) for each s ∈]0, 2], p, q ∈

[1, +∞], and Ḃs
p,q(R

n) is known as the homogeneous Besov space of indexes
s, p, q. The seminorm ‖·‖Ḃs

p,q(Rn) enjoys remarkable properties of translation

and dilation invariance. Indeed,

(4.1) ‖f(· − a)‖Ḃs
p,q(Rn) = λ(n/p)−s‖f(λ (·))‖Ḃs

p,q(Rn) = ‖f‖Ḃs
p,q(Rn),

for all a ∈ R
n and for all λ > 0. The kernel of the seminorm ‖ · ‖Ḃs

p,q(Rn) is

easily seen to be P[s].
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We now introduce the quotient space

˙̃Bs
p,q(R

n) := Ḃs
p,q(R

n)/P[s] .

As it is well known, ˙̃Bs
p,q(R

n) is a Banach space. We point out that often

times in the literature, the space ˙̃Bs
p,q(R

n) is addressed to as the homogeneous

Besov space, and what we have defined as Ḃs
p,q(R

n) plays a secondary role.

Instead, in this paper we will concentrate on the distribution space Ḃs
p,q(R

n),

which we address to as the homogeneous Besov space. The space Ḃs
p,q(R

n)
will be endowed with the seminorm ‖.‖Ḃs

p,q(Rn), except in some specific cases,

such as Ḃ
1/p
p,1 (R) (cf. (4.2)). Moreover, for our needs, it is important to

keep the roles of Ḃs
p,q(R

n) and of ˙̃Bs
p,q(R

n) distinct. In order to exploit
known results on Besov spaces, and in particular the celebrated embedding

Theorem of Peetre, we find convenient to note that ˙̃Bs
p,q(R

n) can be identified

with a subspace of Ḃs
p,q(R

n). Thus we introduce the following.

Proposition 10 (i) Let p ∈]1, +∞[. If g is an element of Ḃ
1/p
p,1 (R), then

g is a continuous function and the limit

Lg := lim
x→∞

g(x)

exists in R. In particular, each element of Ḃ
1/p
p,1 (R) is congruent modulo

P0 to exactly one element of C0(R). Moreover, the map of Ḃ
1/p
p,1 (R) to

(C0(R), ‖ · ‖∞) which takes g to g − Lg is continuous.

(ii) If g is an element of Ḃ1
1,1(R), then g is a continuous function and the

limits

L′
g := lim

x→∞
g(x)

x
, L′′

g := lim
x→∞

(
g(x) − L′

gx
)

exist in R. In particular, each element of Ḃ1
1,1(R) is congruent modulo

P1 to exactly one element of C0(R). Moreover, the map of Ḃ1
1,1(R)

to (C0(R), ‖ · ‖∞) which takes g to the function g − L′
gidR − L′′

g is
continuous. Here idR denotes the identity function in R.

(iii) Let p ∈ [1, +∞[. The space Ḃ
1/p
p,1 (R)∩C0(R) endowed with the restric-

tion of the seminorm ‖·‖
Ḃ

1/p
p,1 (R)

is a Banach space isometric to ˙̃B
1/p
p,1 (R).

For a proof of Proposition 10, we refer to [4]. Let p ∈]1, +∞[. By

Proposition 10, the space Ḃ
1/p
p,1 (R) will be endowed with the norm

(4.2) g �→ ‖g‖
Ḃ

1/p
p,1 (R)

+ |Lg| .
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We close this subsection by introducing the inhomogeneous Besov spaces.

Definition 4 Let 0 < s ≤ 2 and p, q ∈ [1, +∞]. The nonhomogeneous
Besov space Bs

p,q(R
n) is the collection of all tempered distributions f of

Lp(Rn) ∩ Ḃs
p,q(R

n).

As it is well known, Bs
p,q(R

n) endowed with the norm

‖f‖Bs
p,q(Rn) := ‖f‖Ḃs

p,q(Rn) + ‖f‖p ∀f ∈ Bs
p,q(R

n) ,

is a Banach space.

4.2. A function space related to Ḃ
1/p
p,∞(R)

In order to prove the main result of the next section, namely Theorem 7,
we resort to a class of functions U 1

p (R) first introduced by Bourdaud and
Kateb [8]. The elements of U 1

p (R) will be primitives of functions which are
bounded and belong to Up(R), a function space we now turn to define.

Definition 5 Let p ∈ [1, +∞[. Let J be an interval of R. We denote by
Up(J) the set of measurable functions f : R �→ R such that the function
sup|h|≤t |f(x + h) − f(x)| is measurable on J in the variable x for all t > 0,
and such that

‖f‖p
Up(J) := sup

t>0
t−1

∫
J

sup
|h|≤t

|f(x + h) − f(x)|p dx < +∞ .

Just as we did to define BVp(R) starting from Vp(R) (cf. Definition 2),
we now define Up(R) starting from Up(R), by taking the functions which are
almost everywhere equal to at least an element of Up(R), and then by taking
the quotient modulo equality almost everywhere. In particular, we endow
Up(R) with the seminorm

f �→ inf{‖g‖Up(R) : g ∈ Up(R), g = f a.e.} .

Then we introduce the following.

Definition 6 Let p ∈ [1, +∞[. We denote by U 1
p (R) the set of Lipschitz

continuous functions f : R → R such that f ′ has a bounded Borel measurable
representative of class Up(R), and we set

‖f‖U1
p (R) := inf

{
sup

R

|Φ| + ‖Φ‖Up(R) : Φ is a bounded Borel measurable

function of class Up(R), Φ = f ′ a.e.

}
∀f ∈ U 1

p (R) .
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4.3. Peetre’s theorem

In his celebrated monograph on Besov spaces, J. Peetre [24] proves the va-
lidity of the following continuous embeddings

(4.3) ˙̃B
1/p
p,1 (R) ↪→ Vp(R) ↪→ ˙̃B1/p

p,∞(R) ,

for 1 ≤ p < ∞. We wish to remark that ˙̃B
1/p
p,1 (R) and ˙̃B

1/p
p,∞(R) are not

spaces of distributions, but spaces of distributions modulo polynomials. Ac-
cordingly, the first embedding in (4.3) should be interpreted as a section,

which associates to each equivalence class of ˙̃B
1/p
p,1 (R) a specific representa-

tive, while the second embedding in (4.3) should be interpreted as a quo-
tient mapping, which associates to each function in Vp(R) an equivalence
class modulo polynomials. Actually, we find convenient to introduce Pee-

tre’s Theorem in a slightly different version, by identifying ˙̃B
1/p
p,1 (R) with

Ḃ
1/p
p,1 (R) ∩ C0(R) (cf. Proposition 10.)

Theorem 5 Let p ∈]1, +∞[. Then the following chain of continuous em-
beddings hold

Ḃ
1/p
p,1 (R) ↪→ (L∞(R), BV1(R))1/p,p = (BV∞(R), BV1(R))1/p,p

↪→ BVp(R) ↪→ Up(R) ↪→ Ḃ1/p
p,∞(R) .

Proof. The main ideas of the proof are explained in Peetre [24, thm. 7, p. 122].
For the definition of the Besov spaces of smoothness order 0 we refer to Peetre
(loc. cit.) and Triebel [30], for properties of the real interpolation functor we
refer to Bennet and Sharpley [2], Bergh and Löfström [3], Peetre (loc. cit.)
and Triebel (loc. cit.), and for interpolation properties of Besov spaces to all
of these books. We divide our proof into five parts.

1- We have the continuous embeddings

Ḃ
1/p
p,1 (R) ∩ C0(R) ↪→

(
Ḃ0

∞,1(R) ∩ Cb(R), Ḃ1
1,1(R) ∩ C0(R)

)
1/p,p

,

and
Ḃ1

1,1(R) ∩ C0(R) ↪→ BV1(R) ,

(cf. e.g., Peetre [24, thm. 6, p. 106].) Hence, the first embedding is a con-
sequence of Proposition 10, and of the fact that constant distributions are
members of L∞(R) ∩ BV1(R).

2- We denote by E the closure of BV1(R) in L∞(R). By Bergh and
Löfström [3, thm. 3.4.2(d)], we have

(L∞(R), BV1(R))1/p,p = (E,BV1(R))1/p,p .



Superposition operators and functions of bounded p-variation 471

Hence, the second embedding is the consequence of the obvious embedding
of E into BV∞(R).

3- We denote by lpN the space R
N , endowed with the lp-norm. Let t0 <

t1 < · · · < tN be a fixed finite sequence of real numbers. Then we consider
the mapping

U : BV∞(R) → l∞N
f �→ (f̃(tk) − f̃(tk−1))1≤k≤N

.

We have

‖U(f)‖l∞N ≤ 2‖f‖BV∞(R) ∀f ∈ BV∞(R) , and

‖U(f)‖l1N
≤ ‖f‖BV1(R) ∀f ∈ BV1(R) .

As it is known, the interpolation space (L∞(X), L1(X)) 1
p
,p coincides with

Lp(X) as a set for all measure spaces X, and the corresponding norms
are equivalent. Moreover, one can choose the equivalence constants for
the norms so as to depend only on p, and not on the underlying mea-
sure space X, which in our case is the set {t0, . . . , tN} (cf. e.g., Bennet and
Sharpley [2, lem. IV.4.5, p. 219, thm. V.1.6, p. 298].) Since the real interpo-
lation provides an exact interpolation functor (cf. e.g., Bergh and Löfström
[3, thm. 3.1.2]), there exists cp > 0 such that

‖U(f)‖lpN
≤ cp‖f‖(BV∞(R),BV1(R))1/p,p

∀f ∈ (BV∞(R), BV1(R))1/p,p .

Taking the supremum for all sequences, we obtain

‖f‖BVp(R) ≤ cp‖f‖(BV∞(R),BV1(R))1/p,p
∀f ∈ (BV∞(R), BV1(R))1/p,p ,

for a possibly larger cp.

4- We now prove the embedding Vp(R) ↪→ Up(R) by an argument of
Marcinkiewicz [20]. Let f ∈ Vp(R) and let t > 0. Then we have∫

R

sup
|h|≤t

|f(x + h) − f(x)|p dx =

=
∑
m∈Z

∫ (m+1)t

mt

sup
|h|≤t

|f(x + h) − f(x)|p dx

=

∫ t

0

∑
m∈Z

sup
|h|≤t

|f(y + mt + h) − f(y + mt)|p dy .
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Now let ε > 0 be fixed arbitrarily. For each m ∈ Z, y ∈ R, there exists
hm(y) ∈ [−t, t] such that

|f(y + mt + hm(y)) − f(y + mt)|p ≥
≥ sup

|h|≤t

|f(y + mt + h) − f(y + mt)|p − ε

4
2−|m| .

Now the intervals of the family

{]y + 2lt, y + 2lt + h2l(y)[}l∈Z

are pairwise disjoint, and the same holds for

{]y + (2l + 1)t, y + (2l + 1)t + h2l+1(y)[}l∈Z
.

Then we obtain∫ t

0

∑
m∈Z

sup
|h|≤t

|f(y + mt + h) − f(y + mt)|p dy ≤

≤
∫ t

0

∑
m∈Z

{
|f(y + mt + hm(y)) − f(y + mt)|p +

ε

4
2−|m|

}
dy

≤
∫ t

0

(2νp
p(f) + ε) dy = t(2νp

p(f) + ε) .

Since ε > 0 is arbitrary, we obtain inequality

(4.4) ‖f‖Up(R) ≤ 21/pνp(f) .

5- The last embedding follows immediately from the definitions.

Remarks. 1- The interpolation space (L∞(R), BV1(R))1/p,p has been stud-
ied by Tartar [28], and then employed by Savaré [26] in order to prove
Theorem 1. Indeed, the space considered by Savaré is defined as follows

Z1+(1/p),p(R) := {f ∈ W 1
p (R) : f ′ ∈ (L∞(R), BV1(R))1/p,p } .

2- In the appendix, we prove the properness of the embeddings BVp ⊂
Up ⊂ Ḃ

1/p
p,∞ in case p > 1. In case p = 1, the first embedding turns out to be

an equality. Indeed, if f ∈ U1(R), then the following holds

sup
h�=0

1

|h|
∫

R

|f(x + h) − f(x)| dx < +∞ ,

an inequality which is well known to imply that f ∈ BV1(R), (cf. e.g.,
DeVore and Lorentz [12, ch. 2, thm. 9.3].)
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5. Superposition operators in Besov spaces

We start with a proof of the necessity of the restriction s ≤ 1 + (1/p) for
the existence of nontrivial sublinear superposition operators in Besov spaces
(see Proposition 1.) Then we turn to a new superposition theorem in case
s = 1 + (1/p) and we give conditions for the action of Tf in Besov spaces of
lower order of smoothness.

5.1. Proof of Proposition 1

As announced in the introduction, we shall prove here a slightly more so-
phisticated version of Proposition 1. In part for technical reasons, we split
our considerations into two cases: case p = 1 and case p > 1.

Proposition 11 Let p ∈]1, +∞]. Let N be a norm on D(Rn). Let h : R →
[0, +∞[ be a function such that h(t) > 0 if t ∈ R \ {0}, and such that

(5.1) lim
t→0

h(t) |t|−1/p = 0 .

Let E be a subspace of W 1
1,�oc(R

n) containing D(Rn) such that there exist a
direction ν ∈ R

n, |ν| = 1, and a positive constant A such that

(5.2)

(∫
Q

∣∣∣∂g

∂ν
(x + tν) − ∂g

∂ν
(x)
∣∣∣p dx

)1/p

≤ Ah(t)‖ g ‖E

for all g ∈ E, for all cubes Q ⊂ R
n with |Q| = 1, and for all t ∈ [−1/2, 1/2],

where we understand that an obvious modification is applied to (5.1) and (5.2)
when p = +∞.

If there exist a continuously differentiable function f : R → R and a
constant B > 0 such that Tf maps D(Rn) into E, and such that the inequal-
ity (1.3) holds, then f must be an affine function.

Proof. Without loss of generality, we may assume that ν = (1, 0, . . . , 0).
Let ϕ ∈ D(Rn) be such that ϕ(x) = x1 on the cube [−1, 1]n. We now
introduce the auxiliary functions

(5.3) ga(x) = aϕ(x) ∀x ∈ R
n ,

for each a ∈]1, +∞[. Let Q0 = [−1/2, 1/2]n. Then

(f ◦ ga)(x + tν) = f(ax1 + at) ∀(x, t) ∈ Q0 × [−1/2, 1/2] .

We now compute the left hand side of inequality (5.2) for

g := f ◦ ga.
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Let p < ∞. Then we have, for all t ∈ [−1/2, 1/2],∫
Q0

∣∣∣∂(f ◦ ga)

∂ν
(x + tν) − ∂(f ◦ ga)

∂ν
(x)
∣∣∣p dx =

=

∫ 1/2

−1/2

∣∣∣a f ′(a(x1 + t)) − a f ′(ax1)
∣∣∣pdx1 = ap−1

∫ a/2

−a/2

|f ′(y + at)−f ′(y)|p dy .

Then by setting g := f ◦ ga in (5.2), and by exploiting inequality (1.3), and
by setting w = a t, and by inequality a > 1, we conclude that

ap−1 h(w/a)−p

∫ a/2

−a/2

| f ′(y + w) − f ′(y) |p dy ≤ Ap ‖ f ◦ ga ‖p
E

≤ (AB)p ap
(
N(ϕ) + 1

)p

for all w ∈] − a/2, a/2[\{0}. By dividing both hand sides by ap, and by
taking the limit as a tends to +∞, we obtain

lim sup
a→+∞

a−1 h(w/a)−p

∫ a/2

−a/2

|f ′(y+w)−f ′(y) |p dy ≤ (AB)p
(
N(ϕ)+1

)p

<∞ .

By (5.1), we have

lim
a→+∞

a−1 h(w/a)−p =
1

|w| lim
y→0

|y|h(y)−p = +∞ .

Hence, ∫ +∞

−∞
|f ′(y + w) − f ′(y)|pdy = 0 ∀w ∈ R \ {0} .

Hence, f ′(y + w) − f ′(y) = 0 a.e. By the continuity of f ′, and by the
arbitrariness of w, we conclude that f ′ must be a constant. The case p = ∞
follows by similar arguments. �

For p = 1, we have the following variant.

Proposition 12 Let N be a norm on D(Rn). Let h : R → [0, +∞[ be a
function such that h(t) > 0 if t ∈ R \ {0}, and such that limt→0 h(t) = 0.
Let E be a subspace of W 2

1,�oc(R
n) containing D(Rn) such that there exist a

direction ν ∈ R
n, |ν| = 1, and a positive constant A such that

(5.4)

∫
Q

∣∣∣∂2g

∂ν2
(x + tν) − ∂2g

∂ν2
(x)
∣∣∣ dx ≤ Ah(t)‖ g ‖E ,

for all g ∈ E, for all cubes Q ⊂ R
n with |Q| = 1, and for all t ∈ [−1/2, 1/2].

If there exist a twice continuously differentiable function f : R → R

and a constant B > 0 such that Tf maps D(Rn) into E, and such that the
inequality (1.3) holds, then f must be an affine function.
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Proof. Arguing as in the previous proof, and exploiting the continuity of f ′′,
we obtain that

f ′′(y + w) − f ′′(y) = 0 ,

for all y, w ∈ R. Hence, there exist α, β, γ ∈ R such that f(x) = αx2+βx+γ
for all x ∈ R. By inequality (1.3), and by taking g := ga as in (5.3), we
obtain

‖αa2ϕ2 + βaϕ + γ‖E ≤ B(N(aϕ) + 1) ∀a > 1 .

Then by taking the limit as a tends to infinity, we obtain α = 0. �

Remark. Besov spaces with s > 1 + (1/p) satisfy the assumptions of
Proposition 11 if p > 1 and of Proposition 12 if p = 1. Thus triviality
of sublinear superposition operators holds in these Besov spaces. However,
Propositions 11 and 12 may be used also in the context of a refined scale of
function spaces. Namely, the so-called Besov spaces of generalized smooth-
ness (cf. Gol’dman [17] and Farkas and Leopold [13]).

5.2. The main theorem on the S.O.P. for Besov spaces

Bourdaud and Kateb [8] have proved the following result.

Theorem 6 Let p ∈]1, +∞[, q ∈ [1, +∞], 0 < s < 1+(1/p). If the function
f belongs to U 1

p (R) and f(0) = 0, then Tf

(
Bs

p,q(R
n)
) ⊆ Bs

p,q(R
n).

The proof of Bourdaud and Kateb relies on a delicate argument of first
order spline approximation. We now prove a result for Tf in the critical case

s = 1 + 1/p. Namely, that Tf maps BV 1
p (R) to Ḃ

1+(1/p)
p,∞ (R), and then we

shall derive Theorem 6 by nonlinear interpolation. Thus we now prove the
following.

Theorem 7 Let p ∈]1, +∞[. If f ∈ U 1
p (R) and g ∈ BV 1

p (R), then f ◦ g

belongs to Ḃ
1+(1/p)
p,∞ (R). Moreover, there exists cp > 0 such that

(5.5) ‖f ◦ g‖
Ḃ

1+(1/p)
p,∞ (R)

≤ cp ‖f‖U1
p (R) ‖g′‖BVp(R) ∀g ∈ BV 1

p (R) .

Proof. We first prove inequality (5.5) in case g is a real analytic function.
Thus we introduce the following.

Lemma 2 Let p ∈ [1, +∞[. If g is a real analytic function in BV 1
p (R), and

if Φ ∈ Up(g(R)) is a Borel measurable function bounded on g(R), then∫
R

|Φ(g(x + h)) − Φ(g(x))|p|g′(x)|p dx(5.6)

≤ maxp{‖g′‖∞, νp(g
′)}
(

2p sup
g(R)

|Φ|p + ‖Φ‖p
Up(g(R))

)
|h| ∀h ∈ R .
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Proof of Lemma 2. Let g be a real analytic function in BV 1
p not identically

equal to zero. Then the set of zeros of g′ is discrete, and its complement
in R is the union of a finite or countable family {Il}l∈L of nonempty open
disjoint intervals of R. Clearly, gl := g|Il

is a diffeomorphism of Il onto g(Il).
Now let h ∈ R. We consider for example the case h > 0. We set

I ′
l := Il \ [sup Il − h, sup Il], I ′′

l := Il \ I ′
l ,

with the understanding that if sup Il = +∞, then I ′
l := Il. We note that I ′

l

as well as I ′′
l can be empty. We set J ′

l := gl(I
′
l). If I ′

l 
= ∅, then we have

|g(g−1
l (y) + h) − y| ≤ (sup

Il

|g′|) |h| for y ∈ J ′
l ,

where g−1
l denotes the inverse function of gl. Hence,∫

I′l

|Φ (g(x + h)) − Φ(g(x))|p|g′(x)|p dx ≤(5.7)

≤ sup
Il

|g′|p−1

∫
J ′

l

|Φ(y + (g(g−1
l (y) + h) − y)) − Φ(y)|p dy

≤ ‖Φ‖p
Up(g(R))

(
sup

Il

|g′|p) |h| .
Also, we note that such inequality holds trivially in case I ′

l = ∅. Since the
length of I ′′

l is at most |h|, we have∫
I′′l

|Φ(g(x + h)) − Φ(g(x))|p|g′(x)|p dx ≤ 2p
(
sup
g(R)

|Φ|p)(sup
I′′l

|g′|p)|h| .
Then we conclude that∫

Il

|Φ(g(x + h)) − Φ(g(x))|p|g′(x)|p dx(5.8)

≤ (sup
Il

|g′|p)(2p sup
g(R)

|Φ|p + ‖Φ‖p
Up(g(R))

)
|h| .

If L contains only one element, then Il = R, and inequality (5.6) follows
from (5.8). Then we can assume that L has at least two elements. Now we
note that by construction of the intervals Il, the derivative of g vanishes at
the endpoints of Il in R. We denote by βl one of such endpoints. Now let
L̃ := {l ∈ L : Il is bounded}. Clearly, L \ L̃ has at most two elements. If

l ∈ L̃ then there exists ξl ∈ Il such that

|g′(ξl)| = sup
Il

|g′|.
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Now let l ∈ L \ L̃, ε > 0. Then there exists ξl ∈ Il such that

|g′(ξl)|p ≥ sup
Il

|g′|p − ε.

The open intervals with endpoints ξl and βl (l ∈ L) are clearly pairwise
disjoint. Then we have∑
l∈L

sup
Il

|g′|p ≤
∑
l∈�L

|g′(ξl)− g′(βl)|p +
∑

l∈L\�L
|g′(ξl)− g′(βl)|p + 2ε ≤ νp

p(g′) + 2ε.

By arbitrariness of ε, we have∑
l∈L

sup
Il

|g′|p ≤ νp
p(g′).

By inequality (5.8), we conclude that inequality (5.6) holds.

Now we go back to the proof of Theorem 7. Let Φ be a bounded Borel
measurable representative of f ′ of class Up(R). Assume that g′ is normalized.
Then the equality

(f ◦ g)′ = (Φ ◦ g)g′ ,

for the distributional derivatives holds for all g ∈ BV 1
p (R). We first prove

inequality (5.5) for a real analytic function g ∈ BV 1
p (R). By Lemma 2 and

by Theorem 5, there exists cp > 0 such that(∫
R

|Φ(g(x + h))g′(x + h) − Φ(g(x))g′(x)|p dx

)1/p

(5.9)

≤
(∫

R

|Φ(g(x + h))|p|g′(x + h) − g′(x)|p dx

)1/p

+

(∫
R

|Φ(g(x + h)) − Φ(g(x))|p|g′(x)|p dx

)1/p

≤ cp

(
sup

R

|Φ| + ‖Φ‖Up(R)

)
‖g′‖BVp(R)|h|1/p ,

holds for all h ∈ R, and for all real analytic functions g in BV 1
p (R). Then

we conclude that inequality (5.5) holds for g ∈ BV 1
p (R) real analytic.

We now prove the same inequality in the general case in which g ∈
BV 1

p (R). To do so, we use a sequence (φj)j>0 of real analytic mollifiers
defined by

(5.10) φj(x) := jφ(jx) ∀x ∈ R ,

where the Fourier transform φ̂ belongs to D(R) and φ̂(0) = 1.
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Then we set gj := g ∗ φj. By translation invariance of BVp(R), we have

(5.11) ‖g′
j‖BVp(R) ≤ ‖g′‖BVp(R) .

Applying inequality (5.5) to gj yields

‖f ◦ gj‖Ḃ
1+(1/p)
p,∞ (R)

≤ cp‖f‖U1
p (R)‖g′‖BVp(R) .

Since g is Lipschitz continuous, we have limj→∞ gj(x) = g(x) for all x ∈ R.
Hence, the continuity of f implies that

lim
j→∞

f(gj(x)) = f(g(x)) ,

for all x ∈ R. Moreover,

|f(gj(x))| ≤ |f(0)| + (sup
R

|Φ|)
(

sup
j

|gj(0)| + |x| ‖g′
j‖∞

)
.

Since ‖g′
j‖∞ ≤ ‖g′

j‖BVp(R), inequality (5.11) implies that supj∈N
‖g′

j‖∞ <
+∞. Thus we conclude that limj→∞ f◦gj = f◦g in the sense of distributions.

By exploiting the Fatou property of Ḃ
1+(1/p)
p,∞ (R) (see Subsection 7.2), we

deduce that f ◦ g ∈ Ḃ
1+(1/p)
p,∞ (R), and that inequality (5.5) holds.

5.3. Superposition operators in Besov spaces

We are now in the position to derive some consequences of Theorem 7.
By combining Theorem 5, Proposition 10 and Theorem 7, we immediately
deduce the validity of the following.

Theorem 8 Let p ∈]1, +∞[. If f ∈ U 1
p (R) and g ∈ Ḃ

1+(1/p)
p,1 (R), then

f ◦ g ∈ Ḃ
1+(1/p)
p,∞ (R). Moreover, there exists a constant cp > 0 such that

(5.12)

‖f ◦ g‖
Ḃ

1+(1/p)
p,∞ (R)

≤ cp‖f‖U1
p (R)

(
‖g‖

Ḃ
1+(1/p)
p,1 (R)

+ |Lg′|
)

∀g ∈ Ḃ
1+(1/p)
p,1 (R) .

Then for nonhomogeneous Besov spaces, we have the following.

Theorem 9 Let p ∈]1, +∞[. Let f ∈ U 1
p (R) be such that f(0) = 0. If

g ∈ B
1+(1/p)
p,1 (R), then f ◦ g belongs to B

1+(1/p)
p,∞ (R). Moreover, there exists

cp > 0 such that

(5.13) ‖f ◦ g‖
B

1+(1/p)
p,∞ (R)

≤ cp ‖f‖U1
p (R) ‖g‖B

1+(1/p)
p,1 (R)

∀g ∈ B
1+(1/p)
p,1 (R) .
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Proof. Since f(0) = 0, we have |f(t)| ≤ ‖f ′‖∞ |t|, for all t ∈ R. Hence,

(5.14) ‖f ◦ g‖p ≤ ‖f ′‖∞ ‖g‖p ∀g ∈ B
1+(1/p)
p,1 (R) .

Now we note that the membership of g in B
1+(1/p)
p,1 (R) implies that

g′ ∈ Lp(R) ∩ Ḃ
1/p
p,1 (R).

Hence, we must have Lg′ = 0. Then we can conclude by combining Theo-
rem 8, with inequality (5.14).

By nonlinear interpolation we now obtain a new proof of Theorem 6 in
case n = 1.

Theorem 10 Let p ∈]1, +∞[, s ∈]0, 1+(1/p)[, q ∈ [1, +∞]. Let f ∈ U 1
p (R)

be such that f(0) = 0. If g ∈ Bs
p,q(R), then f ◦ g ∈ Bs

p,q(R). Moreover, there
exists c > 0 such that

‖f ◦ g‖Bs
p,q(R) ≤ c ‖f‖U1

p (R) ‖g‖Bs
p,q(R) ∀g ∈ Bs

p,q(R) .

Proof. We plan to apply the classical nonlinear interpolation theorem of
Peetre [23], which we now introduce. Let 1 ≤ q ≤ ∞ and 0 < θ < 1.
Let (A0, A1) and (B0, B1) be compatible couples of Banach spaces such that
A1 ↪→ A0 and B1 ↪→ B0. Let T be a map from A0 to B0 such that T (0) = 0,
and such that there exists c > 0 with

‖Tg1 − Tg2 ‖B0 ≤ c ‖ g1 − g2 ‖A0 ∀g1, g2 ∈ A0 ,

and with
‖Tg ‖B1 ≤ c ‖ g ‖A1 ∀g ∈ A1 .

Then by Peetre’s Theorem, T maps (A0, A1)θ,q into (B0, B1)θ,q and there
exists c′ > 0 such that

‖Tg ‖(B0,B1)θ,q
≤ c′ ‖ g ‖(A0,A1)θ,q

∀g ∈ (A0, A1)θ,q .

Now we choose

A0 = B0 := Lp(Rn), A1 := B
1+(1/p)
p,1 (R), B1 := B1+(1/p)

p,∞ (R)

and
θ :=

s

1 + (1/p)
.

Thus Theorem 10 follows by Theorem 9 and by classical interpolation prop-
erties of Besov spaces, (cf. e.g., Bergh and Löfstrom [3, 6.4.5], Peetre [24],
Triebel [30, 2.4.2].) �

Remark. Theorem 10 has a counterpart for homogeneous Besov spaces,
see [10].
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6. An extension to the n-dimensional case

We do not know how to define BV 1
p (Rn) in order to generalize Theorems 4

and 7. Nevertheless, we can show that Theorems 9 and 10 can be extended
to Besov spaces in R

n. We do so by means of the following.

Theorem 11 Let p ∈]1, +∞[, q ∈ [1, +∞], and 0 < s < 1 + (1/p). If
f ∈ U 1

p (R) and f(0) = 0, then Tf maps

(i) B
1+(1/p)
p,1 (Rn) into B

1+(1/p)
p,∞ (Rn) ,

(ii) Bs
p,q(R

n) into Bs
p,q(R

n) .

Moreover, there exists a constant c > 0 such that

‖ f ◦ g ‖ ≤ c ‖f‖U1
p (R) ‖g‖

holds for all g in the various function spaces in (i), (ii), with their respective
norms.

Proof. As it is well known, a tempered distribution g of Lp
�oc(R

n) belongs
to Bs

p,q(R
n) (with 0 < s < 2, 1 ≤ p < +∞, 1 ≤ q < +∞) if and only if

‖g‖p+
n∑

j=1

(∫
R

(
1

|h|s
(∫

Rn

|g(x+hej) + g(x−hej) − 2g(x)|pdx

)1/p
)q

dh

|h|

)1/q

< +∞ ,
(6.1)

where e1, . . . , en denotes the canonical basis in R
n, and the above expression

is an equivalent norm in Bs
p,q(R

n) (cf. e.g., Triebel [31, thm. 2.6.1]), and
a corresponding statement holds for q = +∞ or p = +∞ with obvious
modifications.

We divide our proof into two steps.

Step 1. We first prove statement (i). For the sake of simplicity, we
consider only case n = 2. Let

g ∈ B
1+(1/p)
p,1 (R2) and gx(y) := g(x, y).

By the Minkowski inequality, we have(∫
R

(∫
R

(∫
R

|g(x, y+h) + g(x, y−h) − 2g(x, y)|pdy

)1/p

|h|−2−(1/p)dh

)p

dx

)1/p

≤
∫

R

(∫ ∫
R2

|g(x, y + h) + g(x, y − h) − 2g(x, y)|pdx dy

)1/p

|h|−2−(1/p)dh .
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Using the alternative norm (6.1) with q = 1, we deduce that

gx ∈ B
1+(1/p)
p,1 (R)

for almost every x ∈ R, and that there exists c > 0 such that

(6.2)

(∫
R

‖gx‖p

B
1+(1/p)
p,1 (R)

dx

)1/p

≤ c‖g‖
B

1+(1/p)
p,1 (R2)

∀g ∈ B
1+(1/p)
p,1 (R2) .

Now we have

sup
h�=0

|h|−1−(1/p)

(∫∫
R2

|f(g(x, y+h))+f(g(x, y−h)) − 2f(g(x, y))|pdx dy

)1/p

≤
(∫

R

(
sup
h�=0

|h|−p−1

∫
R

|f(g(x, y+h))+f(g(x, y−h))−2f(g(x, y))|pdy

)
dx

)1/p

≤ c

(∫
R

‖f ◦ gx‖p

B
1+(1/p)
p,∞ (R)

dx

)1/p

∀g ∈ B
1+(1/p)
p,1 (R2) .

By inequality (6.2) and by Theorem 9, we deduce that

sup
h�=0

|h|−1−(1/p)

(∫∫
R2

|f(g(x, y+h))+f(g(x, y−h))−2f(g(x, y))|pdx dy

)1/p

≤ c‖f‖U1
p (R)‖g‖B

1+(1/p)
p,1 (R2)

∀g ∈ B
1+(1/p)
p,1 (R2) .

Then interchanging the role of variables and using the alternative norm (6.1),
with q = ∞, we obtain

‖f ◦ g‖
B

1+(1/p)
p,∞ (R2)

≤ c‖f‖U1
p (R) ‖g‖B

1+(1/p)
p,1 (R2)

.

Step 2. Property (ii) follows by property (i) and by nonlinear interpola-
tion, as in Theorem 10. �
Remark. Theorem 11, part (ii), is precisely Theorem 6, and it has now
been deduced by nonlinear interpolation, and by the corresponding result
for the critical value s = 1+(1/p). In a later work, Kateb [19] has improved
Theorem 6 by showing that the condition f ∈ U 1

p can be replaced by condi-

tion f ′ ∈ Ḃ
1/p
p,∞ ∩ L∞. We do not know if such weaker condition still implies

that Tf maps B
1+(1/p)
p,1 (Rn) into B

1+(1/p)
p,∞ (Rn). In particular, we do not know

if our method could be applied to obtain a simpler proof of the last theorem
of Kateb.
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7. Appendix

7.1. Diversity of the classes BVp, Up, Ḃ
1/p
p,∞

Proposition 13 Let p ∈]1, +∞[. The two inclusions

BVp(R) ⊂ Up(R) ∩ L∞(R) ⊂ Ḃ1/p
p,∞(R) ∩ L∞(R) .

are proper.

Proof. Step 1. We shall employ ideas of Bourdaud [7]. We first introduce
the function

f(x) := xρ(x) sin |x|−p ∀x ∈ R \ {0}, f(0) := 0 ,

where ρ ∈ D(R) and

ρ(x) = 1 for |x| ≤ 1, ρ(x) = 0 for |x| ≥ 2, 0 ≤ ρ ≤ 1.

We now prove that f ∈ Up(R). Indeed, we just need to estimate

I(t) :=

∫ 2

−2

|x|p sup
|h|≤t

∣∣∣ sin |x + h|−p − sin |x|−p
∣∣∣p dx ,

for |t| ≤ 1/4. Clearly,∣∣|x + h|−p − |x|−p
∣∣ ≤ p2p+1|h| |x|−p−1 for 0 < |h| ≤ |x|/2 ,

and
2t ≤ t1/(p+1).

Hence, there exists cp > 0 such that

I(t) ≤ pp2p(p+1)

(
tp
∫

t1/(p+1)≤|x|≤2

|x|p|x|−p(p+1) dx +

∫
|x|<t1/(p+1)

|x|p dx

)
≤ cpt ,

for all t ∈ [−1/4, 1/4], an inequality which shows that f ∈ Up(R).

We now prove that f /∈ Vp(R). To do so, we set

ak := (kπ + (π/2))−1/p ,

bk := (kπ)−1/p ,

for any integer k ≥ 1.
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The intervals [ak, bk] are pairwise disjoint and

N∑
k=1

|f(bk) − f(ak)|p =
N∑

k=1

ap
k =

N∑
k=1

1

(k + (1/2))π
,

for all N ≥ 1. Hence, the divergent character of the sum in the right hand
side for N tending to infinity implies that f /∈ Vp(R). The continuity of f
guarantees that f cannot be a representative of an element of BVp(R).

Step 2. We now prove that the second inclusion of the statement is
proper. Let ϕ ∈ D(R) be an even function decreasing on [0, +∞[. Let the
support of ϕ be contained in [−2, 2]. Let 0 ≤ ϕ ≤ 1 and ϕ(0) = 1. Then we
introduce the functions

fn(x) :=
1

n

n∑
j=1

ϕ(2jx) and gn(x) :=
n∑

k=1

fn(x − 3k) (n = 1, 2, . . .) .

Clearly, fn is a C∞ function with support contained in [−1, 1], such that
0 ≤ fn ≤ 1 and fn(0) = 1. Since the intervals [3k − 1, 3k + 1] are pairwise
disjoint, we have 0 ≤ gn ≤ 1. Moreover, the support of gn is contained in
[2, 3n + 1].

We now define inductively a sequence of integers (lk)k≥1 as follows

l1 := 0 , ln+1 := 3n + ln (n = 1, 2, . . .) .

Then we define the sequence of functions

Gn(x) := gn(x − ln) (n = 1, 2, . . .) .

Clearly, dist(supp Gn, supp Gm) ≥ 1 for n 
= m. Hence, the function

G(x) :=
∞∑

n=1

αnGn(x)

is defined and continuous, for every sequence (αn)n≥1 of real numbers. Clearly,
0 ≤ G ≤ 1 if 0 ≤ αn ≤ 1 for all n.

If M−1 := max {‖ϕ‖∞, 4‖ϕ′‖∞}, then the elementary building blocks

Mϕ(2jx − 2jln − 3k2j)

are (1/p, p)-atoms in the sense of Frazier and Jawerth.
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By Frazier and Jawerth [16, p. 785 ], there exists c > 0 such that

‖G‖
Ḃ

1/p
p,∞(R)

≤ c sup
j≥1

( ∞∑
n=1

n∑
k=1

αp
nn−p

)1/p

= c

( ∞∑
n=1

n∑
k=1

αp
nn−p

)1/p

= c

( ∞∑
n=1

αp
nn1−p

)1/p

.

Finally, we observe that∫
R

sup
0≤h≤1

|G(x + h) − G(x)|p dx ≥
∞∑

n=1

|αn|p
∫

R

sup
0≤h≤1

|gn(x + h) − gn(x)|p dx .

Now we note that inequalities 3k − 1 ≤ x ≤ 3k and 0 ≤ h ≤ 1 imply
3k − 1 ≤ x + h ≤ 3k + 1, and thus

gn(x + h) = fn(x + h − 3k).

Hence,

‖G‖p
Up(R) ≥

∞∑
n=1

|αn|p
n∑

k=1

∫ 0

−1

sup
0≤h≤1

|fn(x + h) − fn(x)|pdx .

Taking h := −x, we see that

sup
0≤h≤1

|fn(x + h) − fn(x)|p ≥ |fn(0) − fn(x)|p

for all x ∈ [−1, 0]. Since

fn(1/2) =
ϕ(1)

n
≤ 1/n for n ≥ 2,

we have

|fn(0) − fn(x)| ≥ 1/2 for x ∈ [−1,−1/2] and n ≥ 2.

Hence,

‖G‖p
Up(R) ≥ 2−p

∞∑
n=2

n|αn|p .

Taking αn := n−2/p, we obtain G /∈ Up(R). The above argument also shows
that if a measurable function equals G almost everywhere, then it cannot
belong to Up(R). Hence, G cannot define an element of Up(R), although

G ∈ Ḃ
1/p
p,∞(R). �
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Remark. We now show that there exist simple examples of unbounded
functions in Ḃ

1/p
p,∞(R)\Up(R). Let ρ be as in the previous proof. Then we set

f(x) := | log |x|| ρ(x) ∀x ∈ R \ {0}, f(0) := 0 ,

By [7, prop. 2], we have f ∈ Ḃ
1/p
p,∞(R). Instead

sup
|h|≤t

|f(x + h) − f(x)| = +∞ ,

for all x ∈]0, t], and all t > 0. Hence, f cannot define an element of
Up(R). We do not know of simple explicit examples of bounded functions of

Ḃ
1/p
p,∞(R) \ Up(R). Also, we do not know whether Ḃ

1/p
p,∞(R) \ Up(R) contains

functions with compact support.

7.2. Fatou property

Proposition 14 Let s ∈]0, 2], p, q ∈ [1, +∞]. Let f be a distribution in R
n.

If (fk)k∈N is a sequence in Ḃs
p,q(R

n) such that ‖fk‖Ḃs
p,q(Rn) ≤ 1 for all k, and

such that limk→+∞ fk = f in the sense of distributions, then f ∈ Ḃs
p,q(R

n)
and ‖f‖Ḃs

p,q(Rn) ≤ 1.

Proof. The proof given by Franke [15] in case of nonhomogeneous Besov
spaces can be easily extended to hold for homogeneous spaces. �
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