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Maximal functions and singular
integrals associated to polynomial

mappings of IRn

Anthony Carbery, Fulvio Ricci and James Wright

Abstract

We consider convolution operators on R
n of the form

TP f(x) =
∫

Rm

f
(
x − P (y)

)
K(y) dy ,

where P is a polynomial defined on R
m with values in R

n and K
is a smooth Calderón-Zygmund kernel on R

m. A maximal operator
MP can be constructed in a similar fashion. We discuss weak-type
1–1 estimates for TP and MP and the uniformity of such estimates
with respect to P . We also obtain Lp-estimates for “supermaximal”
operators, defined by taking suprema over P ranging in certain classes
of polynomials of bounded degree.

1. Introduction

In this paper we continue the analysis initiated in [3] on certain analogues of
singular integral operators and maximal operators, characterized by the fact
that the ordinary difference x − t appearing in the convolution is replaced
by a rather general polynomial expression p(x, t).

In [3] we discussed the one-dimensional case, and introduced the following
operators:

(i) the maximal function

Mpf(x) = sup
h>0

1

2h

∫ h

−h

∣∣f(
p(x, t)

)∣∣ dt ,
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where p(x, t) is a polynomial such that p(x, 0) = x and the correspon-
ding Hilbert transform

Hpf(x) = p.v.

∫ +∞

−∞
f
(
p(x, t)

) dt

t
;

(ii) more specifically, the “translation-invariant” operators MP f and HP f ,
corresponding to p(x, t) = x−P (t), with P (t) a polynomial satisfying
P (0) = 0;

(iii) the “supermaximal function”

Mkf(x) = sup
P∈Pk

sup
h>0

1

2h

∫ h

−h

∣∣f(
x − P (t)

)∣∣ dt ,

where Pk is the space of polynomials in t of degree at most k and such
that P (0) = 0, and the “superhilbert transform”

Tkf(x) = sup
P∈Pk

∣∣∣∣
∫ ∞

−∞
f
(
x − P (t)

) dt

t

∣∣∣∣ .

The main results of [3] can be summarized as follows:

(i) the supermaximal function Mk and the superhilbert transform Tk are
bounded on Lp if and only if(1) p > k, and they are restricted weak-
type k–k ;

(ii) for an arbitrary polynomial p(x, t) of degree k in t, one also has boun-
dedness on Lp for p > k, and restricted weak-type k–k, for Mp and
Hp; for each k and p < k there exist polynomials of degree k in t for
which Mp and Hp are unbounded on Lp;

(iii) the translation-invariant operators MP and HP satisfy uniform weak-
type 1–1 estimates(2) for P ∈ Pk.

In this paper we wish to pose the same kind of questions in higher dimensions
and discuss the problems that arise.

In general, the polynomial p(x, t) must be replaced by an n-tuple of
polynomials

P(x, y) =
(
p1(x, y), . . . , pn(x, y)

)
(1)We are assuming p < ∞. Clearly Mk is also bounded on L∞ and Tk is not.
(2)That they satisfy uniform Lp estimates follows by a transference argument, see [12].
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from R
n × R

m to R
n such that P(x, 0) = 0. However, we shall restrict

ourselves to the “translation-invariant” case, where P(x, y) = x− P (y) and
P is a polynomial from Rm to Rn.

We must initially fix a family of (possibly non-isotropic) dilations on R
m,

y �−→ r · y = (rλ1y1, . . . , r
λmym) ,

with λ1, . . . , λm > 0. Then the maximal operator MP on Rn can be defined as

MP f(x) = sup
r>0

1

|Br|

∫
|y|<r

∣∣f(
x − P (y)

)∣∣ dy ,

where the balls Br = r · B1 are adapted to the given dilations.

Similarly, if K is a smooth singular kernel adapted to the same dilations,
we set

TP f(x) =

∫
Rm

f
(
x − P (y)

)
K(y) dy .

It follows from a transference argument that MP and TP are bounded on Lp

for p > 1, and that the bounds are uniform for all P of a given degree [12]. So
our main concern will be about weak-type 1–1 estimates, uniformity of these
estimates with respect to P , and Lp-estimates for “super”-type operators.

As we start this analysis, we immediately see certain problems and obs-
tructions that are not present in one dimension.

Among the operators included in the above discussion we have the Hil-
bert transform along the parabola

Hf(x1, x2) =

∫ ∞

−∞
f(x1 − t, x2 − t2)

dt

t
,

and the companion maximal function. Their endpoint estimates at p = 1
are not completely understood; it is known that they map parabolic H1 into
weak L1 [4, 6] (see also [11]).

We shall stay away from this situation, as well as from those where the
image of R

m under P is a lower dimensional variety. For this reason we shall
always assume that m ≥ n and that the derivative DP of P has generically(3)

rank n. In addition, we will impose that this regularity condition is also
satisfied by the “principal parts” of P at 0 and at infinity (as defined in
Section 2).

It is convenient to split MP into two parts: a “local” part, M0
P , where

the supremum is taken only over r ≤ 1, and a “global” part, M∞
P , where

(3)Here and in the sequel, “generically” means away from a proper Zariski-closed set, in
particular almost everywhere.
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the supremum is taken over r ≥ 1. Similarly, we will separately consider
operators T 0

P whose kernels have compact support (i.e. are singular only
at the origin), and operators T∞

P with kernels that are locally smooth, and
hence singular only at infinity.

In Section 2 we discuss weak-type 1–1 estimates for singular integral ope-
rators. After a preliminary discussion of operators defined by homogeneous
polynomials, we define the “principal part” P0 of P at the origin and its
“principal part” P∞ at infinity. The construction requires, in each of the
two cases, that an appropriate family of dilations be introduced on R

n. We
prove that, if P0 is regular, the operators T 0

P are weak-type 1–1. Similarly,
if P∞ is regular, the operators T∞

P are weak-type 1–1.

In Section 3 we focus on maximal operators. After stating parallel results
to those in Section 1 for the maximal operators M0

P and M∞
P , we restrict

ourselves to m = n, and discuss uniformity of the weak-type 1–1 estimates.

This requires a quantitative formulation of the non-degeneracy condition.
We fix at this point two families of dilations on R

n, regarded respectively as
the domain and the codomain of P . For fixed k ∈ N and σ ∈ (0, 1), we take
the class P0

k,σ of all polynomials of degree at most k, whose principal part
at the origin is regular and homogeneous with repect to the given dilations,
and such that the image under P of a ball of radius r < 1 (which will be
contained in a ball of radius cr) for some c > 0, covers at least a portion σ
of this containing ball.

We then prove that the weak 1–1 estimate for for M0
P are uniform for

P ∈ P0
k,σ. Similar classes P∞

k,σ can be defined in order to obtain a similar
result for M∞

P . Corresponding results —whose details we omit— also hold
for singular integrals.

We are not able to say if the estimates blow up as σ tends to zero.
This question is clearly related to the open problem of determining whether
maximal operators along parabolas or other lower dimensional polynomial
manifolds are weak-type 1–1.

In Section 4 we consider supermaximal functions, once again in the set-
ting m = n. Here we see an obstruction that forces us to impose, once again,
some non-degeneracy condition on the admissible polynomials.

Suppose we take a class P of polynomials from Rn to itself containing
all linear functions, and define

MPf(x) = sup
P∈P

sup
r>0

1

|Br|

∫
Br

∣∣f(
x − P (t)

)∣∣ dt .

Then this operator dominates the Kakeya maximal operator, which is known
to be bounded only on L∞.
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The quantitative non-degeneracy conditions that we need here are slight-
ly weaker that the ones described before. We simply impose that the image
of a ball of radius r is contained in a ball of radius r′, depending only on P
and r, and covers at least a portion σ of this ball.

The corresponding supermaximal operator, that we call Mk,σ, is then
bounded on Lp for p > n(k−1)+1 and restricted weak-type at this endpoint.

One would expect that this result can be improved if the class of admis-
sible polynomials is further restricted. In Section 5 we consider holomorphic
polynomials P of degree at most k from C ∼= R2 to itself, and show that
the corresponding supermaximal operator is bounded on Lp for p > k and
restricted weak-type k–k. We plan to return to the matters of supersin-
gular integrals and uniform weak-type 1–1 estimates of singular integrals
associated to holomorphic polynomials in a future paper.

Finally, in Section 6 we comment briefly on the case where the difference
x−P (y) in the definition of our operators is replaced by the product x·P (y)−1

in a nilpotent group law.

We thank Paolo Valabrega for assistance with the algebraic aspects of
and Michael Singer for helpful remarks on the proof of Lemma 3.2. We also
thank Eli Stein for helpful discussions concerning the remarks in Section 6.

2. Weak-type estimates for singular integrals

Consider a set of dilations on R
m,

y �−→ r · y = (rλ1y1, . . . , r
λmym) ,

with λ1, . . . , λm > 0. We shall denote by Q = λ1 + · · · + λm the associated
homogeneous dimension of Rm, and by |y| a homogeneous gauge (to be
distinguished from the Euclidean norm ‖y‖).

Take next a family
{
ϕj(y)

}
j∈Z

of C1-functions that are supported on

the set where 1 < |y| < 4, have mean value zero and uniformly bounded
C1-norms.

Then the series

(2.1)
∑
j∈Z

2−Qjϕj(2
−j · y)

converges in S ′(Rm) to a distribution that coincides with a C1-function away
from the origin.

We shall call any distribution that is the sum of a series as in (2.1) a
smooth Calderón-Zygmund kernel adapted to the given dilations. It can be
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shown that this class of kernels includes, for instance, all the homogeneous
distributions of degree −Q + iγ for some real γ that are C1 away from
the origin (see e.g. [7] for related results in the context of multi-parameter
dilations).

Given a smooth Calderón-Zygmund kernel as above and an n-tuple

P (y) =
(
p1(y), . . . , pn(y)

)
of polynomials on Rm, we construct the operator

(2.2) Tf(x) =

∫
Rm

f
(
x − P (y)

)
K(y) dy ,

acting on functions defined on Rn.

We need two technical lemmas. The first concerns scalar-valued polyno-
mials, and it can be found in [8].

Lemma 2.1 Let p(x) =
∑

α aαxα be a (scalar-valued) polynomial of degree
k. Then |p|−δ is locally integrable for δ < 1/k and∫

‖x‖<1

|p(x)|−δ dx ≤ Cδ

(∑
α

|aα|
)−δ

.

Definition. We say that a polynomial P : R
m → R

n is regular if the
Jacobian DP of P has generically rank n.

This obviously requires that n ≤ m.

If J� are the minors of order n of DP , we call JP (y) = (
∑

� J2
� (y))

1
2 .

Observe that J2
P is a polynomial, and if the pj have degree at most k, then

the degree of J2
P is at most M = 2n(k − 1).

The details of the proof of Proposition 2.1 in [9] give us the next lemma.

Lemma 2.2 Let P be a regular polynomial. If ϕ is a C1-function supported
on the unit ball in R

m, let µ be the measure on R
n defined by∫

Rn

f(x) dµ(x) =

∫
Rm

f
(
P (y)

)
ϕ(y) dy .

Then dµ(x) = ψ(x) dx, where ψ is integrable and, for every δ < 1
2n(k−1)

,

(2.3)

∫ ∣∣ψ(x + t) − ψ(x)
∣∣ dx ≤ C‖t‖δ

∫
|y|<1

JP (y)−2δ dy ,

where the constant C depends only on δ, on the C1-norm of ϕ and on the
C2-norm of P on the unit ball.
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We go back now to the operator (2.2). We first consider the case where the
function P is homogeneous, in the sense that there are dilations on Rn

x �−→ r ◦ x = (rµ1x1, . . . , r
µnxn) ,

such that P (r · y) = r ◦ P (y).

Theorem 2.3 Assume that P is homogeneous and regular, and that K is
a smooth Calderón-Zygmund kernel. Then the operator T in (2.2) can be
written as

Tf(x) =

∫
Rn

f(x − x′)K ′(x′) dx′ ,

where K ′ is a “rough” Calderón-Zygmund kernel, in the sense that it satisfies
the standard integral condition

(2.4)

∫
|x|>A|t|

∣∣K ′(x − t) − K ′(x)
∣∣ dx ≤ C ,

for some constants A,C > 0. Hence T is bounded on Lp for 1 < p < ∞ and
weak-type 1–1.

Proof. Decompose T =
∑

j∈Z
Tj , where

Tjf(x) =

∫
Rm

f
(
x−P (y)

)
2−Qjϕj(2

−j ·y) dy =

∫
Rm

f
(
x−2j ◦P (y)

)
ϕj(y) dy .

It follows from Lemmas 2.1 and 2.2 that

(2.5)

∫
Rm

g
(
P (y)

)
ϕj(y) dy =

∫
Rn

g(x)ψj(x) dx ,

where the ψj are supported on a fixed compact set and satisfy uniform
Lipschitz estimates ∫ ∣∣ψj(x − t) − ψj(x)

∣∣ dx ≤ C‖t‖δ .

Hence,

Tjf(x) =

∫
Rn

f
(
x − 2j ◦ x′)ψj(x

′) dx′ =

∫
Rn

f(x − x′)2−Q′jψj(2
−j ◦ x′) dx′ ,

if Q′ is the homogeneous dimension of Rn.

Observe that taking g ≡ 1 in (2.5) shows that the ψj have mean value
zero.

It is now a standard argument to show that the sum
∑

j∈Z
2−Q′jψj(2

−j◦x)
satisfies (2.4) and that the Tj are almost orthogonal, so that T is bounded
on L2. Boundedness on Lp and weak-type 1–1 then follows by standard
Calderón-Zygmund theory. �
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Remark. As we mentioned in the Introduction, the fact that T is bounded
on Lp for 1 < p < ∞ also follows by a transference argument [12]. This
argument also applies to polynomials P that are not regular nor homoge-
neous, and it gives uniform bounds, for fixed p, over all polynomials of a
given degree.

Consider now a polynomial

P = (p1, . . . , pn) : R
m −→ R

n ,

and write

(2.6) P (y) =
∑

α

vαyα ,

where the α are multi-indices and the coefficients vα are in Rn.

If d(α) =
∑m

j=1 λjαj is the non-isotropic degree of the monomial yα, let
d1 < d2 < · · · < dk be the different non-isotropic degrees of the various
monomials of P .

For 1 ≤ j ≤ k, define

(2.7) Vj = span{vα : d(α) ≤ dj} .

If we also set V0 = {0} and Vk+1 = Rn, the Vj form a filtration of Rn, i.e.

{0} ⊂ V1 ⊆ V2 ⊆ · · · ⊆ Vk ⊆ R
n .

For 1 ≤ j ≤ k + 1, decompose Vj as Vj−1 ⊕ Wj, so that

Vj = W1 ⊕ W2 ⊕ · · · ⊕ Wj ,

and let πWj
denote the projection operator on Wj relative to this decompo-

sition. Define

(2.8) P0(y) =
∑

d(α)=d1

vαyα +
∑

d(α)=d2

πW2(vα)yα + · · · +
∑

d(α)=dk

πWk
(vα)yα .

Then P0 is homogeneous, if we introduce the following dilations on Rn:

(2.9) x �−→ r ◦ x = rd1πW1x + · · · + rdk+1πWk+1
x

(if Vk �= Rn, dk+1 can be defined arbitrarily).

Observe that

(2.10) P0(y) = lim
r→0

r−1 ◦ P (r · y) .

We call P0 the principal part of P at 0.
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Definition. We say that P is non-degenerate at 0 if P0 is a regular polyno-
mial.

We must check that this is a good definition, because P0 depends on
the choice of the complementary subspaces Wj (observe that the Vj are
intrinsically defined, once P and the dilations on R

m are assigned, but the
Wj are not). Consider therefore a different family {W ′

j} of complementary
subspaces of Vj−1 in Vj .

Observe that, for v ∈ Vj , πW ′
j
v = πW ′

j
(πWj

v), and that πW ′
j

is a bijection

from Wj to W ′
j . Therefore the map A : R

n → R
n such that A|W ′

j

= πW ′
j

is

invertible.

If

P ′
0(y) =

∑
d(α)=d1

vαyα +
∑

d(α)=d2

πW ′
2
(vα)yα + · · · +

∑
d(α)=dk

πW ′
k
(vα)yα ,

then P ′
0(y) = AP0(y). We conclude that DP ′

0(y) has the same rank as
DP0(y).

The following statement provides a more intrinsic understanding of non-
degenerate poynomials at 0; it also shows that P0 is unique modulo semi-
trivial transformations.

Proposition 2.4 Let x → r • x be a family of dilations on Rn such that

lim
r→0

r−1 • P (r · y) = Q0(y)

exists for every y and defines a regular polynomial. Then there is an inver-
tible linear transformation A of Rn such that, if P0 and the Vj are defined
by (2.8) and (2.7) respectively, then

(i) Q0(y) = AP0(y);

(ii) A maps each Vj onto itself;

(iii) r • (Av) = A(r ◦ v);

Proof. Let W ′
j be the eigenspaces for the given dilations, so that, for v ∈ W ′

j ,
r • v = rµjv and µj < µj+1 for every j. Then

(2.11) r−1 • P (r · y) =
∑

α

∑
j

r−µj+d(α)πW ′
j
(vα)yα .

We call V ′
j =

⊕
j′≤j W ′

j′ .
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By hypothesis, µj ≤ d(α) whenever πW ′
j
(vα) �= 0. Also,

Q0(y) =
∑

j

∑
α:d(α)=µj

πW ′
j
(vα)yα .

The fact that Q0 is regular implies that its coefficients span R
n. It follows

that all the µj are non-isotropic degrees of monomials of P and that W ′
j =

span{πW ′
j
(vα) : d(α) = µj}.

Since vα ∈
⊕

µj≤d(α) W ′
j , we also have that V ′

j = span{vα : d(α) ≤ µj}.
This means that each V ′

j coincides with one of the V�.

We want to see that every V� is one of the V ′
j . Assume that this is not

true. Then, for some k,

V ′
j = Vk ⊂ Vk+1 ⊂ V ′

j+1 .

In particular, µj = dk < dk+1 < µj+1. Let then α be a multi-index of degree
dk+1 such that vα �∈ Vk = V ′

j . Then vα has a non-trivial component in W ′
j+1.

But this implies that µj+1 ≤ d(α) = dk+1, which is a contradiction.

A similar argument also shows that if V�, V�+1, . . . , V�+p are all the V ’s
that coincide with a given V ′

j , then µj = d�. In fact, if we had µj = d�+k with
k ≥ 1, take α with d(α) = d� such that vα �∈ V ′

j−1. Then vα would have a
non-zero component in W ′

j , so that µj ≤ d�, which is again a contradiction.

These considerations lead us to the following conclusion: if among the
W� we select the non-trivial ones, W�1 ,W�2 , . . . , with 	1 < 	2 < · · · , then
µj = d�j

and V ′
j = V�j

.

Define A by imposing that A|W�j
= πW ′

j
. Properties (i), (ii) and (iii) are

now easy to check. �
Remark. Our construction of P0 is very close to the construction in [10];
it also applies to real-analytic functions on a neighbourhood of 0.

Theorem 2.5 Let K be a smooth Calderón-Zygmund kernel on Rm adapted
to a given set of dilations and with compact support. Let P : Rm −→ Rn be
a polynomial that is non-degenerate at 0. Then the operator T in (2.2) can
be written as

Tf(x) =

∫
Rn

f(x − x′)K ′(x′) dx′ ,

where K ′ is a “rough” Calderón-Zygmund kernel with compact support,
adapted to the dilations (2.9) and which satisfies the standard integral con-
dition (2.4). Hence T is bounded on Lp for 1 < p < ∞ and weak-type 1–1.
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Proof. We can write K as∑
j≤0

2−Qjϕj(2
−j · y) + η(y) ,

with the ϕj as in (2.1) and with η a smooth function with compact support
(which can be disregarded). As in the proof of Theorem 2.3, we decompose
T as the sum

∑
j≤0 Tj, with

Tjf(x) =

∫
Rm

f
(
x−P (y)

)
2−Qjϕj(2

−j ·y) dy =

∫
Rm

f
(
x−P (2j ·y)

)
ϕj(y) dy .

If we set P (j)(y) = 2−j ◦ P (2j · y), then

Tjf(x) =

∫
Rm

f
(
x − 2j ◦ P (j)(y)

)
ϕj(y) dy .

Observe that P (j)(y) = P0(y)+Qj(y), where the coefficients of Qj are O(2εj),
as j → −∞, for some ε > 0. Since P0 is regular, it easily follows that, for
every j, DP (j) has rank n for generic y.

By Lemma 2.2, there exist integrable functions ψj such that∫
Rm

g
(
P (j)(y)

)
ϕj(y) dy =

∫
Rn

g(x)ψj(x) dx .

The support of ψj is contained in the image, under P (j), of the ball of radius
4. Since the coefficients of the P (j) are uniformly bounded for j ≤ 0, the ψj

are all supported on the same ball.

As the C2-norms of the P (j) are also uniformly bounded for j ≤ 0,
the bounds for the L1-Lipschitz estimates on the ψj will only depend on∫
|y|<4

JP (j)(y)−2δ dy, by Lemma 2.2. Since P0 �= 0, Lemma 2.1 implies that

these quantities are also uniformly bounded for j ≤ 0. The conclusion
follows as in the proof of Theorem 2.3. �

The principal part at infinity of the polynomial in (2.6) is defined in a
similar way. For 1 ≤ j ≤ k, let

Ṽj = span{vα : d(α) ≥ dj} .

Then the Ṽj form a descending filtration of R
n, i.e.

{0} ⊂ Ṽk ⊆ Ṽk−1 ⊆ · · · ⊆ Ṽ1 ⊆ R
n .
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For 0 ≤ j ≤ k, decompose Ṽj as Ṽj+1 ⊕W̃j, so that

Ṽj =W̃j ⊕ · · · ⊕W̃k .

Define

P∞(y) =
∑

d(α)=dk

vαyα +
∑

d(α)=dk−1

πW̃k−1
(vα)yα + · · · +

∑
d(α)=d1

πW̃1
(vα)yα .

Then P∞ is homogeneous with respect to the dilations on R
n:

(2.12) x �−→ r • x = rd0πW̃0
x + · · · + rdkπW̃k

x ,

and
P∞(y) = lim

r→∞
r−1 • P (r · y) .

Definition. We say that P is non-degenerate at infinity if P∞ is a regular
polynomial.

Theorem 2.6 Let K be a smooth Calderón-Zygmund kernel on R
m adapted

to a given set of dilations and supported away from the origin. Let P :
Rm −→ Rn be a polynomial that is non-degenerate at infinity. Then the
operator T in (2.2) can be written as

Tf(x) =

∫
Rn

f(x − x′)K ′(x′) dx′ ,

where K ′ is a “rough” Calderón-Zygmund kernel, adapted to the dilations
(2.12), locally integrable, and which satisfies the standard integral condition
(2.4). Hence T is bounded on Lp for 1 < p < ∞ and weak-type 1–1.

The proof is essentially the same as that of Theorem 2.5.

3. Maximal functions

Theorem 2.5 and 2.6 have their companion maximal theorems.

Theorem 3.1 Let P : R
m −→ R

n be non-degenerate at 0. Then the maxi-
mal operator

(3.1) M0
P f(x) = sup

0<r≤1

1

|Br|

∫
|y|<r

∣∣f(
x − P (y)

)∣∣ dy

is weak type 1–1.
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Proof. Restricting the supremum to r = 2j , j ≤ 0, and introducing a
positive smooth cutoff function in the integrals, then

M0
P f(x) ≤ C sup

j≤0

∫ ∣∣f(
x−2j◦P (j)(y)

)∣∣ϕ(y) dy = sup
j≤0

∫
|f(x−2j◦x′)|ψj(x

′) dx′,

where the ψj have uniformly bounded supports and integral Lipschitz norms.
The conclusion follows from weak-type vector-valued inequalities (see [12]
page 80). �

In the same way one shows that if P is non-degenerate at ∞, the maximal
operator M∞

P , defined by taking the supremum in (3.1) over r ≥ 1, is also
weak type 1–1.

Turning now to matters of uniformity, we may observe that, because of
(2.3), the weak 1–1 estimates on M0

P are uniform in P , as long as there are
δ, c, c′ > 0 such that for each j

(3.2) P (j)(B1) ⊂ Bc ,

∫
B1

JP (j)(y)−δ dy ≤ c′ .

When m = n it turns out that we can recast this condition in a more readily
verifiable form, for which we need some preliminary lemmas. Both of these
lemmas also play a rôle in Section 4. The first lemma involves rather refined
considerations related to Bézout’s theorem (see [5], p.223).

Lemma 3.2 Let P = (p1, p2, . . . , pn) : Rn −→ Rn be a polynomial, such that
JP = detDP is not identically zero. Let deg pj = mj and M = m1m2 · · ·mn.
Then there are M open subsets A1, A2, . . . , AM of R

n such that

(i) the Aj are pairwise disjoint and they cover Rn except for a set of
measure zero;

(ii) the restriction of P to Aj is a diffeomorphism with its image.

Proof. Call E = {x : JP (x) = 0} ⊂ Rn and Ẽ = {(x, P (x)) : x ∈ E} ⊂ R2n.
Then Ẽ is an algebraic scheme (i.e. a finite union of algebraic varieties) of
dimension strictly smaller than n. It follows from the Tarski-Seidenberg
theorem that P (E) = π2(Ẽ) is a semi-algebraic subset of R

n of dimension
strictly smaller than n, and such is also its Zariski closure E ′ in Rn (see [1]
pp. 45, 46). It follows that E ′ is closed also in the Euclidean topology and
that |E′| = 0.

Let y = (y1, y2, . . . , yn) �∈ E′; we claim that the set P−1(y) contains at

most M points. In order to see this, let P̃ the natural extension of P to a
function from Cn to Cn, and call

qj(z0, z1, . . . , zn) = z
mj

0 p̃j

(
z1

z0

, . . . ,
zn

z0

)
− yjz

mj

0 .
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Let Vj be the subscheme of the complex projective space P
n
C

determined
by the equation qj = 0. Since C is algebraically closed, each irreducible
component of Vj has dimension n − 1 at least. If, on the other hand, one
component had dimension n, then pj would be constant, contradicting the
assumption that JP is not identically zero. It follows that Vj is a pure
dimensional subscheme of dimension n − 1 and degree mj.

Let ϕ denote the immersion of C
n into P

n
C

given by

ϕ(z1, . . . , zn) = C(1, z1, . . . , zn) .

If x ∈ P−1(y) ⊂ Rn, then JP (x) �= 0, so that x is isolated in P̃−1(y) ⊂ Cn.
It follows that ϕ(x) is isolated in

⋂n
j=1 Vj . Hence each element in ϕ

(
P−1(y)

)
is an irreducible component of

⋂n
j=1 Vj of degree greater than or equal to 1.

By Bézout’s theorem,

#
(
P−1(y)

)
≤

∑
x∈P−1(y)

deg({x}) ≤ M .

Let now E ′′ = P−1(E′). Then E′′ is closed (in the Zariski and hence
in the Euclidean topology) and is a proper subset of Rn (otherwise, we
would have P (Rn) = E′, which contradicts the assumption that JP is not
identically zero). Hence |E ′′| = 0.

The map P : Rn \ E′′ −→ Rn \ E′ is a local diffeomorphism at each
point of its domain and at most M -to-one. Any point y ∈ Rn \ E′, has a
neighbourhood By such that P−1(Uy) is the disjoint union of neighbourhoods
U1, . . . , Uq of the elements x1, . . . , xq ∈ P−1(y), (q ≤ M), and P : Uj → By

is a diffeomorphism.

If the By have been chosen from a countable basis of balls, a simple
inductive construction shows that we can reduce ourselves to the following
situation: R

n \E′ is covered, up to a set of measure zero, by open subsets B′
j

that are pairwise disjoint and, in addition, P−1(B′
j) is the disjoint union of at

most M open sets U ′
j,1, . . . , U

′
j,qj

such that P : U ′
j,i → B′

j is a diffeomorphism
for every i, j.

It is also easy to see that the U ′
j,i cover Rn \E′′ up to a set F of measure

zero. If it were not so, let x0 be a point of positive density in F . If W is a
neighbourhood of x0, then we would have

∣∣P (W ∩ F )
∣∣ =

∫
W∩F

|JP (x)| dx > 0 ,

contradicting the fact that P (F ) is disjoint from each B′
j.

We now set Ai =
⋃

j U ′
j,i for i = 1, 2, . . . ,M and this concludes the proof. �
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The second lemma sharpens Lemma 2.1 and is a direct consequence of
Theorem 7.1 in [2].

Lemma 3.3 Let p(x) be a (scalar-valued) polynomial on Rn with deg p ≤ d.
There is a constant Cd, depending only on d, such that

(3.3)
1

|Br|
∣∣{x ∈ Br : |p(x)| < α

}∣∣ ≤ Cd
α1/d(

1
|Br|

∫
Br

|p(x)| dx
)1/d

.

Proof. By scaling, we may assume that r = 1 and that
∫

B1
|p(x)| dx = 1.

By equivalence of norms on a finite dimensional space, there are constants
c1 and c2, depending only on d, such that |p(x)| ≤ c1 for x ∈ B1 and
infB1 |∂βp| ≥ c2 for some multi-index β with 0 ≤ |β| ≤ d.

Then the estimate is trivial for α ≥ c1. For α < c1, Theorem 7.1 in [2]
implies that ∣∣{x ∈ B1 : |p(x)| < α

}∣∣ ≤ Cd α1/|β| ,

which easily gives the required estimate. �

Condition (3.3) is the end-point (non-isotropic) version of Corollary 3
in [8], stating that polynomials of degree at most d are uniformly in Ap for
p > d + 1.

This uniform Ap-condition tells us that condition (3.2) is implied, for δ
small enough, by the following:

(3.2’) P (j)(B1) ⊂ Bc ,

∫
B1

JP (j)(y) dy ≥ c′ .

At this point we concentrate our attention on the case m = n, where we can
give a neater form to (3.2’): in fact, as a consequence of Lemma 3.2,∫

B1

JP (j)(y) dy ∼
∣∣P (j)(B1)

∣∣ .

Suppose that two families of dilations on R
n have been fixed, together

with two corresponding homogeneous gauges, and call Br and B′
r the res-

pective non-isotropic balls.

Given an integer k and a number σ, 0 < σ ≤ 1, let P0
k,σ be the class of

polynomials P : R
n → R

n such that P (0) = 0, degP ≤ k, and moreover
there is c = c(P ) > 0 such that

(3.4) P (Br) ⊂ B′
cr ,

∣∣P (Br)| ≥ σ|B′
cr| , for 0 < r ≤ 1.
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Theorem 3.4 Let P ∈ P0
k,σ, for some fixed pair of families of dilations.

Then P is non-degenerate at 0, and the weak type 1–1 bound for M 0
P depends

only on k and σ.

Proof. Let ·, • denote the dilations in the domain and the codomain of P
respectively. To begin with, observe that replacing P by c−1 • P does not
alter the norm of M0

P . Hence we can assume that c = 1 in (3.4).

Let Pr(y) = r−1•P (r ·y). The first inequality in (3.4) implies that the Pr

are uniformly bounded for r ≤ 1. Therefore there is a sequence rν → 0 such
that Prν tends to some homogeneous polynomial Q. The second inequality
in (3.4) tells us that Q is regular. By Proposition 2.4, P is non-degenerate
at 0.

Now, as we have already observed, (3.4) and Lemma 3.2 imply (3.2’),
which, combined with the uniform Ap condition, gives (3.2). �

We remark that every P that is non-degenerate at 0 belongs to some
class P0

k,σ for appropriate dilations.

Defining classes P∞
k,σ in a similar fashion, we obtain uniform bounds

for the operators M∞
P . The details are left to the reader, as well as the

formulation of similar results for singular integrals.

4. Supermaximal functions

We switch now our attention to supermaximal functions. As in [3], these are
defined by taking a supremum not only in r for a fixed P , but also over P
ranging in a given class of polynomials. We keep the assumption that m = n.

It is convenient at this point to introduce new classes Qk,σ, consisting of
polynomials from R

n to itself, of degree at most k, with P (0) = 0, and such
that for every r > 0 there is r′ = r′(P, r) > 0 for which

(4.1) P (Br) ⊂ B′
r′ ,

∣∣P (Br)| ≥ σ|B′
r′| .

Clearly, P0
k,σ ⊂ Qk,σ.

Theorem 4.1 Define

Mk,σf(x) = sup
r>0 , P∈Qk,σ

1

|Br|

∫
Br

∣∣f(
x − P (x′)

)∣∣ dx′ .

Then Mk,σ is bounded on Lp for p > p̄ = n(k − 1) + 1 and is restricted weak
type p̄ – p̄.
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Remark. In dimension 1, let Pk consist of all polynomials of degree at most
k which vanish at the origin. Then Qk,1/2 = Pk, because, if (−r′, r′) is the
smallest interval containing P (−r, r), then this set contains at least one of
the two halves of the interval. This shows that Theorem 2.1 of [3] is the
special case n = 1 of Theorem 4.1.

The proof of Theorem 4.1 follows the same lines as that of Theorem 2.1
in [3]. We emphasize those points where modifications are needed(4).

Proof. It is sufficient to prove that Mk,σ is restricted weak type p̄ – p̄.

Take f = χS, the characteristic function of a set S, and P ∈ Qk,σ. Then
JP is not identically zero. We can then apply Lemma 3.2. Let M and Aj be
as above and observe that M ≤ kn. We have

1

|Br|

∫
Br

f
(
x − P (x′)

)
dx′ =

1

|Br|

M∑
j=1

∫
P (Aj∩Br)

f(x − y)
1∣∣JP

(
P−1

(j) (y)
)∣∣ dy

=

∫
P (Br)

f(x − y)g(y) dy ,(4.2)

where P−1
(j) denotes the inverse function of P|Aj

and

g(y) =
1

|Br|

M∑
j=1

1∣∣JP

(
P−1

(j) (y)
)∣∣χP (Aj∩Br)(y) .

As in [3], we obtain that∫
P (Br)

f(x − y)g(y) dy ≤

≤
( 1∣∣P (Br)

∣∣
∫

P (Br)

f(x − y)p̄ dy
)1/p̄∣∣P (Br)

∣∣1/p̄‖g‖Lp̄′,∞(P (Br)) .(4.3)

By (4.1),

1∣∣P (Br)
∣∣
∫

P (Br)

f(x − y)p̄ dy ≤ 1

σ|B′
r′|

∫
B′

r′
f(x − y)p̄ dy

≤ 1

σ
M(f p̄)(x) ,(4.4)

where M(f p̄) is the Hardy-Littlewood maximal function of f p̄.

(4)We take this opportunity to point out two minor errors in [3], at the bottom of
page 123 and at the top of page 124 respectively. The proof that follows provides the
appropriate corrections.
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Consider the set

{
y ∈ P (Br) : |g(u)| > λ

}
⊆

M⋃
j=1

{
y ∈ P (Aj∩Br) :

∣∣JP

(
P−1

(j) (y)
)∣∣−1

>
λ|Br|
M

}
.

Then

∣∣{y ∈ P (Br) : |g(u)| > λ
}∣∣ ≤

M∑
j=1

∫
{

y∈P (Aj∩Br):

∣∣JP

(
P−1

(j)
(y)

)∣∣< M
λ|Br|

} dy

=

M∑
j=1

∫
{x∈Aj∩Br:|JP (x)|< M

λ|Br|}
|JP (x)| dx

≤ M

λ|Br|

∣∣∣{x ∈ Br :
∣∣JP (x)

∣∣ <
M

λ|Br|
}∣∣∣ .

By Lemma 3.3, observing that degJP ≤ n(k − 1) = p̄ − 1,

(4.5)
∣∣∣{x ∈ Br :

∣∣JP (x)
∣∣ <

M

λ|Br|
}∣∣∣ ≤ Ck|Br|

λp̄′−1
( ∫

Br
|JP (x)| dx

)1/(p̄−1)
.

Since
∫

Br
|JP (x)| dx ≥

∣∣P (Br)
∣∣, we have

(4.6) ‖g‖
Lp̄′,∞

(
P (Br)

) ≤ Ck

∣∣P (Br)
∣∣−1/p̄

.

Finally, putting together (4.2), (4.4) and (4.6), we have

1

|Br|

∫
Br

f
(
x − P (x′)

)
dx′ ≤ Ck,σ(Mf p̄)1/p̄(x) ,

whence
Mk,σf(x) ≤ Ck,σ(Mf p̄)1/p̄(x) .

The conclusion follows from the weak-type 1–1 estimate for the Hardy-
Littlewood maximal function. �

5. Holomorphic polynomials in C

We do not know if the exponent p̄ = n(k − 1) + 1 in Theorem 4.1 is sharp.
However, it is quite possible to have positive results for p < p̄ if the class
Qk,σ of admissible polynomials is replaced by a proper subclass.

We discuss here the situation where n = 2, R
2 is identified with C (with

isotropic dilations both in the domain and in the codomain), and the poly-
nomials are assumed to be holomorphic.

We then call Hk the class of holomorphic polynomials P on C of degree
at most k and such that P (0) = 0.
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Lemma 5.1 For every k there is σk > 0 such that Hk ⊂ Qk,σk
.

Proof. If P (z) =
∑k

j=1 ajz
j , then P (Br) ⊆ Br′ with r′ =

∑k
j=1 |aj|rj. On

the other hand,

∣∣P (Br)
∣∣ ≥ 1

k

∫
|z|<r

|P ′(z)|2 dz =
π

k

k∑
j=1

j|aj|2r2j ≥ ckr
′2 ,

by the orthogonality of monomials in L2(Br). �
Theorem 5.2 The supermaximal operator

M̃kf(z) = sup
r>0 , P∈Hk

1

|Br|

∫
Br

∣∣f(
z − P (z′)

)∣∣ dz′

is bounded on Lp for p > k and restricted weak-type k–k.

The proof is based on the following improvement of Lemma 3.3 in the context
of holomorphic polynomials.

Lemma 5.3 Let q be a holomorphic polynomial of degree less than or equal
to d. Then ∣∣{z ∈ Br : |q(z)| < α

}∣∣ ≤ Cd
|Br|1+1/dα2/d(∫
Br

|q(z)|2 dz
)1/d

.

Proof. We can assume that q has degree d and, modulo a change of scale,
that r = 1 and

∫
B1

|q(z)|2 dz = 1. Arguing as in [8], there is z0 ∈ B1 such
that |q(z0)| ≥ c, where c only depends on d. Let z1, . . . , zd be the (possibly
repeated) roots of q. Then

|q(z)| ≥ c
|q(z)|
|q(z0)|

= c

d∏
j=1

|z − zj|
|z0 − zj|

.

Hence{
z ∈ B1 : |q(z)| < α

}
⊆

d⋃
j=1

{
z ∈ B1 : |z − zj| < c−1/d α1/d |z0 − zj|

}
.

We can consider only small values of α, so that if |zj| ≥ 10, the corresponding
set on the right-hand side is empty. Therefore,∣∣{z ∈ B1 : |q(z)| < α

}∣∣ ≤
∑

j:|zj |<10

∣∣{z ∈ B1 : |z − zj| < c−1/d α1/d |z0 − zj|
}∣∣

≤ Cd α2/d . �

The proof of Theorem 5.2 now follows the same lines as that of Theorem 4.1.
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It is natural at this point to look for an analogue of Theorem 3 in [3], viz.
the uniform weak-type 1–1 estimates for the maximal functions associated
to polynomials in Hk. Such a result is not contained in Theorem 3.4, due to
the fact that Hk is not a finite union of classes P0

k,σ or P∞
k,σ.

On the other hand, the proof of Theorem 3 in [3] relies on the comparison
between the size of a polynomial and that of its derivative away from the
zeroes of the polynomial itself. It is not surprising that such estimates are
valid not only on the real axis, but on the whole complex plane. We report
the relevant part of the statement of Lemma 2.5 in [3], leaving the minor
modifications required in the proof to the reader.

Lemma 5.4 Let P ∈ Hk with leading coefficient 1, and with roots z1 =
0, z2, . . . , zk ordered so that

0 = |z1| ≤ |z2| ≤ · · · ≤ |zk| .

There are constants c(k) ≥ 1 and ε(k) > 0, depending only on k, such that
if A > c(k) and j, 	 are such that 	 − j ≥ 3 and

|zν | < Aj < A� < |zν+1|

for some ν, then, for Aj+1 < |z| < A�−1,

(5.1)

(
1 − 1

A

)k−1

|zν+1| · · · |zk| |z|ν ≤ |P (z)| ≤
(

1 +
1

A

)k−1

|zν+1| · · · |zk| |z|ν ;

(5.2)

∣∣∣∣zP ′(z)

P (z)

∣∣∣∣ ≥ ε(k) .

Theorem 5.5 Let P ∈ Hk. Then

MP f(z) = sup
r>0

1

|Br|

∫
Br

∣∣f(
z − P (z′)

)∣∣ dz′

is weak-type 1–1 with bounds that depend only on k.

For the proof, see Lemma 3.8 and Theorem 3.9 in [3]. The only modification
consists in the observation that the annulus where Aj+1 < |z| < A�−1 can
be decomposed as the union of at most k regions where P is one-to-one.
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6. Comments on extensions to nilpotent Lie groups

Assume now that Rn (i.e. the codomain of P ) is endowed with a nilpotent Lie
group structure, and that the product of two elements x and x′ is expressed
by polynomials in x and x′ (e.g. in canonical coordinates of some kind).
We can then modify the above definitions of maximal and singular integral
operators by substituting the difference x−P (y) with the product x·P (y)−1.

Then all the arguments given in the previous sections apply, as long as
the dilations on Rn that are involved are group automorphisms. This is a
rather severe restriction, and it is natural to ask if it can be removed.

In order to see that this is not a trivial question, consider the following
simple example: P is the identity map from R

2n+1 to the Heisenberg group
Hn, and we have isotropic dilations on the domain space. We can then ask if
the “isotropic” Hardy-Littlewood maximal function on Hn is weak-type 1–1.

Isotropic dilations are not group automorphisms, but the “parabolic”
dilations (z, t) �→ (rz, r2t) are (here z ∈ R2n and t ∈ R). So, the isotropic
Hardy-Littlewood maximal function can be rescaled by means of the parab-
olic dilations, and it preserves all its boundedness properties. In the limit,
we obtain the maximal function along the z-plane:

Mf(z, t) = sup
r>0

r−2n

∫
|w|<r

∣∣f(
(z, t) · (w, 0)−1

)∣∣ dw .

If we then knew that the isotropic Hardy-Littlewood maximal function is
weak-type 1–1 on Hn, then we would also know that M is weak-type 1–1.
But this problem is of the same nature as the weak-type 1–1 boundedness
problem for the maximal function along the parabola in the plane, because
the z-plane in Hn is a “curved” surface (e.g. it has non-zero rotational
curvature, [12]).
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