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NEW DEFINITIONS OF CONTINUITY

Abstract

We classify all generalized A-differences of any order n ≥ 0 for which
A-continuity at x implies ordinary continuity at x. We show that the
only A-continuities that are equivalent to ordinary continuity at x cor-
respond to the limits of the form

lim
h→0

A [f(x + rh) + f (x− rh)− 2f(x)] + B [f (x + sh)− f (x− sh)] ,

with ABrs 6= 0. All other A-continuities truly generalize ordinary con-
tinuity.

1 Introduction

A real-valued function f is continuous at the real number x if

f(x+ h)− f(x) = o(1) as h→ 0. (1.1)

More generally, given a set of 2m parameters A = {A1, . . . , Am; a1, . . . , am},
where m ≥ 2, the first m satisfy

∑m
i=1Ai = 0 and the second m are distinct,

we say that the function f is A-continuous at x if

∆Af(x, h) :=

m∑
i=1

Aif(x+ aih) = o (1) as h→ 0. (1.2)
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Call such kind of continuity an m-point A-continuity. SettingA = {1,−1; 1, 0}
shows that ordinary continuity is a special case of two point A-continuity. The
transformation Ai → λAi for all i for a non-zero λ does not disturb relation
(1.2); neither does ai → µai for all i for a non-zero µ. In particular, any
A = {λ,−λ;µ, 0} with λµ 6= 0 also defines ordinary continuity.

If f is continuous at x, then for any A,

m∑
i=1

Aif(x+ aih) =

m∑
i=1

Ai (f(x+ aih)− f (x)) (1.3)

=

m∑
i=1

Aio(1) = o (1)

so that f is also A-continuous at x.

The converse of this is false in general. For example, if f is any even
function, then

f (0 + h)− f (0− h) = 0 = o (1) as h→ 0.

Thus all even functions are A = {1,−1; 1,−1}-continuous at x = 0. But
of course many even functions are discontinuous at x = 0, so {1,−1; 1,−1}-
continuity is a two point (m = 2) kind of A-continuity that does not charac-
terize ordinary continuity.

For simplicity of the notation and without loss of generality, assume x = 0.
On the other hand, suppose Ar 6= 0 and f is {A,A, 1,−1,−2A; r,−r, 1,−1, 0}-
continuous at 0, so that as h→ 0,

Af(rh) +Af(−rh) + f(h)− f(−h)− 2Af(0) = o (1) . (1.4)

Successively replace h by −h,
h

r
and −h

r
to see that additionally

Af(−rh) +Af(rh) + f(−h)− f(h)− 2Af(0) = o (1)

Af(h) +Af(−h) + f(r−1h)− f(−r−1h)− 2Af(0) = o (1)

Af(−h) +Af(h) + f(−r−1h)− f(r−1h)− 2Af(0) = o (1) .

Multiply these four relations respectively by 1,−1,
1

A
and

1

A
, and add. We
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get

(A+ (−A)) f (rh) + (A+ (−A)) f (−rh) +(
1− (−1) +

1

A
A+

1

A
A

)
f (h) +

(
−1 + (−1) +

1

A
A+

1

A
A

)
f (−h) +(

1

A
+

1

A
(−1)

)
f
(
r−1h

)
+

(
1

A
(−1) +

1

A

)
f
(
−r−1h

)
+(

−2A− (−2A) +
1

A
(−2A) +

1

A
(−2A)

)
f (0)

= 4 (f (h)− f (0)) = o (1) .

So when |r| 6= 1 we have examples of m = 5 point A-continuity that are
not generalizations of ordinary continuity. They are instead characterizations
of ordinary continuity; i.e., they are actually nothing more than alternative
definitions of ordinary continuity!

Similarly, when r = 1 or r = −1, relations (1.4) collapse to the m = 3
point A-continuity conditions

(A+ 1) f(h) + (A− 1) f(−h)− 2Af(0) = o (1) . (1.5)

We may summarize our findings to this point in the following proposition.

Proposition 1. The following three cases of A-continuity conditions provide
equivalent definitions of ordinary continuity.

(i) The two parameter family of m = 5 point A-continuity conditions A =
{A,A, 1,−1,−2A; r,−r, 1,−1, 0} indexed by the real parameters A and
r with Ar 6= 0 and |r| 6= 1;

(ii) the one parameter family of m = 3 point A-continuity conditions A =
{A+ 1, A− 1,−2A; 1,−1, 0} indexed by the real parameter A /∈ {0, 1};

(iii) the ordinary m = 2 point continuity condition A = {1,−1; 1, 0}.

The purpose of this paper is to classify all potential definitions of general-
ized A-continuity into those that give equivalent definitions of continuity and
those that are true generalizations of continuity. This classification is given
by the following theorem.
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Theorem 1. A The m point A-continuity conditions

A = {A1, . . . , Am; a1, . . . , am}

which are dilates (Ai → λAi for all i for a non-zero λ and/or ai → µai
for all i for a non-zero µ) of one of the A-continuity conditions listed in
the proposition are equivalent to ordinary continuity.

B Given any other A-continuity condition, there is a measurable function
f (x) such that f is A-continuous at x = 0, but not continuous at x = 0.
Hence A-continuity is a generalization of continuity.

This is the working result that we will be proving in this article. A more
concise version of it is the following:

Theorem 2. The following are all the generalized continuity definitions that
are equivalent to the ordinary definition of continuity of a function f at x.

lim
h→0

A[f(x+ rh) + f(x− rh)− 2f(x)] +B[f(x+ sh)− f(x− sh)] = 0,

where ABrs 6= 0.

In the last section, we give a wide generalization of Theorem 2 which finds
for any generalized continuity the set of all generalized continuities that are
equivalent to it.

2 Proof of the theorem reduced to two lemmas

Since the dilations mentioned in part A of Theorem 1 applied to any form
of A-continuity have no effect on the defining condition, part A is only a
restatement of the already derived proposition.

Turning to part B, first notice that χ, the characteristic function of the set
{0}, defined by

χ (x) =

{
1 if x = 0
0 if x 6= 0

,

is not continuous at x = 0, but is A-continuous at x = 0 whenever all ai 6= 0,
since then

∑
Aif (aih) =

∑
Ai · 0 = 0 = o (1). Thus all such A-continuities

are generalizations of continuity, so we may restrict our considerations to A-
continuity where one ai = 0; from now on we assume that am = 0 and Am 6= 0.
Since

∑m
i=1Ai = 0 and Am 6= 0, we have

m−1∑
i=1

Ai 6= 0. (2.1)
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Second, if g (x) is any function discontinuous at zero, then f (x) = g (x)−
g (0) is also discontinuous at x = 0 and also satisfies f (0) = 0. So we only
need to study functions which are 0 at x = 0.

If there exists a measurable function f (x) such that

f (0) = 0, f (sn) = 1 for some sequence {sn} → 0 (2.2)

and such that
m−1∑
i=1

Aif (aih) = 0 for all h 6= 0, (2.3)

then f is, of course, A-continuous at x = 0, but not continuous at x = 0.
For the remainder of this paper, we will always represent f (x+ h)− f (x)

as f (h) and also write ∆Af(x, h) as ∆Af(h). With this convention, the
definition of ordinary continuity becomes f (h) → 0. Furthermore, given an
A-continuity {{Ai} ; {ai}}, the statement that there exist constants {Rj} and
{rj} such that for all h 6= 0

n∑
j=1

Rj

(
m−1∑
i=1

Aif (rjaih)

)
= f (h)

means that there exist constants {Rj} and {rj} such that for all h 6= 0 and
for every function f and every point x,

n∑
j=1

Rj

(
m−1∑
i=1

Ai (f (x+ rjaih)− f (x))

)
= f (x+ h)− f (x) .

Consider the following dichotomy. Either there is a finite linear combi-
nation of dilates h → rjh of

∑m−1
i=1 Aif (aih) equal to f (h) for every h 6= 0

or there is not. This reduces the proof of the Theorem to the following two
lemmas.

Lemma 1. If no finite linear combination of dilates of
∑m−1
i=1 Aif (aih) equals

f (h) for all h 6= 0, then there is a function f and a sequence {sn} such that
conditions (2.2) and (2.3) hold.

Lemma 2. If there is a finite linear combination of dilates of
∑m−1
i=1 Aif (aih)

equal to f (h) for all h 6= 0, then A is necessarily one of the exceptional A-
continuities listed in the proposition.

Remark 1. Our goal was to find all A-continuities that are equivalent to ordi-
nary continuity. Imagine that the only way to prove that a given A-continuity
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implies ordinary continuity was the direct method of finding that a linear com-
bination of its dilates was identically equal to f (h). In this case, the very
simple proof that ordinary continuity implies every A-continuity (see (1.3)),
the above mentioned dichotomy and Lemma 2, taken together, would already
give the entire answer. Lemma 1 means that whenever the direct method fails,
a counterexample must exist, so that all methods fail.

3 Proof of Lemma 1

Here we essentially reproduce the proof of Lemma 2 of [3]. This second expo-
sition of a delicate counterexample may help some readers.

We are given an A-continuity given by

A = {A1, . . . , Am−1, Am; a1, . . . , am−1, 0} ,

and our goal is to create a function f : R→ R whose values {f (h)} satisfy an
infinite system of equations S; e.g., one of these equations is

∑m
i=1Aif (ai3) =

0. These equations will be so numerous that for every real number h, f (h)
will appear in at least one of the equations. To create f , we will first assign
to each real number h a variable xh, and then think of the set {xh}h∈R as a
subset of an infinite dimensional real vector space. We will next substitute
xh for f (h) throughout the system S, creating an associated system of linear
equations S′; e.g., one of these linear equations will be

∑m
i=1Aixai3 = 0. Next

we will show that the hypothesis of Theorem 1, part B guarantees that there is
a solution for the linear system S′. Denote one such solution as {xh = ch}h∈R,
where each ch is a real number; e.g.,

∑m
i=1Aicai3 = 0. Finally, we will create

the required function f by setting f (h) = ch for every real number h; e.g.,
f (3) = c3.

Our hypothesis means that no finite linear combination of dilates of the
expression

∑m−1
i=1 Aixaih sums to xh for any h. Let sn → 0, where {sn} is an

algebraically independent set of numbers over the field K = Q (a1, . . . , am−1).
For each n = 1, 2, . . . , let Sn = {psn : p ∈ K\ {0}}. Decompose the uncount-
able system of equations

m−1∑
i=1

Aixaih = 0, h ∈ R (3.1)

xsn = 1, n = 1, 2, . . .
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into the following countable set of subsystems.

m−1∑
i=1

Aixaih = 0, h ∈ R\
∞⋃
n=1

Sn

(∗)n =

{ ∑m−1
i=1 Aixaih = 0, h ∈ Sn

xsn = 1
, n = 1, 2, . . .

Solve the first homogeneous subsystem with the trivial solution. In other
words, set xaih = 0 for every h /∈

⋃∞
n=1 Sn. Fix a positive integer n. The

system (∗)n has a solution: Since an infinite system of linear equations over a
field has a solution if every finite subsystem has a solution (see [3] for several
proofs of this), it is enough to prove that every finite subsystem has a solution.
Take a finite subsystem. Without loss of generality, assume that the subsystem
includes the equation xsn = 1. The only possible impediment to a solution
is if there can be deduced a contradiction of the form 0 = c where c is a
nonzero constant. But this could only happen if, for some n, xsn were a finite
linear combination of the homogeneous equations, thereby providing xsn = 0,
contrary to the hypothesis of this lemma.

Let f (h) be the function that was created by solving the system (3.1).
Then {k : f (k) 6= 0} has Lebesgue measure 0 because it is a subset of the

countable set
⋃m−1
i=1

⋃∞
n=1 aiSn, so that f is a measurable function. In partic-

ular, because of conditions (2.1) and (2.2),
∑m−1
i=1 Aixai0 =

(∑m−1
i=1 Ai

)
x0 = 0

implies f (0) = x0 = 0. On the one hand, limh→0 ∆Af(h) = limh→0 0 = 0, so
that f is A-continuous at x = 0. On the other hand, if a /∈ {0} ∪

⋃∞
n=1 Sn,

then limk→0 f
(
a
k

)
= limk→0 0 = 0 while limn→∞ f (sn) = limn→∞ 1 = 1, so f

is not continuous at x = 0.

4 Proof of Lemma 2

4.1 Symmetrizing a system of linear equations

Our assumption is that f(h) is a linear combination with coefficients Ld of

rd-dilates of ∆A =
∑m−1
p=1 Apf(aph):

n∑
d=1

Ld

(
m−1∑
p=1

Apf(aprdh)

)
= f(h). (4.1)

Replacing ∆A by one of the dilates in equation (4.1) for which some aprd = 1
if necessary, we may assume that some ap = 1.
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We adopt a more symmetrical notation for ∆A. Write
∑
Apf(aph) as

P∑
p=1

Apf(tp) +Bpf(−tp),

where for convenience we take h > 0 and set tp = |ap|h, and for each p, at
least one of Ap and Bp is nonzero. Then 0 < t1 < t2 < · · · < tP and some
tp = h. The condition (2.1) is now

P∑
p=1

Ap +Bp 6= 0. (4.2)

If we dilate by rd > 0, then the inner summand in equation (4.1) becomes

P∑
p=1

Apf(tprd) +

P∑
p=1

Bpf(−tprd),

whereas if we dilate by −rd, that inner summand becomes

P∑
p=1

Apf(−tprd) +

P∑
p=1

Bpf(tprd).

These two summands involve the same variables, so to look at all possible
ways to attain f(h) in equation (4.1) we must add, say, a λd-multiple of the
former and a µd-multiple of the latter. Equation (4.1) will be written as

D∑
d=1

P∑
p=1

((λdAp + µdBp) f(tprd) + (λdBp + µdAp) f(−tprd)) = f(h), (4.3)

where (λd, µd) 6= (0, 0) for all d, and (Ap, Bp) 6= (0, 0) for all p. The equation
(4.3) can be written as∑

η

{ ∑
tprd=η

(λdAp + µdBp) f(tprd) + (λdBp + µdAp) f(−tprd)
}

= f(h),

(4.4)
where the inner sums are all 0 when η 6= h. When η = h we must have the
inner sum equal to f(h). By taking the coefficients of f(η) and f(−η), this
translates into the following system of linear equations:∑

tprd=η

λdAp + µdBp = δηh and
∑

tprd=η

λdBp + µdAp = 0, (4.5)
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for all η, where δηh is the usual Kronecker’s delta symbol.
We change the notation so that some tp = h and some rd = 1. Since the

entire sum in (4.3) is f(h), we must have rd0ap0h = h for some p0 and d0.
Then f(rd0ap0h) = f(h) is a term in the rd0-dilate of ∆A. Next replace A
by A0, its rd0-dilate, and rewrite (4.3) in terms of dilates of A0. The new
rd0 equals 1, and therefore tp0 = h. We also assume that all rd are positive
and ordered as 0 < r1 < · · · < rD. We will break down all the possible ways
in which equation (4.3) might occur into 4 cases. Cases 1 and 4 will lead to
exactly the A-continuities appearing in Proposition 1, while Cases 2 and 3 will
be shown to lead to no ways at all. To show this we form a P by D rectangle
of lattice points

S = {(p, d) | p = 1, . . . , P and d = 1, . . . , D}.

So S is a rectangle of lattice points. We label each point (p, d) of S by the
positive number tprd.

tP rD

t1r1 tP r1

t1rD

Figure 1: The set S. Each point (p, d) is labeled as tprd.

Navigating S by moving eastward from (p, d) to (p + 1, d) or northward
from (p, d) to (p, d + 1) makes the value of the label strictly increase; i.e.,
tprd < tp+1rd and tprd < tprd+1. This is then the diagram of the partial order
of Z× Z restricted to the rectangle {1, . . . , P} × {1, . . . , D}.

4.2 Case 1: either P = 1 or D = 1

After Case 1 has been treated, we will be able to assume that the rectangle S
is nondegenerate, that is, it has at least two rows and at least two columns.

When P = D = 1, we show that the only possible A-continuities are
covered by Proposition 1. Here there is only one tp, namely t1 = h, and only
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one rd, namely r1 = 1, and ∆A = αf (h) + βf (−h). By (4.2), α + β 6= 0.
Equation (4.3) becomes

(λα+ µβ) f(h) + (λβ + µα) f (−h) = 1 · f (h) + 0 · f(−h),

or {
λα+ µβ = 1
λβ + µα = 0

,

which forces α 6= β. This means that

∆A =

(
α− β

2

){
2

α− β
(αf (h) + βf (−h))

}
=

(
α− β

2

)
{(A+ 1) f (h) + (A− 1) f (−h)} ,

where A = (α+ β)/(α− β), so that ∆A is a non-zero multiple of a difference
of the form given in Proposition 1(ii) if αβ 6= 0, and is trivially equivalent to
ordinary continuity if one of α or β is zero. We now show that the remaining
subcases of Case 1 are impossible. We start with a simple lemma.

Lemma 3. For every choice of the numbers a, b, c, d with

(
c
d

)
distinct from(

0
0

)
, there do not exist two numbers x and y such that both systems

(
x y
y x

)(
a
b

)
=

(
1
0

)
and

(
x y
y x

)(
c
d

)
=

(
0
0

)
are simultaneously true.

Proof. The first system is solvable only if x2−y2 6= 0 and the second system
is solvable only if x2 − y2 = 0.

When P = 1 and D ≥ 2, with t1 = h, r1 = 1, r2 = r 6= 1, A1 = α and
B1 = β, equation (4.3) becomes

[(λα+ µβ)f (h)] + (λβ + µα) f (−h)]+

[(λ′α+ µ′β)f (rh) + (λ′β + µ′α) f (−rh)]+ · · · = f (h) .

Apply Lemma 3 with x = α, y = β, a = λ, b = µ, c = λ′ and d = µ′ to see
that this subcase is impossible.
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When D = 1 and P ≥ 2, there is only one rd, namely r1 = 1. One tp must
equal h, call its associated Ap and Bp respectively α and β. Another tp must
be different from h. Call it th and call its associated Ap and Bp respectively
α′ and β′. Equation (4.3) is now

[(λα+ µβ)f (h) + (λβ + µα) f (−h)]+

[(λα′ + µβ′)f (th) + (λβ′ + µα′) f (−th)]+ · · · = f (h) .

Apply Lemma 3 with x = λ, y = µ, a = α, b = β, c = α′, and d = β′ to see
that this subcase is also impossible.

For the remaining cases, we assume that both P and D are ≥ 2.

4.3 Case 2: t1r1 = h or tP rD = h

After this case has been treated, we will be able to assume that (1, 1), the
southwest corner of S, has label < h and that (P,D), the northeast corner of
S, has label > h.

We shall see that Case 2 is impossible. Suppose tP rD = h; the other case
is similar. Because t1r1 < tP rD = h, from equation (4.3) we have(

λ1 µ1

µ1 λ1

)(
A1

B1

)
=

(
0
0

)
,

so that λ21−µ2
1 = 0 and λ1 = ±µ1. Assume λ1 = −µ1. Then λ1 (A1 −B1) = 0,

so A1 = B1.

Claim 1. λd = −µd for all d and Ap = Bp for all p.

Proof. Whenever tprd = η, we say that p (or d) is associated with η. We
induct on η to prove that for all η < h,

whenever p (resp. d) is associated with η, Ap = Bp (resp. λd = −µd). (4.6)

For the smallest η = r1t1, (4.6) is true for both d = 1 and p = 1. Assume (4.6)
has been proved for all η′ < η. The coefficients of f(η) and f(−η) are given
in (4.5). At most one rd0 that has not appeared in lower indices may appear
here multiplied by t1. Then by the inductive hypothesis, we have

(λd0 + µd0)A1 +
∑

tprd=η,d6=d0

λdAp + µdBp = 0

(λd0 + µd00)A1 −
∑

tprd=η,d6=d0

µdBp + λdAp = 0.
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Add these two equations, and then note that (A1, B1) 6= (0, 0) and A1 = B1

implies A1 6= 0, so

2 (λd0 + µd0)A1 = 0 and λd0 = −µd0 .

Also, at most one new tp0 may appear, and if it does, it will be multiplied by
r1. In this case the equations (4.5) become

λ1 (Ap0 −Bp0) +
∑

tprd=η,p6=p0

λdAp + µdBp = 0

λ1 (Bp0 −Ap0) +
∑

tprd=η,p6=p0

λdAp + µdBp = 0.

This time subtract to get

2λ1 (Ap0 −Bp0) = 0 and Ap0 = Bp0 .

This proves (*).
The claim follows, since every p is associated with some η < h = tP rD, say

η = tpr1, and every d is associated with some η < h, say η = t1rd.

Finally, because of the claim, every term in curly brackets in (4.4) is 0,
even when η = h. This is a contradiction, since that term is f(h).

Similarly, when λ1 = µ1, we have A1 = −B1. This implies λd = µd for all
d and Ap = −Bp for all p. This, in turn, leads to the same contradiction as in
the λ1 = −µ1 case.

4.4 Case 3: either t′rd < h < t′′rd for some d and t′, t′′ ∈ {t1, . . . , tP },
or tpr

′ < h < tpr
′′ for some p and r′, r′′ ∈ {r1, . . . , rD}.

After treating this case, we will be able to assume that the points on any fixed
row of S are either all labeled by values ≤ h or all have values ≥ h. The same
is true for the columns of S.

We will show that Case 3 is also impossible. Suppose rd0t
′ < h < rd0t

′′,
for some d0, t′ and t′′. The other case is similar. As in the proof of Case 2,
we must have either

(1low): λd = −µd and Ap = Bp for all (d, p) such that rdtp < h or

(2low): λd = µd and Ap = −Bp for all (d, p) such that rdtp < h.

Also we must have

(1high): λd = −µd and Ap = Bp for all (d, p) such that rdtp > h or

(2high): λd = µd and Ap = −Bp for all (d, p) such that rdtp > h.
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Conditions (1low) and (2high) are incompatible, since rd0t
′ < h implies λd0 =

−µd0 , while h < rd0t
′′ implies λd0 = µd0 , a contradiction since (λd, µd) 6= (0, 0)

for all d. Similarly, conditions (1high) and (2low) are incompatible. So we may
assume either

(1): λd = −µd and Ap = Bp for all (d, p) such that rdtp 6= h or

(2): λd = µd and Ap = −Bp for all (d, p) such that rdtp 6= h.

Now suppose rd0tp0 = h. Since there are at least two tp, there is at least one
t for which rd0t 6= h; similarly there is at least one r such that rtp0 6= h. This
shows that we may assume either

(1′): λd = −µd and Ap = Bp for all (d, p) or

(2′): λd = µd and Ap = −Bp for all (d, p).

Just as in the proof of Case 2, condition (1′) leads to a contradiction; similarly,
condition (2′) leads to a contradiction. Thus Case 3 is impossible.

4.5 Reduction to the case P = D = 2 and t1r2 = t2r1 = h

We show that this is the only possible case left after discarding all previous
cases.

(l)

tP rD

tp0rd0

t1r1

Figure 2: The set S and line (l). Each point (p, d) is labeled as tprd.

The elimination of Case 1 amounts to P ≥ 2 and D ≥ 2. Thus the set of
integer coordinate points in the plane

S = {(p, q) | p = 1, . . . , P and d = 1, . . . , D}
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forms a non-degenerate rectangle. As before, we label the points (p, d) of S
by the positive numbers tprd.

By Section 3.1, we have h = tp0rd0 for some p0 and d0, and the elimination
of Case 2 means that t1r1 < h = tp0rd0 < tP rD. This clearly implies that
1+1 < p0+d0 < P+D. This has the geometric interpretation that the line (l)
given by the equation p+ d = p0 + d0, for variables p, d, leaves the SW-corner
(1, 1) below, and the NE-corner (P,D) above. The line passes through the
point (p0, d0) of S, so it must intersect the rectangle upon a segment. Having
slope −1, the line must intersect S upon a set of at least two

√
2-equidistant

points.

Claim 2. The set S ∩ (l) consists of all points in S that are labeled by h. In
other words, this is the set of all (p, d) for which tprd = h.

tprd = h tp+1rd

tp+1rd−1tprd−1

∨ ∨

<

<

Figure 3: Proof of Claim 2.

Proof. Since points below the line are labeled by smaller numbers, and points
above the line are labeled by larger numbers, it suffices to show that all points
of S that lie on the line are labeled by h. For this, it suffices to show that
whenever a point (p, d) of (l) is labeled by h, its (l)-neighbor points (p−1, d+1)
and (p + 1, d − 1), when they belong to S, are also labeled by h. Indeed,
assume tprd = h. Then tprd−1 < h and tp+1rd > h. We have a strictly
increasing sequence tprd−1 < tp+1rd−1 < tp+1rd, with h being strictly between
the extreme terms. If the middle term tp+1rd−1 > h, then tprd−1 < h <
tp+1rd−1, which contradicts the elimination of Case 3; while if the middle
term is less than h, then tp+1rd−1 < h < tp+1rd, which also contradicts the
elimination of Case 3. By trichotomy, tp+1rd−1 = h. A similar proof shows
that tp−1rd+1 = h.

Claim 3. The set S ∩ (l) consists of exactly two points.



New Definitions of Continuity 417

tp1rd2 tp2rd2 tp3rd2

tp3rd3

tp1rd1

(l)

Figure 4: Proof of Claim 3.

Proof. That the set has at least two points was argued before. Suppose the
set has three distinct points (p1, d1), (p2, d2) and (p3, d3). These can be taken
so that p1 = p2 − 1, p3 = p2 + 1, d1 = d2 + 1 and d3 = d2 − 1. The obvious
inequality of labels tp1rd2 < h = tp2rd2 < tp3rd2 is ruled out by the elimination
of Case 3, so this case does not exist.

Claim 4. S ∩ (l) = {(1, D), (P, 1)}. This means that t1rD = h = tP r1.

Proof. We argue as in the proof of Claim 2. Take the increasing sequence
t1r1 < t1rD < tP rD. Since h is strictly between the extreme terms, and the
elimination of Case 3 rules out its being strictly between consecutive terms, h
must equal the middle term t1rD. A similar proof is given for h = tP r1. One
inclusion is then proved. The reverse is forced by Claim 3.

Finally, since (l) has slope −1, we must have P = D. This common value is
2, by Claim 3, since together with the two points of Claim 4, S ∩ (l) must
contain all the lattice points in between.

4.6 Case 4: P = D = 2 and t1r2 = t2r1 = h.

We show that this case leads ineluctably to the situation of the first part of
Proposition 1.

Proof. This case means that the set {t1, t2} can be written as {h, rh}, with
r 6= 1. The only possible pair of distinct positive dilates that can lead to a
solvable system of four equations is {1, r−1}. Our set of differences becomes:

Af(rh) + Cf(−rh)+Bf(h) +Df(−h)

Cf(rh) +Af(−rh)+Df(h) +Bf(−h)

Af(h) + Cf(−h) +B(r−1h) +Df(−r−1h)

Cf(h) +Af(−h) +Df(r−1h) +Bf(−r−1h).
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Multiply the four differences by λ1, µ1, λ2, µ2 and add to produce

{λ1A+ µ1C} f (rh) + {λ1C + µ1A} f (−rh)

+ {λ1B + µ1D + λ2A+ µ2C} f (h) + {λ1D + µ1B + λ2C + µ2A} f (−h)

+ {λ2B + µ2D} f
(
r−1h

)
+ {λ2D + µ2B} f

(
−r−1h

)
.

Our assumption is that the quantities in curly brackets are, respectively,
0, 0, 1, 0, 0, and 0. In particular, we get the equations

λ1A+ µ1C = λ1C + µ1A = 0.

Since (A,C) 6= (0, 0), one of these cases must hold:

(1): A = C and λ1 = −µ1

(2) : A = −C and λ1 = µ1.

Similarly, we also have one of these two cases:

(3) : B = D and λ2 = −µ2

(4) : B = −D and λ2 = µ2.

The third curly bracketed term is 1, producing another equation:

(5) : λ1B + µ1D + λ2A+ µ2C = 1.

Assume A = C and B = D. Substitute the values from equations (1) and
(3) into equation (5) to obtain the contradiction

λ1B − λ1B + λ2A− λ2A = 1.

The assumption A = −C and B = −D leads to the same contradiction. So,
one of two cases must hold. Either A = C and B = −D, which is the A-
continuity A (f (rh) + f (−rh)) +B

(
f
(
r−1h

)
− f

(
−r−1h

))
, also written as

A (f (x+ rh) + f (x− rh)− 2f (x)) +B
(
f
(
x+ r−1h

)
− f

(
x− r−1h

))
,

or the case A = −C and B = D, which is the A-continuity

B
(
f
(
x+ r−1h

)
+ f

(
x− r−1h

)
− 2f (x)

)
+A (f (x+ rh)− f (x− rh)) .

Both of these are of the form given in Proposition 1(i).

Notice that our proof of Lemma 2 explains the existence of the small, ini-
tially unexpected and for quite some time mysterious (at least to the authors),
family of A-continuities that are equivalent to ordinary continuity in a natural
way.
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5 The classification of generalized continuities

Let ∆A =
∑
Aif (x+ aih) and ∆B =

∑
Bif (x+ bih), where

∑
Ai =

∑
Bi =

0, be generalized A-continuities. Say A is equivalent to B if, for every function
f and every point x, ∆Af (h, x) → 0 as h → 0 if and only if ∆Bf (h, x) → 0
as h→ 0. By Theorem 2, the equivalence class [f (x+ h)− f (x)] of ordinary
continuity is

{A (f(x+ rh)+f(x− rh)−2f(x)) +B (f(x+ sh)− f(x− sh)) : ABrs 6= 0} .

Associate to any generalized continuity A its even part Ae, defined by the
expression ∆Ae

f (h, x) = (∆Af (h, x) + ∆Af (−h, x)) /2, and its odd part Ao,
defined by ∆Ao

f (h, x) = (∆Af (h, x)−∆Af (−h, x)) /2.

In general,

∆A = ∆Ae
+ ∆Ae

,

and, in particular,

f (x+ h)−f (x) =
1

2
(f(x+ h) + f(x− h)− 2f(x))+

1

2
(f(x+ h)− f(x− h)) .

A generalized continuity A is even (resp. odd) if A = Ae (resp. A = Ao). Two
examples of even continuity are given by the differences f(x+h) + f(x−h)−
2f(x) and 3f(x+ 2h) + 3f(x− 2h) + f(x+ h) + f(x− h)− 8f(x). Ordinary
continuity is an example of a continuity that is neither odd nor even.

Theorem 3. Let B be a generalized continuity. Then the equivalence class of
B is given by the following set of differences.

[∆B] = {A∆Be
f (rh, x) +B∆Bo

f (sh, x) : ABrs 6= 0} .

The proof of this theorem follows very closely the methods developed in
reference [2]. Two special cases are especially interesting. If B is even, then
B = Be and Bo = 0, so that the equivalence class of B is given by exactly the
differences that are trivially equivalent to B, that is

[∆B] = {A∆Bf (rh, x) : Ar 6= 0} .

Similarly if B is odd, this happens again. Only purely even and purely odd
equivalence classes fail to include non-trivially equivalent differences.

Recall that ordinary continuity implies every generalized continuity. A
generalization of this is the following theorem.



420 A. Ash, J. M. Ash and S. Catoiu

Theorem 4. Let ∆A and ∆B be generalized A-continuities. Then B-continuity
implies A-continuity if and only if for every function f and point x, ∆Aef (h, x)
and ∆Ao

f (h, x) are finite linear combinations

∆Ae
f (h, x) =

∑
i

Ui∆Be
f (uih, x)

∆Ao
f (h, x) =

∑
i

Vi∆Bo
f (vih, x)

of non-zero ui-dilates of ∆Bef (h, x) and vi-dilates of ∆Bof (h, x).

The proof of this theorem also follows very closely the methods developed
in reference [2].
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