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SOBOLEV SUBSPACES OF NOWHERE
BOUNDED FUNCTIONS

Abstract

We prove that in any Sobolev space which is subcritical with respect
to the Sobolev Embedding Theorem there exists a closed infinite dimen-
sional linear subspace whose non zero elements are nowhere bounded
functions. We also prove the existence of a closed infinite dimensional
linear subspace whose non zero elements are nowhere Lq functions for
suitable values of q larger than the Sobolev exponent.

1 Introduction

Given l ∈ N, p ∈ [1,∞] and an open set Ω in RN , the Sobolev space W l,p(Ω)
is defined as the space of those real valued functions in Lp(Ω) with distribu-
tional derivatives in Lp(Ω) up to order l, endowed with the norm defined by
‖v‖W l,p(Ω) =

∑
0≤|α|≤l ‖Dαv‖Lp(Ω) for all v ∈W l,p(Ω).

Sobolev spaces play a prominent role in modern Mathematical Analysis
and applications to partial differential equations. In particular, they provide
a natural setting for the study of fundamental problems from Mathematical
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Physics, in which case the so-called energy spaces are often identified with
suitable closed subspaces of W l,2(Ω) containing C∞c (Ω), see, e.g., [12, 15].

One of the main features of Sobolev spaces is their completeness. In fact,
for p < ∞, they can be defined as the completion of the space of smooth
functions with respect to the norm above, which clearly allows Sobolev spaces
to possess badly behaved functions.

Nevertheless, the celebrated Sobolev Embedding Theorem gives sharp in-
formation on the intrinsic regularity of the functions in Sobolev spaces, see [5,
Chapter 4] for instance. In particular, this theorem states that if Ω is a suf-
ficiently regular open set (say, Ω satisfies the cone condition) and pl > N for
p 6= 1, or pl ≥ N for p = 1, then W l,p(Ω) is continuously embedded into Cb(Ω),
where Cb(Ω) denotes the space of real valued, bounded, continuous functions
on Ω endowed with the usual sup-norm.

It is well-known that, in the subcritical case pl < N , the Sobolev space
W l,p(Ω) contains unbounded functions, as well as functions which are nowhere
bounded in Ω. If Ω is bounded, an example of a nowhere bounded function
v in W l,p(Ω) can be easily provided by considering a numerable dense subset
{xn}n∈N of Ω and setting v(x) =

∑∞
n=1 |x − xn|µ/2n for almost all x ∈ Ω,

where µ ∈]l − N/p, 0[ (see also, e.g., [9, Example 4, p. 247]; see Section 2
below for the general case).

The aim of the present paper is to study such unbounded functions in the
frame of a comparatively new field of investigation devoted to the analysis of
spaces of pathological functions. In his seminal paper [11], Vladimir I. Gurariy
proved the existence of a closed infinite dimensional linear subspace of C([0, 1])
whose non zero elements are nowhere differentiable functions. Following [11],
a number of authors have addressed analogous problems concerning that or
other counterintuitive properties of functions, see, e.g., [3, 8]. We refer to the
recent monograph [1] for an extensive discussion of old and new results in this
topic as well as for references. We also refer to [7] for some historical and
pedagogical remarks in the realm of functions with strange properties.

In this paper, we prove that every Sobolev space W l,p(Ω) with pl ≤ N
if p 6= 1, or pl < N if p = 1, contains a closed infinite linear dimensional
subspace whose non zero elements are nowhere bounded functions. Actually,
if pl < N with p ≥ 1, we shall prove even more. Indeed recall that, in the
case pl < N , the Sobolev Embedding Theorem provides some additional inte-
grability properties for the functions in W l,p(Ω). More precisely, this theorem
states that if Ω is a sufficiently regular open set as above and pl < N , then
W l,p(Ω) is continuously embedded into Lq

∗
(Ω), where q∗ = Np/(N − pl) is

the celebrated Sobolev exponent. It is an exercise to prove that the Sobolev
critical exponent q∗ cannot be improved, that is, if pl < N and W l,p(Ω) is
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continuously embedded into Lq(Ω) for some q ∈ [1,∞[, then q ≤ q∗. We plan
to prove that this is true in a stronger way.

Following [10], we say that a real valued function v defined on Ω is nowhere
Lq for some q ∈ [1,∞] if, for any non empty open subset U of Ω, v|U is not
in Lq(U) (the case q = ∞ is exactly the case of nowhere bounded functions
mentioned above).

With this terminology, our main result is the following

Theorem 1. Let Ω be a non empty open set in RN and let l ∈ N, p ∈ [1,∞[.
If pl < N then, for every r ∈]lq∗,∞] fixed, the space W l,p(Ω) contains a closed
infinite dimensional linear subspace whose non zero elements are nowhere Lr

functions. If pl = N with p 6= 1, then the space W l,p(Ω) contains a closed infi-
nite dimensional linear subspace whose non zero elements are nowhere bounded
functions.

Theorem 1 is proved in Section 2 where the required closed infinite dimen-
sional linear subspace of W l,p(Ω) is defined as the image of a closed infinite
dimensional linear subspace of W l,p(Ω)∩W 1,pl(Ω) via a suitable compact per-
turbation of the identity. Such subspace turns out to be a closed subspace also
of W l,p(Ω) ∩W 1,pl(Ω), see Remark 1. By the Sobolev Embedding Theorem

the space W 1,pl(Ω) is embedded into Llq
∗

loc(Ω) and this explains why, in Theo-
rem 1, we require that r belongs to ]lq∗,∞], which is smaller than the interval
]q∗,∞] when l ≥ 2. We also note that our compact operator is defined by
means of a suitable composition operator and that the condition r ∈]lq∗,∞]
is needed to make it well-defined when l ≥ 2.

2 Proof of Theorem 1

In this section, we always assume that N , l, p and r are fixed and are as in
Theorem 1. Note that N ≥ 2. Moreover, we need to fix a number a in ]0, 1[ as
follows. If pl < N and r <∞, we take a ∈]0, 1[ such that ar > lq∗; if pl = N
or r =∞, a is any number in the interval ]0, 1[.

We begin with some preliminaries. Let f ∈ W l,p(RN ) be a function with
compact support, continuous in RN \ {0}, that does not change sign and such
that |f(x)| → ∞ as x→ 0. In addition, for reasons that will be clear later, in
the case l ≥ 2 we also require that f ∈ W 1,pl(RN ). In the case pl < N and
r < ∞, we also require the extra condition f /∈ Lq(RN ) for any q ∈ [ar,∞].
The existence of such functions is well-known, see [5, Example 8, p. 32].

Let {xn}n∈N be a numerable dense set in RN . Let u be the real valued
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function defined in RN by

u(x) =

∞∑
n=1

1

2n
f(x− xn), (2.1)

for x ∈ RN . It is an exercise to prove that the series in (2.1) is convergent
in W l,p(RN ), as well as in W 1,pl(RN ) if l ≥ 2. Moreover, such series also
converges almost everywhere in RN . Since f does not change sign, by (2.1) it
follows that

|u(x)| ≥ 1

2n
|f(x− xn)|, (2.2)

for all n ∈ N almost everywhere on RN . Thus u is nowhere bounded in RN
and belongs to W l,p(RN ), and also to W 1,pl(RN ) if l ≥ 2. Moreover, in the
case pl < N , u is also nowhere Lar in RN .

Let (an)n∈N ⊂]a, 1[ be a strictly decreasing sequence. Let us now define a
sequence of real valued functions {qn}n∈N on R by setting qn(t) = |t|an for all
t ∈ R, n ∈ N. Note that, for all n,m ∈ N,∣∣∣∣ dmdtm qn(t)

∣∣∣∣ ≤ m! |t|an−m, ∀t 6= 0. (2.3)

Let ψ ∈ C∞(R) be fixed in such a way that ψ(t) = 0 for all |t| ≤ 1 and
ψ(t) = 1 for all |t| ≥ 2. We set Qn = ψqn for all n ∈ N. Clearly Qn ∈ C∞(R)
and by the Leibniz rule it easily follows that, for every m ∈ N, there exists
km > 0 independent of n such that∣∣∣∣ dmdtmQn(t)

∣∣∣∣ ≤ km,
for all t ∈ R, n ∈ N.

Thus, for any sequence c = (cn)n∈N ∈ `1(N), the function defined by

gc(t) =

∞∑
n=1

cnQn(t), t ∈ R,

belongs to C∞(R) and for every m ∈ N we have∣∣∣∣ dmdtm gc(t)
∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

cn
dm

dtm
Qn(t)

∣∣∣∣∣ ≤ km‖c‖`1(N),

for all t ∈ R. Moreover, for any c ∈ `1(N) \ {0}, we have that

|gc(t)| =

∣∣∣∣∣∣
∑
n≥n̄

cn|t|an

∣∣∣∣∣∣ = |t|an̄

∣∣∣∣∣∣
∑
n≥n̄

cn|t|an−an̄

∣∣∣∣∣∣ ≥ |cn̄|2
|t|a, (2.4)
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for any |t| sufficiently big, where n̄ = min{n ∈ N : cn 6= 0}.
We can now prove the following result, where W l,p(RN ) ∩W 1,pl(RN ) is

endowed with the usual norm obtained by summing the norms of W l,p(RN )
and W 1,pl(RN ). We set bc = (bncn)n∈N ∈ `1(N) for all b, c ∈ `2(N) and we
note that ‖bc‖`1(N) ≤ ‖b‖`2(N)‖c‖`2(N).

Lemma 2. Let u be defined as in (2.1) and let b = (bn)n∈N ∈ `2(N) be fixed
with bn 6= 0 for all n ∈ N. The linear operator Tu from `2(N) to W l,p(RN ) ∩
W 1,pl(RN ) defined by

Tu(c) = gbc ◦ u =

( ∞∑
n=1

bncnQn

)
◦ u,

for all c = (cn)n∈N ∈ `2(N), is continuous, injective and compact. Moreover,
Tu(c) is a nowhere bounded function in RN for all c ∈ `2(N) \ {0} and, in the
case pl < N , Tu(c) is a nowhere Lr function in RN for all c ∈ `2(N) \ {0}.

Proof. Since gbc ∈ C∞(R) has bounded derivatives, gbc(0) = 0, u ∈W l,p(RN )
if l ≥ 1 and u ∈W l,p(RN )∩W 1,pl(RN ) if l ≥ 2, the function Tu(c) belongs to
W l,p(RN ) ∩W 1,pl(RN ). Indeed, the case l = 1 is a direct application of the
chain rule, which also allows to easily prove that

‖Tu(c)‖W 1,p(RN ) ≤ k1‖b‖`2(N)‖c‖`2(N)‖u‖W 1,p(RN ). (2.5)

In the case l ≥ 2, one needs to use the condition u ∈ W l,p(RN ) ∩W 1,pl(RN )
in a substantial way, in order to avoid the possible appearance of the so called
Dahlberg degeneracy phenomenon, which prevents non trivial composition op-
erators to preserve Sobolev spaces W l,p when 1 + 1/p < l < N/p (including
those with fractional order of smoothness). For further details and discussions,
we refer to [16, §5.2.5] and [6]. In particular, by estimate (2) in [16, §5.2.5], we
can also immediately deduce that there exists a constant K > 0, independent
of u, b, and c, such that

‖Tu(c)‖W l,p(RN ) ≤ K max
i=1,...,l

ki ‖b‖`2(N)‖c‖`2(N)

(
‖u‖W l,p(RN ) + ‖u‖lW 1,pl(RN )

)
.

(2.6)
When l ≥ 2, similarly to (2.5), we also have

‖Tu(c)‖W 1,pl(RN ) ≤ k1‖b‖`2(N)‖c‖`2(N)‖u‖W 1,pl(RN ). (2.7)

By (2.5), (2.6) and (2.7), we can conclude that the operator Tu is well defined
and continuous.
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By (2.2) combined with (2.4), we have that for any c ∈ `2(N) \ {0} and
n ∈ N there exists an open neighbourhood Un of xn and αn > 0 such that

|Tu(c)| ≥ αn|u|a on Un. (2.8)

By (2.8), it follows that Tu(c) is nowhere bounded in RN and, if pl < N , Tu(c)
is also nowhere Lr in RN for all c ∈ `2(N) \ {0}. In particular, the operator
Tu is injective.

It remains to prove that Tu is compact. For any k ∈ N, consider the linear

continuous operator T (k)
u from `2(N) to W l,p(RN ) ∩W 1,pl(RN ) defined by

T (k)
u (c) =

(
k∑

n=1

bncnQn

)
◦ u,

for all c ∈ `2(N). Note that T (k)
u is a finite rank operator. Then, by estimates

analogous to (2.5), (2.6) and (2.7) and by the Cauchy–Schwarz inequality, we
get

‖Tu(c)− T (k)
u (c)‖W l,p(RN )∩W 1,pl(RN ) ≤ B

(
+∞∑

n=k+1

b2n

) 1
2

‖c‖`2(N),

for all c ∈ `2(N), where B > 0 is a constant independent of c. Hence

lim
k→+∞

‖Tu − T (k)
u ‖`2(N)→W l,p(RN )∩W 1,pl(RN ) = 0,

where in the left-hand side we use the standard operator norm of Tu − T (k)
u .

Thus Tu is approximated in norm by finite rank operators, hence it is compact.
This concludes the proof of Lemma 2.

We can now prove our main result.

Proof of Theorem 1. Let x̄ ∈ Ω and let R > 0 be such that B(x̄, R) ⊂ Ω.
Let A be the open annulus defined by A = {x ∈ RN : R/2 < |x − x̄| < R}.
We denote by W l,p

0 (A) the standard Sobolev space defined as the closure of
C∞c (A) in W l,p(A). We set

X = {v ∈W l,p
0 (A) : v is radial with respect to x̄}, (2.9)

where it is meant that a function v is radial with respect to x̄ if the value of v(x)
depends only on |x− x̄| for all x ∈ A. The space X can be naturally seen as a
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subspace of W l,p(Ω) by extending functions by zero outside A. Moreover, it is
straightforward that X is a closed subspace of W l,p(Ω) with infinite dimension.

Since any function v in X is of the form v(x) = gv(|x − x̄|) for a suitable
function gv and is zero outside A, by the Radial Lemma (see [14, Lemma II.1])
it is easy to see that X is continuously embedded into the space Cb(R/2, R)
via the embedding v 7→ gv. In particular, any function in X is bounded
and continuous. Since Cb(R/2, R) is continuously embedded into L2(R/2, R),
which is a Hilbert space isometric to `2(N), we conclude that there exists a
continuous embedding J of X into `2(N).

Let R be the restriction operator from W l,p(RN ) to W l,p(Ω) and let Tu
be the operator defined in Lemma 2 considered as an operator from `2(N) to
W l,p(RN ). It is obvious that the operator R◦Tu◦J is injective because all the
non zero functions in the image of the operator Tu ◦ J are nowhere bounded.
Thus R◦Tu ◦J is a compact embedding of X into W l,p(Ω). We now consider
the operator I −R ◦ Tu ◦ J from X to W l,p(Ω), where I denotes the identity
operator of W l,p(Ω).

We note that ker(I − R ◦ Tu ◦ J ) = {0}. Indeed, if v ∈ X is such that
v = R ◦ Tu ◦ J (v), then R ◦ Tu ◦ J (v) is a bounded continuous function; but
this implies that J (v) = 0, hence v = 0 (in fact, otherwise, if v 6= 0 then
R ◦ Tu ◦ J (v) would be nowhere bounded).

Let Y be the subspace of W l,p(Ω) defined by

Y = (I −R ◦ Tu ◦ J )(X). (2.10)

Since I−R◦Tu ◦J is a compact perturbation of the identity, by the Fredholm
Alternative Theorem (see, e.g., [4, Exercise 6.9, (4)]) it follows that Y is a
closed subspace of W l,p(Ω). In particular, since I − R ◦ Tu ◦ J is injective,
dimY = dimX =∞.

Finally, we observe that any function in Y \ {0} is nowhere bounded. In-
deed, as observed above, any function v ∈ X is bounded, while R◦Tu ◦J (v) is
nowhere bounded if v 6= 0. Hence (I −R ◦ Tu ◦ J )(v) is nowhere bounded for
all v ∈ X \ {0}. Moreover, in the case pl < N , (I −R ◦ Tu ◦ J )(v) is nowhere
Lr for all v ∈ X \{0}, because R◦Tu ◦J (v) is nowhere Lr for all v ∈ X. This
concludes the proof.

Remark 1. Assume that l ≥ 2. In the proof of Theorem 1 one can replace
the space W l,p by W l,p ∩W 1,pl. Indeed, a simple argument allows to see that
the space X in (2.9) is a closed subspace also of W l,p(Ω)∩W 1,pl(Ω). Thus, by
Lemma 2, one can consider the operator T in the proof of Theorem 1 as an
operator from X (considered as a closed subspace of W l,p(Ω) ∩W 1,pl(Ω)) to
W l,p(Ω) ∩W 1,pl(Ω), and conclude that the space Y in (2.10) is also a closed
subspace also of W l,p(Ω) ∩W 1,pl(Ω).
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Remark 2. We briefly observe that the subcritical Sobolev space W l,p(Ω)
contains also a c-dimensional linear subspace and a countably generated alge-
bra whose non zero elements are nowhere bounded functions.

The existence of such a c-dimensional linear subspace follows immediately
from the fact that any infinite dimensional Banach space has Hamel dimension
at least c, see [13]. Thus, in Theorem 1, it is possible to replace ‘closed
infinite dimensional linear subspace’ with ‘c-dimensional linear subspace’. For
a simpler construction, consider the vector space generated by the functions
hµ ◦ u, where hµ is a real valued function defined on R such that hµ ∈ Cl(R),
hµ(0) = 0 and hµ(t) = |t|µ for |t| ≥ 1 for any µ ∈ [a, 1], where u is the function
defined in (2.1) and a ∈]0, 1[ is chosen as at the beginning of Section 2.

To prove the existence of a countably generated algebra of nowhere bounded
functions, it is enough to consider the algebra generated by the functions ln◦u,
where ln is a real valued function defined on R such that ln ∈ Cl(R), ln(0) = 0
and ln(t) = log(1 + ln−1(t)), l0(t) = t, for |t| ≥ 1 and n ∈ N. Therefore, in
the case pl ≤ N for p 6= 1, or pl < N for p = 1, W l,p(Ω) contains a countably
generated algebra whose non zero elements are nowhere bounded functions.
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