Alexander Kharazishvili, A. Razmadze Mathematical Institute, Tbilisi 0186, Georgia. email: kharaz2@yahoo.com

ABSOLUTE NULL SUBSETS OF THE PLANE WITH BAD ORTHOGONAL PROJECTIONS

Abstract

Under Martin's Axiom, it is proved that there exists an absolute null subset of the Euclidean plane \mathbb{R}^2 , the orthogonal projections of which on all straight lines in \mathbb{R}^2 are absolutely nonmeasurable. A similar but weaker result holds true within the framework of **ZFC** set theory.

Among various set-theoretical operations commonly used in real analysis, the standard projection operation is very important but has a somewhat unpleasant property. Namely, the orthogonal projection of a subset Z of the Euclidean plane \mathbf{R}^2 on a straight line lying in \mathbf{R}^2 may be of a much more complicated structure than the structure of Z. There are many examples confirming this circumstance. For instance, if Z is a Borel subset of \mathbf{R}^2 , then the orthogonal projection of Z on the real line \mathbf{R} is, in general, a non-Borel analytic (Suslin) subset of \mathbf{R} , and this fact turned out to be a starting point for the emergence and further development of classical descriptive set theory; see, e.g., [7], [11].

Also, simple examples show that the projection of a Lebesgue measurable subset of \mathbb{R}^2 may be a Lebesgue nonmeasurable set in \mathbb{R} . In the present paper we consider an analogous phenomenon for the so-called absolute null subsets of \mathbb{R}^2 .

A measure μ defined on some σ -algebra of subsets of \mathbf{R} (respectively, of \mathbf{R}^2) is called *continuous* if it vanishes on all singletons of \mathbf{R} (respectively, of \mathbf{R}^2).

According to the standard definition, a subset U of \mathbf{R} (respectively, of \mathbf{R}^2) is an absolute null set or universal measure zero set if, for every σ -finite

Mathematical Reviews subject classification: Primary: 28A05, 28D05; Secondary: 03E25 Key words: Absolute null set, Bernstein set, generalized Luzin set, Hamel basis Received by the editors May 19, 2015

continuous Borel measure μ on \mathbf{R} (respectively, on \mathbf{R}^2), the equality $\mu^*(U) = 0$ holds true, where μ^* denotes the outer measure canonically associated with μ .

Equivalently, U is an absolute null set if and only if there exists no nonzero σ -finite continuous Borel measure on U.

The above definition shows that the absolute null subsets of \mathbf{R} (of \mathbf{R}^2) are ultimately small with respect to the class $\mathcal{M}(\mathbf{R})$ (class $\mathcal{M}(\mathbf{R}^2)$) of the completions of all nonzero σ -finite continuous Borel measures on \mathbf{R} (on \mathbf{R}^2). In particular, these subsets are absolutely measurable with respect to the two above-mentioned classes; i.e., are measurable with respect to any measure belonging to $\mathcal{M}(\mathbf{R})$ ($\mathcal{M}(\mathbf{R}^2)$).

There are several delicate constructions of uncountable absolute null subsets of \mathbf{R} (of \mathbf{R}^2). For more details about those constructions, see, e.g., [13] and [16].

A subset X of the real line **R** is called *absolutely nonmeasurable* (with respect to the class $\mathcal{M}(\mathbf{R})$) if there exists no measure μ belonging to $\mathcal{M}(\mathbf{R})$ such that $X \in \text{dom}(\mu)$.

This definition shows that absolutely nonmeasurable subsets of \mathbf{R} are extremely bad relative to the class $\mathcal{M}(\mathbf{R})$. It makes sense to note that these subsets of \mathbf{R} can be characterized in purely topological terms, as follows.

Recall that a subset B of \mathbf{R} is a *Bernstein set* if, for each nonempty perfect set $P \subset \mathbf{R}$, the relations $P \cap B \neq \emptyset$ and $P \cap (\mathbf{R} \setminus B) \neq \emptyset$ are satisfied.

Such a set B was first constructed by Bernstein [2] in 1908. In his argument Bernstein essentially relies on an uncountable form of the Axiom of Choice (\mathbf{AC}) and uses the method of transfinite recursion. Much later, it was recognized that no countable form of \mathbf{AC} is enough for obtaining B. The importance of Bernstein sets in various topics of general topology, measure theory, and the theory of Boolean algebras is well known; see, e.g., [7], [8], [10], [11], [14], [15].

Lemma 1. Let X be a subset of the real line \mathbf{R} . The following two assertions are equivalent:

- (1) X is absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$;
- (2) X is a Bernstein set in \mathbf{R} .

The proof of this lemma is not difficult and can be found, e.g., in [9] or in [10, p. 206].

Some Bernstein sets may possess additional properties of purely algebraic nature.

Example 1. Consider the real line \mathbf{R} as a vector space V over the field \mathbf{Q} of all rational numbers. Any basis of V is usually called a Hamel basis of \mathbf{R} , because such a basis was first constructed by Hamel in [6]. There exists

a Bernstein set in \mathbf{R} which simultaneously is a Hamel basis of \mathbf{R} ; see, for instance, [1], [3], [4, p. 113], [5, p. 11], or [14, p. 221].

Example 2. Let G be a group of transformations of \mathbf{R} with $\operatorname{card}(G) \leq \mathbf{c}$, where \mathbf{c} denotes the cardinality of the continuum. There exists a Bernstein set $B \subset \mathbf{R}$ which is almost invariant under the group G. The latter means that for each $g \in G$, the inequality

$$\operatorname{card}(B \triangle g(B)) < \mathbf{c}$$

is valid, where the symbol \triangle denotes the operation of symmetric difference of two sets; cf. Theorem 21 of Chapter 5 in [14]. In particular, taking the group Γ of all homotheties of \mathbf{R} with center 0, one obtains a Bernstein subset of \mathbf{R} which simultaneously is almost invariant under Γ .

Lemma 1 and the previous example allow us to demonstrate the existence of a small subset of \mathbf{R}^2 whose projection on every straight line l in \mathbf{R}^2 is absolutely nonmeasurable in l. In what follows, the symbol λ_1 stands for the ordinary one-dimensional Lebesgue measure on l and the symbol λ_2 stands for the ordinary two-dimensional Lebesgue measure on \mathbf{R}^2 .

Theorem 1. There exists a set $T \subset \mathbf{R}^2$ with $\lambda_2(T) = 0$ such that the orthogonal projection of T on every straight line l in \mathbf{R}^2 is absolutely nonmeasurable in l.

PROOF. Take a Bernstein set $X \subset \mathbf{R}$ which is almost invariant under the group Γ (see Example 2), and in \mathbf{R}^2 consider the set

$$T = (X \times \{0\}) \cup (\{0\} \times X).$$

This T is contained in the union of the two lines $\mathbf{R} \times \{0\}$ and $\{0\} \times \mathbf{R}$, so $\lambda_2(T) = 0$. Now, let l be a straight line in \mathbf{R}^2 and let θ denote the angle between l and $\mathbf{R} \times \{0\}$. We may assume, without loss of generality, that l passes through the origin (0,0) and that $0 < \theta < \pi/2$. It is not difficult to verify that the orthogonal projection of T on l is congruent to the set

$$T^* = \cos(\theta)X \cup \sin(\theta)X \subset \mathbf{R}.$$

By virtue of the definition of X, we have the inequalities

$$\operatorname{card}((\cos(\theta)X)\triangle X) < \mathbf{c},$$

$$\operatorname{card}((\sin(\theta)X)\triangle X) < \mathbf{c},$$

whence it follows that

$$\operatorname{card}(T^* \triangle X) < \mathbf{c}.$$

Remembering that X is a Bernstein subset of \mathbf{R} , we readily conclude that T^* is also a Bernstein set in \mathbf{R} , which completes the proof of Theorem 1.

Example 3. Let H be a Hamel basis of \mathbf{R} which simultaneously is a Bernstein set in \mathbf{R} ; see Example 1. We may assume, without loss of generality, that $H = \{h_{\xi} : \xi < \alpha\}$, where α denotes the least ordinal number of cardinality \mathbf{c} . According to the definition of H, any nonzero element $x \in \mathbf{R}$ admits a unique representation

$$x = q_1 h_{\xi_1} + q_2 h_{\xi_2} + \dots + q_n h_{\xi_n},$$

where n > 0, $q_1 = q_1(x)$, $q_2 = q_2(x)$,..., $q_n = q_n(x)$ are some rational numbers distinct from zero, and $(\xi_1, \xi_2, ..., \xi_n)$ is a strictly increasing sequence of ordinals, all of which are strictly less than α . Further, let us put

$$K' = \{ x \in \mathbf{R} : q_n(x) > 0 \}.$$

Obviously, we may write

$$K' \cup (-K') = \mathbf{R} \setminus \{0\}, \quad K' \cap (-K') = \emptyset.$$

Moreover, since $H \subset K'$ and $-H \subset \mathbf{R} \setminus K'$, we conclude that both K' and -K' are Bernstein sets in \mathbf{R} . Now, denoting

$$K = (K' \times \{0\}) \cup (\{0\} \times (-K')),$$

we infer that $\lambda_2(K) = 0$. At the same time, considering in ${\bf R}^2$ the straight line

$$l = \{(x, y) : x - y = 0\},\$$

one can easily deduce that the orthogonal projection of K on l coincides with the set $l \setminus \{(0,0)\}$, so is λ_1 -measurable in l. This fact explains why in the proof of Theorem 1 we appealed to the aid of an almost Γ -invariant Bernstein subset of \mathbf{R} .

The natural question arises whether it is possible to strengthen Theorem 1 and to establish the existence of an absolute null subset of \mathbf{R}^2 (with respect to the class $\mathcal{M}(\mathbf{R}^2)$), the orthogonal projections of which on all straight lines in \mathbf{R}^2 are absolutely nonmeasurable in those lines. In this context, let us immediately note that such a generalization of Theorem 1 is not realizable within **ZFC** set theory. Indeed, a model of **ZFC** was constructed in which the Continuum Hypothesis (**CH**) fails to be true and in which all uncountable

absolute null subsets of \mathbf{R}^2 have cardinalities ω_1 , where ω_1 denotes the least uncountable cardinal number; for more details, see [12], [13]. Since the cardinality of any Bernstein set is equal to \mathbf{c} , in the above-mentioned model of **ZFC** there exists no absolute null subset of \mathbf{R}^2 whose orthogonal projection on $\mathbf{R} \times \{0\}$ is absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

Nevertheless, by using Martin's Axiom (\mathbf{MA}), it becomes possible to substantially strengthen Theorem 1 in terms of absolute null subsets of \mathbf{R}^2 . For this purpose, we need the notion of a \mathbf{c} -Luzin set in \mathbf{R} .

A set $X \subset \mathbf{R}$ is called a **c**-Luzin subset of **R** if $\operatorname{card}(X) = \mathbf{c}$ and, for every first category set $F \subset \mathbf{R}$, the inequality $\operatorname{card}(F \cap X) < \mathbf{c}$ is satisfied.

It is well known that, under Martin's Axiom, there exist \mathbf{c} -Luzin subsets of \mathbf{R} ; see, e.g., [13]. In our further consideration, two \mathbf{c} -Luzin sets in \mathbf{R} with certain specific properties will play a key role.

Lemma 2. Assuming Martin's Axiom, every \mathbf{c} -Luzin subset of \mathbf{R} is an absolute null set in \mathbf{R} .

Lemma 3. The product of two absolute null subsets of \mathbf{R} is an absolute null subset of \mathbf{R}^2 .

Lemmas 2 and 3 are well known, so we omit their detailed proofs here. Actually, Lemma 3 is Theorem 8.1 from [13], and Lemma 2 is readily implied by the following two assertions:

- (i) Assuming Martin's Axiom, any set $X \subset \mathbf{R}$ with $\operatorname{card}(X) < \mathbf{c}$ is an absolute null subset of \mathbf{R} ;
- (ii) Every σ -finite Borel measure on ${\bf R}$ is concentrated on a first category subset of ${\bf R}$.

In connection with (i), see again [13].

In connection with (ii), see e.g. Chapter 16 in [15] where a more general result than (ii) is discussed for σ -finite Borel measures on metric spaces.

Lemma 4. Under Martin's Axiom, there exists an absolute null subset Z of \mathbf{R}^2 such that, for every straight line l in \mathbf{R}^2 , the equality $\operatorname{card}(l \cap Z) = \mathbf{c}$ holds true

PROOF. Denote by α the least ordinal number of cardinality **c** and define:

 $\{l_{\xi}: \xi < \alpha\}$ = the family of all straight lines in \mathbf{R}^2 not parallel to the coordinate axes $\mathbf{R} \times \{0\}$ and $\{0\} \times \mathbf{R}$;

 $\{B_{\xi}: \xi < \alpha\}$ = the family of all those Borel subsets of **R** which are of first category in **R**.

According to the definition of $\{l_{\xi}: \xi < \alpha\}$, every straight line l in \mathbf{R}^2 given by the equation

$$y = ax + b$$
 $(a \in \mathbf{R}, b \in \mathbf{R}, a \neq 0)$

belongs to $\{l_{\xi}: \xi < \alpha\}$, and we may additionally suppose that l occurs in $\{l_{\xi}: \xi < \alpha\}$ continuum many times.

Now, by using the method of transfinite recursion, construct two injective families

$$\{x_{\xi}: \xi < \alpha\} \subset \mathbf{R}, \quad \{y_{\xi}: \xi < \alpha\} \subset \mathbf{R}.$$

Assume that, for an ordinal number $\xi < \alpha$, the partial families $\{x_{\zeta} : \zeta < \xi\}$ and $\{y_{\zeta} : \zeta < \xi\}$ of points in **R** have already been constructed. Consider the line l_{ξ} . The canonical equation corresponding to this line is of the form

$$y = a_{\xi}x + b_{\xi}$$
 $(a_{\xi} \in \mathbf{R}, b_{\xi} \in \mathbf{R}, a_{\xi} \neq 0).$

Using Martin's Axiom and keeping in mind the relation $a_{\xi} \neq 0$, it is not difficult to check that there exists a point $x' \in \mathbf{R}$ satisfying the following two conditions:

$$x' \not\in (\cup \{B_{\zeta} : \zeta < \xi\}) \cup \{x_{\zeta} : \zeta < \xi\} \cup \{y_{\zeta} : \zeta < \xi\};$$

$$a_{\xi}x' + b_{\xi} \not\in (\cup \{B_{\zeta} : \zeta < \xi\}) \cup \{x_{\zeta} : \zeta < \xi\} \cup \{y_{\zeta} : \zeta < \xi\}.$$

We then put $x_{\xi} = x'$ and $y_{\xi} = a_{\xi}x' + b_{\xi}$.

Proceeding in this manner, we obtain the required two injective α -sequences $\{x_{\xi}: \xi < \alpha\}$ and $\{y_{\xi}: \xi < \alpha\}$ of points of **R**. Further, we put

$$X = \{x_{\xi} : \xi < \alpha\}, \quad Y = \{y_{\xi} : \xi < \alpha\}.$$

It immediately follows from our construction that both X and Y are **c**-Luzin subsets of \mathbf{R} .

By virtue of Lemmas 2 and 3, the product set $Z' = X \times Y$ is an absolute null subset of \mathbf{R}^2 .

Also, it can easily be seen that every line l_{ξ} ($\xi < \alpha$) meets Z' in continuum many points.

Finally, let g be a rotation of \mathbf{R}^2 about the origin (0,0), whose corresponding angle is θ , where $0 < \theta < \pi/2$, and let

$$Z = Z' \cup g(Z').$$

Then Z is an absolute null subset of \mathbb{R}^2 , too, and has continuum many common points with every straight line lying in \mathbb{R}^2 . This completes the proof of the lemma.

As a straightforward consequence of Lemma 4, we obtain that the orthogonal projection of the absolute null set Z on any line l in \mathbf{R}^2 coincides with l.

In this context, it should be mentioned that, under Martin's Axiom, the existence of an absolute null subset of \mathbb{R}^2 , the orthogonal projection of which on every line $l \subset \mathbb{R}^2$ coincides with l, was also shown by Zindulka; see Corollary 3.7 in [17].

Theorem 2. Assuming Martin's Axiom, there exists an absolute null subset T of \mathbb{R}^2 , the orthogonal projection of which on every straight line $l \subset \mathbb{R}^2$ is an absolutely nonmeasurable subset of l.

PROOF. Let Z be as in Lemma 4. We shall construct a set $T \subset Z$ with the desired properties.

In what follows the symbol l(z,z') will denote the straight line passing through two distinct points z and z' in \mathbb{R}^2 .

Also, for any point $t \in \mathbf{R}^2$ and for any straight line $l \subset \mathbf{R}^2$, we will denote by the symbol $pr_l(t)$ the orthogonal projection of t on l.

As earlier, let α be the least ordinal number of cardinality c.

Let $\{(l_{\xi}, P_{\xi}) : \xi < \alpha\}$ be an injective enumeration of all pairs (l, P), where l is a straight line in \mathbb{R}^2 and P is a nonempty perfect subset of l.

Starting with this α -sequence $\{(l_{\xi}, P_{\xi}) : \xi < \alpha\}$, we define by transfinite recursion two disjoint injective families

$$\{t_{\xi}: \xi < \alpha\} \subset Z, \quad \{t'_{\varepsilon}: \xi < \alpha\} \subset Z.$$

Suppose that, for an ordinal $\xi < \alpha$, the two partial families

$$\{t_{\zeta}: \zeta < \xi\} \subset Z, \quad \{t'_{\zeta}: \zeta < \xi\} \subset Z$$

have already been defined. Take the pair (l_{ξ}, P_{ξ}) and introduce the following notation:

$$T_{\xi} = \{t_{\zeta} : \zeta < \xi\};$$

$$T'_{\xi} = \{t'_{\zeta} : \zeta < \xi\};$$

 $\begin{array}{l} T_{\xi} = \{t_{\zeta} : \zeta < \xi\}; \\ T'_{\xi} = \{t'_{\zeta} : \zeta < \xi\}; \\ \mathcal{L}_{\xi} = \text{the family of all those straight lines in } \mathbf{R}^2 \text{ which pass through one of} \end{array}$ the points from $T_{\xi} \cup T'_{\xi}$ and, simultaneously, are perpendicular to one of the straight lines from $\{l_{\zeta}: \zeta \leq \xi\};$

 S_{ξ} = the set of all points $z \in \mathbf{R}^2$ such that $\operatorname{pr}_{l_{\xi}}(z) \in P_{\xi}$. Keeping in mind the relations

$$\operatorname{card}(\xi) < \operatorname{card}(\alpha) = \mathbf{c}, \quad \operatorname{card}(T_{\xi} \cup T'_{\xi}) < \mathbf{c},$$

we immediately get the inequality $\operatorname{card}(\mathcal{L}_{\xi}) < \mathbf{c}$. In addition, remembering the property of Z described in the formulation of Lemma 4, we obtain that every straight line in ${f R}^2$ intersecting P_ξ and perpendicular to l_ξ is entirely contained in the set S_{ξ} and has continuum many common points with Z.

These circumstances imply the existence of two points

$$t \in S_{\xi} \cap Z, \quad t' \in S_{\xi} \cap Z$$

satisfying the following two conditions:

(a) $\operatorname{pr}_{l_{\xi}}(t) \neq \operatorname{pr}_{l_{\xi}}(t')$ and the straight line l(t,t') is not perpendicular to any straight line from the family $\{l_{\zeta}: \zeta < \xi\}$;

(b) $t \notin \cup \mathcal{L}_{\xi}$ and $t' \notin \cup \mathcal{L}_{\xi}$.

We then put $t_{\xi} = t$ and $t'_{\xi} = t'$.

Proceeding in this manner, we come to the two disjoint injective α -sequences

$$\{t_{\xi}: \xi < \alpha\} \subset Z, \quad \{t'_{\xi}: \xi < \alpha\} \subset Z.$$

Finally, we define

$$T = \{t_{\xi} : \xi < \alpha\}, \quad T' = \{t'_{\xi} : \xi < \alpha\},$$

and claim that T is as required.

Indeed, first of all, T is an absolute null set in \mathbb{R}^2 , because T is a subset of the absolute null set Z.

Let l be an arbitrary straight line in \mathbf{R}^2 . There exists an ordinal $\xi < \alpha$ such that $l = l_{\xi}$. From the transfinite construction described above it follows that:

(c) the orthogonal projection $\operatorname{pr}_l(T)$ of T on l has common points with every nonempty perfect subset of l and the orthogonal projection $\operatorname{pr}_l(T')$ of T' on l also has common points with every nonempty perfect subset of l;

(d) $\operatorname{card}(\operatorname{pr}_{l}(T) \cap \operatorname{pr}_{l}(T')) \leq \operatorname{card}(\xi) + 1.$

Indeed, to show the validity of (c), it suffices to note that for any nonempty perfect subset P of l, we have $(l, P) = (l_{\beta}, P_{\beta})$, where $\beta < \alpha$, and

$$\operatorname{pr}_{l}(t_{\beta}) \in P_{\beta}, \quad \operatorname{pr}_{l}(t_{\beta}') \in P_{\beta}$$

by virtue of our transfinite construction.

To show the validity of (d), it suffices to observe that if two ordinal numbers $\zeta < \alpha$ and $\eta < \alpha$ are such that $\max(\zeta, \eta) > \xi$, then the line $l(t_{\zeta}, t'_{\eta})$ cannot be perpendicular to $l = l_{\xi}$; see (a) and (b). Consequently, if a point x belongs to $\operatorname{pr}_{l}(T) \cap \operatorname{pr}_{l}(T')$, then

$$x = \operatorname{pr}_l(t_{\zeta}) = \operatorname{pr}_l(t'_{\eta}),$$

where

$$t_{\zeta} \in T, \quad t'_{\eta} \in T', \quad \zeta \le \xi, \quad \eta \le \xi,$$

whence it follows that the cardinality of the set $\operatorname{pr}_l(T) \cap \operatorname{pr}_l(T')$ does not exceed $\operatorname{card}(\xi) + 1$.

The relations (c) and (d) directly imply that both $\operatorname{pr}_l(T)$ and $\operatorname{pr}_l(T')$ are Bernstein subsets of l, so $\operatorname{pr}_l(T)$ is absolutely nonmeasurable with respect to the class $\mathcal{M}(l)$.

Theorem 2 has thus been proved.

Remark 1. In the literature, the notion of a strong measure zero set was introduced by Borel many years ago and yields an interesting representative of the so-called small sets; cf. [12], [13], [16]. Recall that a subset X of \mathbf{R} has strong measure zero if, for every sequence $\{\varepsilon_n : n = 0, 1, 2, ...\}$ of strictly positive real numbers, there exists a sequence $\{\Delta_n : n = 0, 1, 2, ...\}$ of open intervals in \mathbf{R} which collectively cover X and

$$\lambda_1(\Delta_n) < \varepsilon_n \qquad (n = 0, 1, 2, \dots).$$

The analogous notion makes sense for the plane \mathbf{R}^2 (in the corresponding definition, open intervals should be replaced by open squares and λ_1 should be replaced by λ_2). It is not difficult to show that every strong measure zero set is an absolute null set; see [13]. However, in contrast to absolute null sets in \mathbf{R} (in \mathbf{R}^2), the existence of uncountable strong measure zero subsets of \mathbf{R} (of \mathbf{R}^2) cannot be established within the framework of **ZFC** set theory; see [12], [13]. At the same time, under Martin's Axiom, any **c**-Luzin set in \mathbf{R} (in \mathbf{R}^2) has strong measure zero; see [13]. For strong measure zero subsets of \mathbf{R}^2 no analogue of Theorem 2 is true. Indeed, if Z is a strong measure zero subset of \mathbf{R}^2 , then the orthogonal projection of Z on the coordinate axis $\mathbf{R} \times \{0\}$ is a strong measure zero subset of $\mathbf{R} \times \{0\}$, so is measurable.

Remark 2. A set $Z \subset \mathbf{R}^2$ is called absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R}^2)$ if there exists no measure μ belonging to this class such that $Z \in \operatorname{dom}(\mu)$. Actually, the absolutely nonmeasurable sets with respect to $\mathcal{M}(\mathbf{R}^2)$ are identical with the Bernstein subsets of \mathbf{R}^2 (this fact is a direct analogue of Lemma 1 and its proof does not differ from the proof of Lemma 1; the same argument works for any uncountable Polish topological space). If Z is an arbitrary subset of \mathbf{R}^2 absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R}^2)$ and l is an arbitrary straight line in \mathbf{R}^2 , then the orthogonal projection of Z on l coincides with the whole of l. Indeed, take any point $t \in l$ and consider the straight line l' perpendicular to l and passing through t. Since l' is a nonempty perfect subset of \mathbf{R}^2 and Z is a Bernstein set in \mathbf{R}^2 , we obviously have $Z \cap l' \neq \emptyset$. Consequently, $t \in \operatorname{pr}_l(Z)$ and so $l = \operatorname{pr}_l(Z)$. In particular, we see that the orthogonal projection of an absolutely nonmeasurable subset of \mathbf{R}^2 on any straight line l in \mathbf{R}^2 turns out to be absolutely measurable with respect to the class of all measures defined on various σ -algebras of subsets of l.

References

[1] A. Abian, An example of a nonmeasurable set, Boll. Un. Mat. Ital., **1(4)** (1968), 366–368.

- [2] F. Bernstein, Zur Theorie der trigonometrischen Reihen, Sitzungsber. Sächs. Akad. Wiss. Leipzig. Math.-Natur., Kl. **60** (1908), 325–338.
- [3] C. Burstin, Die Spaltung des Kontinuums in c im L. Sinne nichtmessbare Mengen, Wien. Ber., 125 (1916), 209–217.
- [4] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts, 39, Cambridge Univ. Press, Cambridge, 1997.
- [5] K. Ciesielski, L. Larson, K. Ostaszewski, *I-density continuous functions*, Mem. Amer. Math. Soc., 107(515) (1994).
- [6] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x+y) = f(x) + f(y), Math. Ann., **60** (1905), 459–462.
- [7] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, Berlin, 1995.
- [8] A. B. Kharazishvili, *Nonmeasurable Sets and Functions*, Elsevier, Amsterdam, 2004.
- [9] A. B. Kharazishvili, On a bad descriptive structure of Minkowski's sum of certain small sets in a topological vector space, Theory Stoch. Process., 14(2) (2008), 35–41.
- [10] A. B. Kharazishvili, *Topics in Measure Theory and Real Analysis*, Atlantis Press, Amsterdam-Paris, 2009.
- [11] K. Kuratowski, Topology, 1, Academic Press, London-New York, 1966.
- [12] R. Laver, On the consistency of Borel's conjecture, Acta Math., 137 (1976), 151–169.
- [13] A. W. Miller, *Special subsets of the real line*, Handbook of Set-Theoretic Topology, North-Holland Publ. Co., Amsterdam, 1984, 201–233.
- [14] J. C. Morgan II, Point Set Theory, Marcel Dekker, Inc., New York, 1990.
- [15] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.

- [16] W. F. Pfeffer and K. Prikry, Small spaces, Proc. London Math. Soc., 58(3) (1989), 417–438.
- [17] O. Zindulka, *Dimension zero vs. measure zero*, Proc. Amer. Math. Soc., **128(6)** (2000), 1769–1778.