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Abstract

In this paper, we extend the Hake’s theorem over metric measure
spaces. We provide its measure theoretic versions in terms of the Hen-
stock variational measure VF .

1 Introduction

A function f : [0, 1] → R is said to be Henstock-Kurzweil integrable, with
some λ ∈ R as its integral, if for every ε > 0 there exists a positive function
δ : [0, 1]→ (0, 1), such that the inequality∣∣∣∣ n∑

i=1

f(ti)(xi − xi−1)− λ
∣∣∣∣ < ε

is satisfied whenever 0 = x0 < x1 < x2 < · · · < xn = 1, |xi−xi−1| < δ(ti) and
the tags ti ∈ [xi−1, xi] for each i = 1, . . . , n.

It is well known that the Henstock-Kurzweil integral, or simply the HK-
integral, on real line generalizes the notions of Riemann, Lebesgue and im-
proper integrals. In [19], Ng Wee Leng defined this integral over metric mea-
sure spaces. We further simplified that in [18] and proved some basic results
of this integral over metric measure spaces.

The Hake’s Theorem for real functions is as follows, see [8, Theorem 9.21].
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Theorem 1.1 (Hake). A function f : [0, 1] → R is Henstock-Kurzweil inte-
grable if and only if f is Henstock-Kurzweil integrable over each subinterval
[c, 1] with 0 < c < 1 and the following limit exists

lim
c→0

∫ 1

c

f.

Some generalizations of this theorem for functions on Rm were obtained
by Faure, Muldowney and Skvortsov, see [6, 15]. But both of these use an
abstract concept of integral convergence over a suitable increasing sequence of
figures.

In [17], we proved some simplified measure theoretic extensions of the
Hake’s theorem on Rm, in terms of the variational measures. Our proofs
therein were dependent upon the Euclidean structure of Rm and thence not
valid for functions over general metric measure spaces. We used the following
measure theoretic characterization of the Henstock-Kurzweil integral, which
was first proved by Bongiorno, Di Piazza, and Skvortsov for real valued func-
tions on compact real intervals, see [1].

Theorem 1.2. For an additive set function F , the following are equivalent:

(i) There exists an HK-integrable function f with primitive F,

(ii) The corresponding variational measure VF is absolutely continuous.

The proof of this theorem for functions with real compact domains was
dependent upon the Fundamental Theorem of Calculus for the HK-integral.
The similar result isn’t available for functions on Rm, as there are various
regularity concerns for the derivative of interval functions on Rm, see [23].

There are some extensions of the Fundamental Theorem of Calculus, for
the HK-integral on Rm, introduced by Lee Peng Yee, Lu Jitan and Emmanuel
Cabral, see e.g. [10, 3, 4]. But those may not be used to extend the above
theorem on Rm.

In 2003, Lee Tuo-Yeong proved Theorem 1.2 for functions on compact
intervals in Rm too, see [12]. He proposed a proof, independent of the Fun-
damental Theorem of Calculus, by using Kurzweil and Jarnik’s results on the
differentiability of interval functions in Rm, see [11]. Lee also deduced a ver-
sion of this theorem for the Lebesgue integral when the total variation is finite,
see [12].

Two more alternative and simplified proofs of Theorem 1.2 on Rm were
presented by Lee Tuo Yeong, see [13, 14]. But all of these proofs were intrin-
sically dependent upon the Euclidean structure of Rm. Lee had also declared
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that Theorem 1.2 is unknown for functions on infinite dimensional domains,
for more details see [12, 13, 14].

In this paper, we shall explore into this measure theoretic characterization
of the HK-integral for functions over metric measure spaces. We deduce some
partial results, raise some questions and prove some extensions of the Hake’s
theorem, alternatively.

2 Preliminaries

Throught this paper, we adopt our notations from [18]. Let (X, d) be a metric
space with metric topology T . An open ball in X, of radius r and center x, is
denoted by B(x, r), where x ∈ X and r ≥ 0.

Let T0 denotes the family of open balls in X. For B ∈ T0, B will denote its
closure. Consider the following collections of sets:

I1 := {B1\B2 : B1, B2 ∈ T0 where B1 6⊂ B2 and B2 6⊂ B1},

I2 :=

{⋂
i∈∧

Xi :
⋂
i∈∧

Xi 6= ∅ where Xi ∈ I1, for all i ∈ ∧ and ∧ is a finite set

}
.

Note that the sets in I1 are either closed balls or scalloped balls and any
member of the collection of sets in I2 is a finite intersection of a combination
of closed balls or scalloped balls.

Let B denote the σ-algebra of Borel subsets of X and µ : B → [0,∞) be a
measure satisfying µ({y ∈ X : d(x, y) = r}) = 0, for each x ∈ X and r ≥ 0.
Let Ω denotes the µ-completion of the Borel σ-algebra B, on subsets of X.

Sets in I2 are called generalised intervals or simply intervals whenever there
is no ambiguity. Any finite (possibly just one) union of intervals in X will be
called a figure. Note that, because of our choice of µ, we have µ(I) = µ(I) for
each interval I in X.

Let E be compact figure in X and I be a subinterval of E. For any figure
J ⊂ E, let Sub(J) denotes the collection of compact subintervals of J and
F(J) denotes the algebra generated by Sub(J). Let F = F(E). The following
defines a Riemann-type integral on metric spaces.

Definition 2.1. (i) A finite collection {(xi, Ii) : i = 1, . . . , p} of point-
interval pairs is said to be a partial division in E if Ii’s are mutually
disjoint intervals and xi ∈ Ii, for each i. Further if ∪pi=1Ii = E, it is
called a division of E.

(ii) A positive valued function δ : E → (0,∞) is called a gauge on E. A
division {(xi, Ii) : i = 1, . . . , p} of E is called δ-fine if Ii ⊂ B(xi, δ(xi))
for each i.
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(iii) A function f : E → R is said to be Henstock-Kurzweil integrable (or
simply HK-integrable), with some A ∈ R as its integral, if for every
ε > 0 there is a gauge δ : E → (0,∞) such that the inequality∣∣∣∣ p∑

i=1

f(xi)µ(Ii)−A
∣∣∣∣ < ε

is satisfied, for all δ-fine divisions {(xi, Ii) : i = 1, . . . , p} of E.

We will denote the Henstock-Kurzweil integral of f over E by (HK)
∫
E
fdµ.

A function F : F → R is called the primitive of f if F (J) = (HK)
∫
J
fdµ, for

each J ∈ F .
It is pertinent to mention that the generalized intervals in the HK-integral

cannot be replaced with measurable sets or closed sets, as in that case the
integral will be reduced to the McShane integral, see [16] for more details.

Remarks 2.2. Note that the integral is well-defined only if for each gauge δ
on E there exists at least one δ-fine division of E.

A proof for the existence of such δ-fine divisions is given in [19]. But it
assumes that a closed and bounded interval in a metric space is compact,
which is not true in general. Since we have chosen E to be a compact set, the
existence of a δ-fine division of E is assured.

Remarks 2.3. In [19], the authors state an additional regularity hypothesis
on the measure. But that is redundant as a totally finite measure on a metric
space is always regular, see [21, Proposition 19.13] for more details.

Given any finitely additive set function F : F → R, the Henstock varia-
tional measure VF on subsets of E is defined as follows:

Definition 2.4. (i) For M ⊂ E and a gauge δ : M → (0,∞), define

V (F,M, δ) := sup
P

p∑
i=1

|F (Ii)|

where the supremum is taken over all δ-fine partial divisions
P = {(xi, Ii) : 1 ≤ i ≤ p} in E, which are tagged in M .

(ii) The Henstock variational measure VF on a set M ⊂ E is defined as

VF (M) := inf
δ

V (F,M, δ)

where the infimum is taken over all the gauges δ : M → (0,∞).
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It can be easily seen that when M is a compact real interval then VF (M)
is equal to the standard total variation of F over M , see [22, Lemma 2.2].

In [7, Proposition 3.3], it is proved that on finite dimensional Euclidean
spaces, VF is a metric outer measure. The same proof holds true in case of
metric measure spaces too. Further, an application of [2, Theorem 3.7] shows
that VF is a Borel measure. Finally, if VF is absolutely continuous with respect
to µ then VF is a measure on Ω, see [12, Theorem 3.7].

3 The Main Results

First we restate the Hake’s theorem as follows:

Theorem 3.1. Let f and F be real valued functions over [0, 1] such that
for each interval [c, 1] with 0 < c < 1, f is HK-integrable over [c, 1] with

(HK)
∫ 1

c
f = F (1)− F (c).

Then f is HK-integrable over [0, 1] if and only if F is continuous at 0.

Moreover, in that case we have,
∫ 1

0
f = F (1)− F (0).

We generalize this version of the Hake’s theorem over metric spaces which
also extends our previous results on Hake-type theorems, see [17, Theorem 5.2,
Theorem 5.4]. We observe that the following partial result, as a particular case
of [5, Proposition 2], is valid even on metric measure spaces.

Theorem 3.2. Let f : E → R be an HK-integrable function with primitive
F . Then VF is absolutely continuous with respect to µ.

Next we present some extensions of Theorem 3.1 in our setting.

Theorem 3.3. Let I = B(x, r) be a closed ball in E and its boundary be
∂I := {y ∈ X : d(x, y) = r}. Assume that for each compact interval J ⊂ I
with J ∩ ∂I = ∅, f is HK-integrable over J , with (HK)

∫
J
fdµ = F (J).

Then f is HK-integrable over I if and only if VF (∂I) = 0. Moreover, in
that case we have, (HK)

∫
I
fdµ = F (I).

Proof. If f is HK-integrable over I then by Theorem 3.2, VF is absolutely
continuous with respect to µ. Thus VF (∂I) = 0.

For the converse, assume that VF (∂I) = 0 and let ε > 0 be given. We
choose an increasing sequence of closed balls An = B

(
x, r − 1

n

)
inside I such

that (∪∞n=1An) ∪ ∂I = I.

By our hypothesis, f is HK-integrable over An, for each n ∈ N. Using
Saks-Henstock Lemma, we choose a gauge δn : An → (0,∞) so that the
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inequality
p∑
i=1

|f(ti)µ(Ji)− F (Ji)| ≤
ε

2n+1

is satisfied for any δn−fine partial division {(ti, Ji) : 1 ≤ i ≤ p} of An.
Now we divide the proof in two cases. First we consider the case when

f(t) = 0, for all t ∈ ∂I ∪ (∪n∂An). Set B := ∂I ∪ (∪n∂An). Since f is HK-
integrable over each An, Theorem 3.2 implies that VF (∂An) = 0, for all n ∈ N.
Now since VF is a metric outer measure, we have

VF (B) = VF (∂I ∪ (∪n∂An)) ≤ VF (∂I) +
∑
n

VF (∂An) = 0.

Since VF (B) = 0, we can choose a gauge δ0 : B → (0,∞) such that for
every δ0-fine partial division {(ti, Ji) : 1 ≤ i ≤ p} anchored in B, the following
inequality is satisfied

p∑
i=1

|F (Ji)| <
ε

2
.

Now, we define a gauge δ : I → (0,∞) as follows:

δ(t) =

{
δ0(t) for t ∈ B,
min{δn(t), 12dist(t, ∂An ∪ ∂An−1)} for t ∈ (An \An−1)o.

For any given δ-fine division P = {(ti, Ii) : 1 ≤ i ≤ p} of I, we have∣∣∣∣ p∑
i=1

f(ti)µ(Ii)−F (I)

∣∣∣∣ ≤ ∑
ti∈B
|f(ti)µ(Ii)−F (Ii)|+

∑
ti /∈B

|f(ti)µ(Ii)−F (Ii)|

≤
∑
ti∈B
|F (Ii)|+

∑
n

∑
ti∈(An\An−1)o

|f(ti)µ(Ii)− F (Ii)|

< ε
2 +

∑
n

ε

2n+1
< ε.

This proves that f is HK-integrable over I with primitive F , when f(t) = 0
for all t ∈ B.

For the general case we define a function g : I → R as g = f −f.χB , where
χB denotes the characteristic function of the set B. Then g(t) = 0 for all
t ∈ B. Note that for a compact interval J ⊂ I \ ∂I, g is HK-integrable over
J with integral F (J), as g(t) = f(t) for almost all t ∈ I. As earlier, we get
VF (B) = 0.

Thence, using the previous case, we conclude that g is HK-integrable over
I with integral F (I). Since f(t) = g(t) for almost all t ∈ I, we see that f is
HK-integrable over I with (HK)

∫
I
fdµ = F (I), as the desired conclusion.
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On the similar lines one can also prove the above theorem when I is a
generalized interval. Now we present an alternative proof of [17, Theorem 5.4]
for VF . We observe that the following version of [22, Lemma 3.7], is true for
VF , even in our setting.

Lemma 3.4. Let f : E → R be HK-integrable with (HK)
∫
J
f = F (J), for

every interval J ⊂ I. Then for every M ⊂ E

VF (M) ≤ µ(E). sup{|f(t)| : t ∈M}.

Theorem 3.5. Let A ⊂ E be a closed set such that
(a) f is HK-integrable over A.
(b) For each compact interval J ⊂ E \ A, f is HK-integrable over J , with
integral F (J).

Then VF (A) = 0 if and only if f is HK-integrable over E with

(HK)

∫
E

fdµ = F (E) + (HK)

∫
A

fdµ. (1)

Proof. Since A is a closed subset of E, the set E \ A can be written as a
union of balls, open in the metric space (E, d). Being a compact metric space,
(E, d) is Lindeloff and thus there exists a countable subfamily of those balls,
say {Bn : n ∈ N}, which covers E \ A. For each n ∈ N, define a figure Un as
Un := Bn \ ∪m<nBm.

As in the previous theorem, we first take the case when f(t) = 0, for all
t ∈ A∪(∪n∂Un). Set B := A∪(∪n∂Un). If f is HK-integrable over E, Lemma
3.4 gives us VF (A) = 0. For the converse, we assume that VF (A) = 0. For any
n ∈ N, we write

∂Un = (∂Un ∩A) ∪ (∂Un ∩ (E \A)).

We find a compact figure J ⊂ (E \A) such that ∂Un ∩ (E \A) ⊂ J . Using
our hypothesis, f is HK-integrable over J . Now by Theorem 3.2, we have
VF � µ on J and thence

VF (∂Un ∩ (E \A)) = 0.

Since VF is an outer measure, we have

VF (∂Un) ≤ VF (∂Un ∩A) + VF (∂Un ∩ (E \A)) ≤ VF (A) = 0.

Again the outer measurability of VF implies

VF (B) ≤ VF (A) +
∑
n

VF (∂Un) = 0.
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Let ε > 0 be given. We can choose a gauge δ0 : B → (0,∞) such that
for each δ0-fine partial division P := {(ti, Ji) : 1 ≤ i ≤ p} anchored in B, the
following inequality is satisfied

p∑
i=1

|F (Ji)| <
ε

2
.

Since VF (∂(Un)) = 0, f is HK-integrable over each Un. Using Saks-
Henstock Lemma, we choose a gauge δn : Un → (0,∞) such that the inequality

p∑
i=1

|f(ti)µ(Ji)− F (Ji)| ≤
ε

2n+1

is satisfied for any δn-fine partial division {(ti, Ji) : 1 ≤ i ≤ p} of Un. Next,
we define a gauge δ : E → (0,∞) as follows:

δ(t) =

{
δ0(t) for t ∈ B,
min{δn(t), 12dist(t, ∂Un)} for t ∈ (Un)o.

Now for any δ-fine division P := {(ti, Ii) : 1 ≤ i ≤ p} of E, the following
assertions hold true, due to our choice of δ.∣∣∣∣ p∑
i=1

f(ti)µ(Ii)−F (E)

∣∣∣∣ ≤ ∑
ti∈B
|f(ti)µ(Ii)−F (Ii)|+

∑
ti /∈B

|f(ti)µ(Ii)−F (Ii)|

≤
∑

ti∈B
|F (Ii)|+

∑
n

∑
ti∈(Un)o

|f(ti)µ(Ii)− F (Ii)|

< ε
2 +

∑
n

ε

2n+1
= ε.

Thus f is HK-integrable over E with (HK)
∫
E
fdµ = F (E). Hence we have

proved our result for the case when f(t) = 0 for all t ∈ B.
For the general case, define a function g : E → R as g = f−f.χB , where χB

is the characteristic function of B. Then g(t) = 0 for all t ∈ B and g(t) = f(t)
for all t ∈ E \B.

Note that for any compact interval J ⊂ (E \ B) ⊂ (E \ A), since f is
HK-integrable over J with integral F (J) and f(t) = g(t) for almost all t ∈ J ,
g is HK-integrable over J with integral F (J).

Now as above, we have VF (A) = 0 if and only if g is HK-integrable over
E with (HK)

∫
E
gdµ = F (E), that is, if and only if f −f.χA is HK-integrable

over E with (HK)
∫
E

(f − f.χA)dµ = F (E).
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Since f is given to be integrable over A we observe that VF (A) = 0 if and
only if f is HK-integrable over E with (HK)

∫
E

(f −f.χA)dµ = F (E), that is,

(HK)

∫
E

fdµ = F (E) + (HK)

∫
A

fdµ.

4 Notes and Remarks

We remark that equation (1) in Theorem 3.5 may appear a bit unintuitive,
as one would naturally expect (HK)

∫
E
fdµ = F (E), as the conclusion. This

happens since we are not given any information about the relationship between
f and F , on A. The set function F is given to be the primitive of f , only on
the compact intervals inside E \A.

It should be noted that the one way implications of Theorem 3.3 and Theo-
rem 3.5 are true even for the full variational measure WF , as VF (M) ≤WF (M)
for each M ⊂ E. But we are not certain about the other way implications, see
[22] for more details about WF .

In [9], Henstock presented a generalization of the HK-integral over un-
countable copies of R. He considered the integration of point-interval func-
tions. The properties of this integral are not much unexplored.

Since Theorem 3.2 was the main tool behind our versions of the Hake’s
property, the following questions remain open:

Q 1. Let E be a compact subset of a metric measure space and F : F → R
be a finitely additive set function satisfying VF � µ. Does there exist
an HK-integrable function f : E → R having primitive F?

Q 2. Does there exist an analogue of Theorem 3.2 for point-interval functions,
as considered by Henstock in [9]?
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