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ATOMS AND SINGULAR INTEGRALS ON
COMPLEX DOMAINS

Abstract

We study spaces of homogeneous type, and especially the theory
of atoms, on the boundary of a domain in Cn. We are particularly
interested in atoms for small p, which must satisfy a higher-order mo-
ment condition. We have an axiomatic presentation of these ideas which
avoids a lot of the usual nasty calculations. Examples show that this
new theory is consistent with existing particular instances of atoms.

1 Introduction

There is considerable interest in developing the harmonic analysis of domains
in Cn. Pioneering work in this direction was done in [12], [13], [23]. Further
studies occur in [17], [18], [19], [20], for instance.

Of particular interest in this endeavor is the study of the boundary behavior
of Hp functions, and the action of singular integrals on the boundary. The
situation is subtle because of the Levi geometry of the boundary. If the domain
in question is the unit ball B, then each boundary point has the same geometry.
If instead the domain Ω is strongly pseudoconvex, then boundary points are
generically biholomorphically distinct (see [10]), but they are comparable from
a variety of different viewponts.

The next level of complexity is finite type domains. In this situation, the
boundary geometry varies in a semicontinuous fashion that is quite subtle.
Strongly pseudoconvex points are still generic, but the points of type greater
than 2 exert a strong influence over the shapes of boundary balls and approach
regions for Fatou-type theorems. See [8] for the full story of this geometry.
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The calculations on the boundary of a finite-type domain, even in C2, can
be quite subtle and technical.

In this paper we present an axiomatic geometric means to approach these
problems that avoids a lot of the difficult calculations but still yields useful
results. Specific examples show that this new approach is consistent with
classical results obtained on the types of domains described above. Part of
the inspiration for this work comes from [16] and also from [15]. The work
[14] is a good general reference for the ideas discussed here.

It is a pleasure to thank the referee for a very careful reading of this paper,
and for contributing a number of useful insights.

2 Basic principles

Given a domain Ω ⊆ Cn, we wish to think of ∂Ω as a space of homogeneous
type (see [6, p 66]). This of course is an important device in the harmonic
analysis of a space.

Definition 1. Let X be a set and µ a measure on X. We call (X,µ) a space
of homogeneous type if there is a collection of balls B(P, r) ⊆ X satisfying

(a) 0 < µ(B(P, r)) <∞ for every P ∈ X and r > 0;

(b) There is a C1 > 0 so that µ(B(P, 2r)) ≤ C1 ·µ(B(P, r)) for every P ∈ X
and r > 0;

(c) There is a C2 > 0 so that if B(Q, s) ∩ B(P, r) 6= ∅ and s ≥ r then
B(Q,C2s) ⊇ B(P, r).

In many instances the balls come from a metric, in which case Axiom (c)
is automatically satisfied because of the triangle inequality.

Definition 2. Let Ω be a smoothly bounded domain in Cn. We write

Ω = {z ∈ Cn : ρ(z) < 0} ,

where ρ is a real function with nonvanishing gradient on ∂Ω.
We say that a point P ∈ ∂Ω is Levi pseudoconvex if, for each w =

(w1, w2, . . . , wn) satisfying

n∑
j=1

∂ρ

∂zj
(P )wj = 0 ,

we have
n∑

j,k=1

∂2ρ

∂zj∂zk
(P )wjwk ≥ 0 .
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See [14, §3.2] for more about Levi pseudoconvexity.
In what follows, we shall be working with a fixed, smoothly bounded, Levi

pseudoconvex domain Ω ⊆ Cn.

Definition 3. Let Ω be a smoothly bounded domain in Cn. The Szegő kernel
for Ω, denoted by S(z, ζ), is the reproducing kernel for the Hardy space H2(Ω).
Thus

f(z) =

∫
∂Ω

f(ζ)S(z, ζ) dσ(ζ)

for f ∈ H2 and z ∈ Ω. Furthermore, integration against S(z, ζ) gives the
projection from L2(∂Ω) to H2. [Note here that dσ is the area measure on the
boundary.] [14, §1.5] treats this idea.

Definition 4. Let Ω be as above and P ∈ ∂Ω. Let r > 0. Let S(z, w) be the
Szegő kernel for Ω. We assume that S extends to be continuous on (Ω×Ω)\4,
where4 is the boundary diagonal. [Pseudolocality of the ∂b-Neumann problem
is sufficient for this last to hold.]

For P ∈ ∂Ω, define the ball

β(P, r) = {ζ ∈ ∂Ω : |S(P, ζ)| > 1/r} ∪ {P} .

[The adding on of {P} here is somewhat redundant.]

If ζ1, ζ2 are points of ∂Ω, then let us say the δ(ζ1, ζ2) < 2r if there is a
ball β(P, r), with P ∈ ∂Ω, such that ζ1 ∈ β(P, r) and ζ2 ∈ β(P, r). We can
define δ(ζ1, ζ2) by taking the infimum over r. In other words,

δ(ζ1, ζ2) = inf{r > 0 : ζ1, ζ2 ∈ β(P, r) for some P ∈ ∂Ω} .

If ζ1, ζ2 are points of ∂Ω, then a chain from ζ1 to ζ2 is a sequence of points
p0, p1, . . . , pk such that p0 = ζ1 and pk = ζ2.

Definition 5. If ζ1, ζ2 ∈ ∂Ω, then we set

d(ζ1, ζ2) = inf


k∑
j=1

δ(pj−1, pj) : {pj}kj=0 is a chain from ζ1 to ζ2

 .

It is automatic that d is a metric. In particular, the triangle inequality
follows just from definition chasing.

Definition 6. If P ∈ ∂Ω and r > 0, then define

B(P, r) = {ζ ∈ ∂Ω : d(P, ζ) < r} .
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Equipping ∂Ω as above with surface measure (i.e., (2n − 1)-dimensional
Hausdorff measure—see [9, p 171]), we wish to claim that ∂Ω with the balls
B(P, r) forms a space of homogeneous type. Property (a) is obvious, as any
open set in ∂Ω has positive, finite measure. Property (c) is also clear, be-
cause the balls B(P, r) come from a metric (just use the triangle inequality).
Verification of property (b) requires a bit of work.

We need to observe that ∂Ω, equipped with the metric d, is a directionally
limited metric space in the sense of Federer [9, p 146]. This means that there
is an a priori constant K > 0 so that, if S(P, r) is a sphere in ∂Ω of radius r,
then there can be at most K points in S(P, r) that are spaced at least r apart.
This assertion follows because the Cauchy estimates (see [11, p 87]) give us
an a priori upper bound on the boundary growth of the Szegő kernel, hence a
lower bound on the size of the balls β(P, r).

As a consequence, the Besicovitch covering theorem (see [9, p 147] and, in
particular, see the proof of the Besicovitch covering theorem) are valid on ∂Ω
with the metric and balls as indicated—see Section 3 (particularly Proposition
3.1) below.1 So we know that, if B(P, r) is a fixed ball in ∂Ω, then there are at
most K ′ pairwise disjoint balls B(Pj , r) which touch B(P, r). By the triangle
inequality, all these balls are contained in B(P, 3r). Further, if x is a point of
B(P, 3r) that is not contained in B(P, r) nor in any B(Pj , r) then B(x, r) will
intersect one of those balls. As a result,

B(P, 3r) ⊆ ∪K
′

j=1B(Pj , 2r) .

We see therefore that

µ(B(P, 3r) ≤
K′∑
j=1

µ(B(Pj , 2r)) .

This is a version of property (b). Thus we have:

Modified Axioms for a Space of Homogeneous Type

(a) 0 < µ(B(P, r)) <∞ for every P ∈ X and r > 0;

(b’) Given a ball B(P, r), we can find pairwise disjoint balls B(Pj , r), j =
1, 2, . . . ,K ′, such that

B(P, 3r) ⊆ ∪K
′

j=1B(Pj , 2r) ;

1One of the charming features of the Besicovitch covering theorem is that there is no
measure involved in either its statement or its proof.
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(c) There is a C2 > 0 so that if B(Q, s) ∩ B(P, r) 6= ∅ and s ≥ r then
B(Q,C2s) ⊇ B(P, r).

While a bit more technical, these axioms will suffice for the results that we
wish to prove below.

So we see that ∂Ω is a space of homogeneous type with the modified axioms.

3 A covering theorem

Because we have a directionally limited metric space, we can use standard
arguments (again see [9]) to prove the following covering lemma of Besicovitch:

Proposition 1. There is a number M > 0 with the following property. Let
B(P1, r1), B(P2, r2), . . . , B(Pk, rk) be balls in our metric space X with the
property that no ball contains the center of any other (given a covering, it is
always possible to extract a refinement with this property). Then our collec-
tion of balls can be partitioned into a union of at most M subfamilies so that
each subfamily is pairwise disjoint.

Now a standard argument shows that the Hardy-Littlewood maximal func-
tion

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(t)| dt

is weak-type (1, 1) (see [STW, p. 184] for this concept). The operator M is
trivially bounded on L∞. By Marcinkiewicz interpolation (see [24, p 183]), we
find that M is bounded on Lp for 1 < p ≤ ∞.

4 Singular integrals

Of course the Szegő kernel is created in the context of H2(∂Ω) ⊆ L2(∂Ω).
So it is automatic that the Szegő integral is bounded on L2. There is some
interest in seeing that the Szegő integral S maps Lp to Lp for 1 < p <∞ and
also maps Hp to Hp for 0 < p ≤ 1. We shall first treat the case of the Hardy
spaces. Ideally one would then like to apply an interpolation of operators
theorem to the spaces Hp and L2. Unfortunately such interpolation theorems
do not exist in the generality that we are treating here. So we shall have to
treat the Lp spaces separately.

We first need to define the real-variable Hardy spaces. This is done using
the atomic theory (see [7, p 573]). In fact Coifman and Weiss only treat the
atomic theory on a general space of homogeneous type for p less than or equal
to 1 but close to 1. This is because atoms for that range of p require only
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a very simple mean-value property. Smaller p require a more sophisticated
mean-value property, and it is not at all clear how to define such a property in
a general context. The classical means of formulating the mean-value property
is in terms of orthogonality to certain polynomials. But what is a polynomial
on a general space of homogeneous type? One of our main purposes here is to
present a new way to think about the mean value property that will work in
considerable generality. These ideas are inspired by work in [16, p 165].

5 Atoms

First we treat the case p = 1. Let Ω ⊆ Cn be a smoothly bounded, pseudocon-
vex domain for which the Szegő kernel extends to the boundary as described
in Section 2 above. We use the space-of-homogeneous-type structure as also
described in Section 2. We say that a measurable function a on X is a 1-atom
if

(a) a is supported in a ball B(x, r);

(b) |a(t)| ≤ 1

µ(B(x, r))
for all t ∈ B(x, r);

(c)

∫
a(x) dµ(x) = 0.

We see here in part (c) the very simple mean value property that is suitable for
p = 1 and also for p less than 1 but very near2 to 1. See [7] for a consideration
of this point, and of the limitations on p.

We wish now to give a definition of atom for the full range of p, 0 < p ≤ 1.
If a is to be an atom supported in B(x, r), let µ(B(P, r)) = rα. Of course the
choice of α may depend on P . Then set

k =

[
α

(
1

p
− 1

)]
.

We demand as usual that |a(t)| ≤ 1/µ(B(x, r))1/p. And the mean-value prop-
erty now is ∫

B(x,r)

a(t)ϕ(t)dµ(t) ≤ ‖ϕ‖Ck

2This idea is treated in considerable detail in [KRA3, §2.5, 2.6]. In RN , it is required
that p be greater than (N − 1)/N . The issue is that, for this restricted range of p, an atom
is only required to have mean value 0. For smaller p, some orthogonality to polynomials is
needed. In fairly general settings, it is difficult to say what these polynomials should be,
and what form the orthogonality should take.
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for any ϕ ∈ Ckc (B(x, r)).
An Hp

Re distribution is then any infinite linear combination of p atoms,
with convergence in the distribution topology.

Definition 7. Let Ω be a smoothly bounded domain in Cn. Fix a P ∈ ∂Ω.
We say that Ω is regular if its Szegő kernel satisfies an estimate of the form

‖S(z, · )‖Ck(B(P,r)) ≤ d(z, · )−α−krα ,

for all positive integers k, as long as d(z, P ) ≥ 3r.

Given that the balls β are defined in terms of the Szegő kerneal, this con-
dition is plausible. The reference [21] gives a specific instance (finite type
domains in C2) where the condition may be verified concretely—see particu-
larly Section 5 of that paper, Theorem 5.1, and the discussion at the bottom of
page 133. Of course the regular property also holds on strongly pseudoconvex
domains, as the results of [5] show. And it holds on the disc in C.

Now our principal result is this:

Theorem 2. Let 0 < p ≤ 1. Let Ω be a smoothly bounded domain in Cn
which is regular. Then the Szegő integral maps Hp(∂Ω) to Hp(∂Ω).

Proof. Fix p and let a be a p-atom. Assume that a is supported on the ball
B(P, r). We take the σ-measure of B(P, r) to be some positive number rα.

We will of course make good use of the fact that the Szegő integral is
bounded on L2(∂Ω).

We divide the calculation into two parts:∫
d(z,P )<3r

∣∣∣∣∫
∂Ω

a(ζ)S(z, ζ) dσ(ζ)

∣∣∣∣p dσ(z)

≤
∫
d(z,P )<3r

∣∣∣∣∫
∂Ω

a(ζ)S(z, ζ) dσ(ζ)

∣∣∣∣2 dσ(z)p/2

·
∫
d(z,P )<3r

12/(2−p) dσ(z)(2−p)/2

≤
∥∥∥∥∫ a(ζ)S(z, ζ) dσ(ζ)

∥∥∥∥p
L2

· C · (rα)
(2−p)/2

≤ C ′ · ‖a‖pL2 · rα(2−p)/2

≤ C ′′ ·
(
r−α/p · rα/2

)p
· rα−αp/2

≤ C ′′ .

Our second calculation goes as follows. For d(ζ, P ) > 3r, we let ψ ∈
C∞c (∂Ω) be such that
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(a) ψ(ζ) ≡ 1 for d(ζ, P ) ≤ r;

(b) ψ(ζ) ≡ 0 for d(ζ, P ) > 3r/2.

Now we have:∫
d(z,P )>3r

∣∣∣∣∫
∂Ω

a(ζ)S(z, ζ) dσ(ζ)

∣∣∣∣p dσ(z)

=

∫
d(z,P )>3r

∣∣∣∣∣
∫
d(ζ,P )≤3r/2

a(ζ)|p|ψ(ζ)S(z, ζ) dσ(ζ)

∣∣∣∣∣
p

dσ(z).

Observe that, for fixed z with d(z, P ) > 3r, the function

ζ 7−→ ψ(ζ)S(z, ζ)

lies in C∞c (P, 2r). So we may use the vanishing moment condition on the atom
a to estimate our integral as follows:∫

d(z,P )≥3r

{
‖ψ( · )S(z, · )‖Ck(B(P,r)) · r

k−α/p
}p

dσ((z)

≤
∫
d(z,P )≥3r

{
d(z, · )−α−k · rα−α/p+k

}p
dσ(ζ)

≤ C · r−αp−kp+α · rαp−α+kp .

Here we have used the regular property of the domain. More specifically, if the
derivative falls on the cutoff function then the estimate holds by inspection;
if instead the derivative falls on the kernel then the estimate is precisely the
regular property.

In the next section we treat Lp estimates for the Szegő integral when
1 < p <∞. We shall use the Lions-Peetre K-functional,3 which is an instance
of the real interpolation method (see, for instance, [3, pp 38, 52]).

6 Lp estimates

We begin by proving an interpolation result that is of independent interest.

Proposition 3. Let T be a linear operator that is bounded on H1
Re and

bounded on L2. Then T is bounded on Lp for 1 < p < 2.

3This is a rather technical device. The idea is that one can decompose a function in an
intermediate space Lp into a summand which is in H1

Re and a summand which is in L2.
The construction in the next section illustrates the idea.
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Proof. Fix a p, 1 < p < 2. Then we shall establish the following two
assertions.

(a) To show that, if f ∈ Lp(∂Ω) and K ≥ 1, then there exist f1 ∈ H1
Re and

f2 ∈ L2(∂Ω) with f = f1 + f2 and ‖f1‖H1 ≤ K1−p and ‖f2‖L2 ≤ K2−p;

(b) To show that, if f1 ∈ H1
Re with ‖f1‖H1 ≤ K1−p and f2 ∈ L2 with

‖f2‖L2 ≤ K2−p then f = f1 + f2 ∈ Lp.

Proposition 6.1 then follows from standard techniques (see [3]). We now
proceed to establish these facts (a) and (b).

Fix 1 < p < 2 and let f(ζ) = χB(P,r). Let Ba be that portion of the
ball B(P, r) with Re (ζ1 − P1) < ε and Bb be that portion of the ball B(P, r)
with Re (ζ1 − P1) ≥ ε. We choose ε so that these two sub-balls have the same
σ-measure (although, in the end, this will not really be very important—it is
just convenient). Then we define

f1(ζ) = K2−p+1χB(P ′,K−2) −K2−p+1χB(P ′′,K−2) .

Here the points P ′ and P ′ are points near P so that the two balls B(P ′,K−2)
and B(P ′′,K−2) are disjoint. Also we define

f2(ζ) = f − f1 .

Then it is easy to calculate that ‖f1‖H1 ≈ K1−p and ‖f2‖Lp ≈ K2−p + 1.
These are the sorts of estimates that we want for this particularly simple f .
But a perfectly arbitrary f ∈ Lp can be approximated in norm by a finite linear
combination of such functions with disjoint supports. So the result follows for
general f ∈ Lp.

For the converse direction, suppose that f = f1 + f2 with f1 ∈ H1
Re,

f2 ∈ L2, ‖f1‖H1 ≤ K1−p, and ‖f2‖L2 ≤ K2−p. Define

ϕ(ζ) = Kp−1χB(P,K−2) , (?)

where P is an arbitrarily chosen point in ∂Ω. Then it is easy to calculate that∫
f(ζ)ϕ(ζ) dσ(ζ) =

∫
f1(ζ)ϕ(ζ) dσ(ζ) +

∫
f2(ζ)ϕ(ζ) dσ(ζ)

≤ ‖f1‖H1 · ‖ϕ‖BMO + ‖f2‖L2‖ϕ‖L2

≤ C ·K1−p ·Kp−1 + C ·K2−p ·Kp−2

≤ C .

This is the sort of estimate we seek, but only for the special ϕ indicated in line
(?). But in point of fact any function in BMO or L2 can be approximated in
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norm by a finite linear combination of such functions with disjoint support.
This is a standard idea from measure theory, but see [25]. So that establishes
the result for general ϕ ∈ Lp′(∂Ω).

We have established the standard K-functional decomposition of Lions and
Peetre (see [3]). That in turn gives the interpolation result that we seek. So
the Szegő integral is bounded on Lp, 1 < p < 2. By duality (as noted above),
the Szegő integral is also bounded on Lp, 2 < p <∞.

We shall take it (the matter is treated in the last section) that the Szegő
integral maps H1

Re to L1 and L2 to L2. Now we prove the following:

Theorem 4. The Szegő integral maps Lp(∂Ω) to Lp(∂Ω) for 1 < p ≤ 2. It
also maps H1

Re to H1
Re.

Proof. We know from the last section that the Szegő projection is bounded
on H1

Re and L2. The result now follows from Proposition 6.1.

Theorem 5. The Szegő integral maps Lp(∂Ω) to Lp(∂Ω) for 1 < p < ∞. It
also maps H1

Re to H1
Re.

Proof. The Szegő projection operator is self-adjoint. So a standard duality
argument allows us to derive from Theorem 6.2 that the Szegő operator maps
Lp to Lp for 2 < p <∞.

One could also use duality to prove that the Szegő integral maps BMO to
BMO, but we shall not treat that matter here.

7 Concluding remarks

This paper has presented an abstract and relatively soft way to look at the
question of Lp boundedness of the Szegő integral on domains in Cn. Of course
there are some ambient hypotheses, so the results are not perfectly general.

We hope to explore other, and more general, versions of these results in
future work.
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