
RESEARCH Real Analysis Exchange
Vol. 38(1), 2012/2013, pp. 79–94

Małgorzata Wróbel, Institute of Mathematics and Computer Science, Jan
Długosz University, Armii Krajowej 13/15, 42-200 Częstochowa, Poland.
email: m.wrobel@ajd.czest.pl

LOCALLY DEFINED OPERATORS IN THE
SPACE OF FUNCTIONS OF BOUNDED

ϕ–VARIATION

Abstract
We prove that every locally defined operator mapping the space of

continuous and bounded ϕ-variation functions into itself is a Nemytskij
composition operator.

1 Introduction.

Let I = [a, b] be a closed interval of the real line R (a, b ∈ R, a < b) and let
G = G(I), H = H(I) be function spaces ϕ : I → R. An operator K : G → H is
called locally defined, or (G,H)-local or briefly local, if for every open interval
J ⊂ R and for all functions f, g ∈ G, the implication

f |J∩I = g|J∩I =⇒ K(f)|J∩I = K(g)|J∩I

holds true. For some pairs (G,H) of function spaces the forms of local operators
K : G → H (or their representation theorems) have been established. For
instance, in [6] it was done in the case when G = Cn(I) and H = C(I) or
H = C1(I), in [9, 10, 15] in the case when G and H are the spaces of n-times
and k-times, respectively, Whitney differentiable functions, in [17] in the case
when G is the space of Hölder functions and H = C(I) (cf. also [16] and [1]).

Note that if a local operator K maps the space of continuous functions
C(I) into itself, then

K(ϕ)(x) = h
(
x, ϕ(x)

)
, ϕ ∈ C(I), x ∈ I,
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for a uniquely determined continuous function h : I × R → R, that is K is
a Nemytskij composition operator ([6]). The same representation formula
remains true when G = H = C1(I) but, surprisingly enough, in this case the
function h need not be even continuous ([6], see also [1] p. 325).

In the present paper we give a representation formula for local operators
which are self-mappings of a Banach space of continuous functions of (gener-
alized) bounded ϕ-variation.

2 Preliminaries.

Let I = [a, b] be a closed interval of the real axis. As usually, RI stands for
the set of all real functions f : I → R.

Denote by F the set of all convex functions ϕ : [0,∞) → [0,∞) such that
ϕ(0) = 0 and ϕ(u) > 0 for u > 0. Note that ([4, Remark 2.1]), if ϕ ∈ F , then
it is continuous, strictly increasing, lim

u→∞
ϕ(u) =∞ and superadditive, i.e.,

ϕ(u) + ϕ(v) ≤ ϕ(u+ v); u ≥ 0, v ≥ 0. (1)

Indeed, the convexity of ϕ implies that the function (0,∞) 3 t 7→ ϕ(t)
t is

nondecreasing, whence, for all u ≥ 0 and v ≥ 0, we have

ϕ(u+ v) =
ϕ(u+ v)

u+ v
u+

ϕ(u+ v)

u+ v
v ≤ ϕ(u)

u
u+

ϕ(v)

v
v = ϕ(u) + ϕ(v),

and
ϕ(tu) ≤ tϕ(u); u ≥ 0, t ∈ [0, 1]. (2)

Given a function ϕ ∈ F , we say that f : I → R is a function of bounded
ϕ-variation in I, and write f ∈ BVϕ(I), if the ϕ-variation of f on I, defined
by

Vϕ(f, I) := sup{σ(f, P ) : P ∈ P(I)}, (3)

is finite; here

σ(f, P ) :=
m∑
i=1

ϕ
(∣∣f(ti)− f(ti−1)∣∣),

and P(I) stands for the set of all partitions

P = (t0, t1, . . . , tm−1, tm), a = t0 < t1 < . . . < tm−1 < tm = b,

of the closed interval I.
Clearly, BVϕ(I) coincides with the classical concept of variation in the

sense of Jordan ([12, Chapter 8]) if ϕ = idI , and in the sense of Wiener [14]
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if ϕ(u) = up, u ≥ 0, p > 1. The general definition was introduced by Young
[18].

It is known that BVϕ(I) is convex, but it is not necessarily a linear space.
Define the space Wϕ(I) as follows:

f ∈Wϕ(I) if there exists λ > 0 such that
f

λ
∈ BVϕ(I).

The set Wϕ(I) is a linear space. Indeed, if fj ∈Wϕ(I), then Vϕ
(
fj
λ

)
<∞ for

some λj > 0, j = 1, 2, and, by the convexity of the functional Vϕ, we get

Vϕ

(
f1 + f2
λ1 + λ2

)
≤ λ1
λ1 + λ2

Vϕ

(
f1
λ1

)
+

λ2
λ1 + λ2

Vϕ

(
f2
λ2

)
,

whence f1+f2 ∈Wϕ(I). Obviously, λf ∈Wϕ(I) for all λ ∈ R and f ∈Wϕ(I).
There is a vast literature concerning the space of functions of generalized

ϕ-variation (see, for instance, [2, 3, 8, 13]).
Recall that Maligranda and Orlicz [8] proved that the spaceWϕ(I) endowed

with the norm ‖f‖ϕ = |f(a)|+ pϕ(f), where

pϕ(f) = pϕ(f, I) = inf

{
λ > 0: Vϕ

(
f

λ

)
≤ 1

}
, f ∈Wϕ(I), (4)

is a Banach algebra. The seminorm defined by (4) is called the Luxemburg–
Nakano–Orlicz seminorm [7, 11, 12].

In order to establish some relations between the spaces Wϕ(I), generated
by different functions ϕ ∈ F , let us recall the following definition from [3].
Given ϕ,ψ ∈ F , we write ψ � ϕ and say that ϕ dominates ψ near zero if
there exist r > 0, c > 0 and t0 > 0 such that ψ(t) ≤ rϕ(ct) for all t ∈ [0, t0].

3 Local operators.

From now on, let CWϕ(I) = Wϕ(I) ∩ C(I), where C(I) stands for the space
of continuous functions defined on I.

Recall the following properties of the functional Vϕ:

1. Vϕ is nondecreasing, i.e., if J1, J2 are sub-intervals of J and J1 ⊂ J2,
then Vϕ(f, J1) < Vϕ(f, J2);

2. Vϕ is semi-additive, i.e., if J1, J2 are sub-intervals of J such that J1 ∩ J2
is a singleton, then Vϕ(f, J1) + Vϕ(f, J2) ≤ Vϕ(f, J1 ∪ J2);
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3. Vϕ is sequentially lower semicontinuous, i.e.,

Vϕ(f, I) ≤ lim inf
n→∞

Vϕ(fn, I),

if fn ∈ RI , n ∈ N, and lim
n→∞

fn(x) = f(x) for all x ∈ I.

Remark 1. For P,Q ∈ P(I), P = (p0, p1, . . . , pm), Q = (q0, q1, . . . , qn), we
say that P � Q if {p0, p1, . . . , pm} ⊂ {q0, q1, . . . , qn}. Of course, (P(I),�) is
partially ordered.

Chistyakov ([2], p. 1459) observed that if f is an arbitrary bounded mono-
tonic function on I and P,Q ∈ P(I), P � Q, then

σ(f,Q) ≤ σ(f, P ),

and, consequently,

Vϕ

(
f

λ
, I

)
= Vϕ

(
|f(b)− f(a)|

λ

)
,

for all λ > 0.

Lemma 2. Let I = [a, b] ⊂ R (a, b ∈ R, a < b), n ∈ N, (xk, yk) ∈ I × R,
k = 0, . . . , n, such that

a = x0 < x1 < . . . < xn−1 < xn = b

be fixed. If the function f : I → R is defined by

f(t) =

{
yi if t = xi, i = 0, . . . , n,
affine otherwise,

then

Vϕ(f, I) = max
{ l∑
s=1

ϕ(|yjs − yjs−1
|) : l ∈ {1, . . . , n}; yj0 = y0, yjl = ym

}
.

Proof. Let (yjs)
l0
s=0, l0 ∈ {1, . . . , n}, be a subsequence of (yk)nk=0 such that

yj0 = y0, yjl0 = yn, and

l0∑
s=1

ϕ(|yjs − yjs−1 |)

= max
{ l∑
s=1

ϕ(|yjs − yjs−1 |) : l ∈ {1, . . . , n}; yj0 = y0, yjl = yn

}
.
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Since (xjs)
l0
s=0 is a partition of I, we have

l0∑
s=1

ϕ(|yjs − yjs−1
|) ≤ Vϕ(f, I).

To prove the inverse inequality, take an arbitrary partition P = (ti)
m
i=0 ∈

P(I) and assume that f(t0) ≤ f(t1). Let k1 be the larger of the numbers
1, . . . ,m such that

y0 = f(t0) ≤ f(t1) ≤ . . . ≤ f(tk1). (5)

Then there exists j1 ∈ {1, . . . , n} such that xj1−1 < tk1 ≤ xj1 or xj1 < tk1 ≤
xj1+1 and

f(tk1) ≤ yj1 . (6)

Thus, by inequality (1) and the monotonicity of ϕ, we get

k1∑
s=1

ϕ
(∣∣f(ts)− f(ts−1)∣∣) ≤ ϕ( k1∑

s=1

(
f(ts)− f(ts−1)

))
= ϕ

(
f(tk1)− f(t0)

)
≤ ϕ(yj1 − y0),

(7)

whence, if k1 = m, then
m∑
s=1

ϕ
(∣∣f(ts)− f(ts−1)∣∣) ≤ ϕ(yn − y0) = ϕ

(∣∣yn − y0∣∣). (8)

If k1 < m, then f(tk1) > f(tk1+1). Analogously, denoting by k2 the larger
of numbers k1 + 1, . . . ,m such that

f(tk1) > f(tk1+1) ≥ . . . ≥ f(tk2), (9)

by the definition of f, there exists j2 such that

j2 ∈ {j1 + 1, . . . , n} if tk1 ∈ (xj1−1, xj ];
j2 ∈ {j1, . . . , n} if tk1 ∈ (xj1 , xj1+1],

f(tk2) ≥ yj2 , (10)

and either tk2 ∈ (xj2−1, xj2 ] or tk2 ∈ (xj2 , xj2+1].
Hence, applying (6), (9), (10), inequality (1) and the monotonicity of ϕ,

we obtain
k2∑
s=k1

ϕ
(∣∣f(ts)− f(ts−1)∣∣) ≤ ϕ( k2∑

s=k1

(
f(ts−1)− f(ts)

))
= ϕ

(
f(tk1)− f(tk2)

)
≤ ϕ(yj1 − yj2),
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as yj1 > yj2 , and consequently, by (7),

k2∑
s=1

ϕ
(∣∣f(ts)− f(ts−1)∣∣) ≤ ϕ(yj1 − y0) + ϕ (yj1 − yj2)

= ϕ
(∣∣yj1 − y0∣∣)+ ϕ

(∣∣yj2 − yj1∣∣).
Therefore, if k2 = m, then

m∑
s=1

ϕ
(∣∣f(ts)− f(ts−1)∣∣) ≤ ϕ(∣∣y1 − y0∣∣)+ ϕ

(∣∣yjn − yj1 ∣∣).
If k2 < m, then f(tk2) < f(tk2+1), and we can repeat the above procedure

for k2. By the definition of f , after l steps, we obtain
m∑
s=1

ϕ
(∣∣f(ts)−f(ts−1)∣∣) ≤ ϕ(∣∣yj1−y0∣∣)+ϕ(∣∣yj1−yj2∣∣)+ . . .+ϕ(∣∣yjl−1

−yn
∣∣),

where l ∈ {j2 + 1, . . . , n} and yjl = yn; which completes the proof.

Theorem 3. Let ϕ ∈ F and I = [a, b], a, b ∈ R, a < b, be a closed interval.
If a locally defined operator K maps CWϕ(I) into C(I), then there exists a
unique function h : I × R→ R such that, for all f ∈ CWϕ(I),

K(f)(s) = h(s, f(s)), s ∈ I. (11)

Proof. First we show that for every f, g ∈ CWϕ(I) and for every s0 ∈ int I
the condition

f(s0) = g(s0) (12)

implies that
K(f)(s0) = K(g)(s0). (13)

To this end take an arbitrary pair of functions f, g ∈ CWϕ(I) fulfilling
condition (12) and choose s0 ∈ int I arbitrarily. Define

γ(t) =

{
f(t) for t ∈ [a, s0]
g(t) for t ∈ (s0, b]

.

To prove that γ ∈ CWϕ(I), define f1, g1 : I → R by

f1(t) =

{
f(t)− f(s0) for t ∈ [a, s0]
0 for t ∈ (s0, b]

,

g1(t) =

{
0 for t ∈ [a, s0]
g(t)− g(s0) for t ∈ (s0, b]

.
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Since f, g ∈ CWϕ(I), we get Vϕ
(
f
λ

)
and Vϕ

(
g
µ

)
are finite for some λ, µ > 0.

Let P = (ti)
m
i=0 be a partition of I such that tk−1 ≤ s0 ≤ tk for some 1 ≤ k ≤

m. Then, by the property of ϕ that ϕ(0) = 0,

m∑
i=1

ϕ

(∣∣∣∣f1λ (ti)−
f1
λ
(ti−1)

∣∣∣∣)=

k−1∑
i=1

ϕ

(∣∣∣∣fλ (ti)−fλ (ti−1)
∣∣∣∣)+ϕ(∣∣∣∣fλ (s0)−fλ (tk−1)

∣∣∣∣)
and
m∑
i=1

ϕ

(∣∣∣∣g1µ (ti)−
g1
µ
(ti−1)

∣∣∣∣)=ϕ

(∣∣∣∣ gµ (tk)− gµ (s0)
∣∣∣∣)+ m∑

i=k+1

ϕ

(∣∣∣∣ gµ (ti)− gµ (ti−1)
∣∣∣∣).

Hence, applying the monotonicity of Vϕ, we have that Vϕ
(
f1
λ

)
and Vϕ

(
g1
µ

)
are finite, and, finally, that f1 + g1 ∈ CWϕ(I) as CWϕ(I) is a linear space.
Thus

Vϕ

(
f1 + g1
τ

)
<∞ (14)

for some τ > 0. Since (f1+g1)(s)−(f1+g1)(t) = γ(s)−γ(t) for all s, t ∈ [a, b],
condition (14) implies that γ ∈ CWϕ(I).

Since

f |(−∞,s0)∩I = γ|(−∞,s0)∩I , g|(−∞,s0)∩I = γ|(−∞,s0)∩I ,

by the definition of a local operator, we get

K(f)|(−∞,s0)∩I = K(γ)|(−∞,s0)∩I , K(g)|(−∞,s0)∩I = K(γ)|(−∞,s0)∩I .

Therefore, by the continuity of K(f), K(γ) and K(g) at s0, we get

K(f)(s0) = K(γ)(s0) = K(g)(s0).

Suppose now that s0 is the left endpoint of the interval I (i.e., s0 = a). By
the continuity of f and g at s0, there exists a sequence (sn)n∈N such that

s0 < sn+1 < sn,
∣∣sn − s0∣∣ < b− s0

n
, n ∈ N,

and ∣∣f(sn)− f(s0)∣∣ < 1

n2
,
∣∣g(sn)− g(s0)∣∣ < 1

n2
, n ∈ N. (15)

Define the sequence of functions γn : [a, b]→ R, n ∈ N, in the following way:
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γ2k(t) =



f(s2k)−f(s0)
s2k−s0 (t− s0) + f(s0) for t ∈ [s0, s2k]

g(s2i−1)−f(s2i)
s2i−1−s2i (t− s2i) + f(s2i) for t ∈ (s2i, s2i−1], i ∈ {1, . . . , k}

f(s2i)−g(s2i+1)
s2i−s2i+1

(t− s2i+1) + g(s2i+1) for t ∈ (s2i+1, s2i], i ∈ {1, . . . , k − 1}

g(s1) for t ∈ (s1, b]

γ2k−1(t) =



g(s2k−1)−g(s0)
s2k−1−s0 (t− s0) + g(s0) for t ∈ [s0, s2k−1]

f(s2i−2)−g(s2i−1)
s2i−2−s2i−1

(t− s2i−1) + g(s2i−1) for t ∈ (s2i−1, s2i−2], i ∈ {2, . . . , k}

g(s2i−3)−f(s2i−2)
s2i−3−s2i−2

(t− s2i−2) + f(s2i−2) for t ∈ (s2i−2, s2i−3], i ∈ {2, . . . , k}

g(s1) for t ∈ (s1, b]

for all k ∈ N.
We show that γn ∈ BVϕ(I), n ∈ N. By the definition of γ2k, k ∈ N, the

triangle inequality, (12) and (15), we have

∣∣γ2k(si)− γ2k(s0)∣∣ < 2

i2

and∣∣γ2k(si)− γ2k(sj)∣∣ ≤ ∣∣γ2k(si)− γ2k(s0)∣∣+ ∣∣γ2k(sj)− γ2k(s0)∣∣ ≤ 1

i2
+

1

j2
<

2

i2
,

for all i, j ∈ {1, . . . , 2k}, i < j. Hence, applying the monotonicity of ϕ,
inequality (2) with t = 1

i2 , i ∈ N, we get

ϕ
(∣∣γ2k(si)− γ2k(s0)∣∣) ≤ ϕ( 2

i2

)
≤ 1

i2
ϕ(2), i ∈ {1, . . . , 2k},

and

ϕ
(∣∣γ2k(si)− γ2k(sj)∣∣) ≤ ϕ( 2

i2

)
≤ 1

i2
ϕ(2), i, j ∈ {1, . . . , 2k}, i < j.
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Therefore, taking into account Lemma 2 with n = 2k + 1 and

(x0, y0) =
(
s0, f(s0)

)
,

(x1, y1) =
(
s2k, f(s2k)

)
,

(x2, y2) =
(
s2k−1, g(s2k−1)

)
,

. . .

(xn−1, yn−1) =
(
s1, g(s1)

)
, (xn, yn) =

(
b, g(s1)

)
,

we get, for all k ∈ N,

Vϕ(γ2k, I) =max
{
ϕ
(∣∣γ2k(s0)− γ2k(sjl)∣∣)+ ϕ

(∣∣γ2k(sjl)− γ2k(sjl−1
)
∣∣)

+ . . .+ ϕ
(∣∣γ2k(sj1)− γ2k(s1)∣∣) : l ∈ {1, . . . , 2k}}

≤ 1

j2l
ϕ(2) +

1

j2l−1
ϕ(2) + . . .+

1

j2i
ϕ(2) + ϕ(2),

and, finally,

Vϕ(γ2k, I) ≤ ϕ(2)
2k∑
i=1

1

i2
. (16)

Similar reasoning shows that

Vϕ(γ2k−1, I) ≤ ϕ(2)
2k−1∑
i=1

1

i2
, k ∈ N,

which together with (16) implies that γn ∈ BVϕ(I) and

Vϕ(γn, I) ≤ ϕ(2)
n∑
i=1

1

i2
, k ∈ N. (17)

Let us note that, by the definition of γn,

γ2k−1(s0) = γ2k(s0) = f(s0) = g(s0), k ∈ N, (18)

and, for all k, i ∈ N,

γ2k(s2k) = f(s2k) = γ2k+i(s2k),

γ2k−1(s2k−1) = g(s2k−1) = γ2k−1+i(sk−1).
(19)
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Moreover, let us observe that for every t ∈ I \ {sn : n ∈ N} there exists n0 ∈ N
such that

γn(t) = γn0
(t), n ≥ n0, n ∈ N. (20)

Put
γ(t) := lim

n→∞
γn(t), t ∈ I.

By (18), (19) and (20) the function γ is well defined and∣∣γ(t)−γ(s2k)∣∣ ≤ ∣∣g(s2k+1)−f(s2k)
∣∣ ≤ ∣∣g(s2k+1)−g(s0)

∣∣+∣∣f(s2k)−f(s0)∣∣ (21)

for all t ∈ [s2k+1, s2k), and∣∣γ(t)−γ(s2k)∣∣ ≤ ∣∣g(s2k−1)−f(s2k)∣∣ ≤ ∣∣g(s2k−1)−g(s0)∣∣+∣∣f(s2k)−f(s0)∣∣ (22)

for all t ∈ [s2k, s2k−1).
To show that γ is continuous at s0, fix ε > 0. By the continuity of f and

g at s0, there exists n0 ∈ N such that∣∣g(sn)− g(s0)∣∣ < ε

3
,
∣∣f(sn)− f(s0)∣∣ < ε

3
; n ∈ N, n ≥ n0. (23)

Take an arbitrary t ∈ (x0, sn0). There exists k ∈ N such that 2k − 1 > n0
and either t ∈ [s2k+1, s2k) or t ∈ [s2k, s2k−1).

Since, by the triangle inequality and (18),∣∣γ(t)− γ(s0)∣∣ ≤ ∣∣γ(t)− γ(s2k)∣∣+ ∣∣γ(s2k)− γ(s0)∣∣
=
∣∣γ(t)− γ(s2k)∣∣+ ∣∣f(s2k)− f(s0)∣∣,

therefore, by (21) and (23),∣∣γ(t)− γ(s0)∣∣ ≤ ∣∣g(s2k+1)− g(s0)
∣∣+ 2

∣∣f(s2k)− f(s0)∣∣ < ε

in the case when t ∈ [s2k+1, s2k), and, by (22) and (23),∣∣γ(t)− γ(s0)∣∣ ≤ ∣∣g(s2k−1)− g(s0)∣∣+ 2
∣∣f(s2k)− f(s0)∣∣ < ε

in the case when t ∈ [s2k, s2k−1). As the continuity of γ at the remaining
points is obvious, γ is continuous.

Moreover, by the lower semicontinuity of Vϕ and (17),

Vϕ(γ, I) ≤ lim inf
n→∞

ϕ(2)

n∑
i=1

1

i2
,
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and the convergence of the series
∞∑
i=1

1
i2 implies that γ ∈ BVϕ(I).

Thus there exists a function γ ∈ CWϕ(I) (with λ = 1) and a sequence
(sk)k∈N such that

γ(s2k−1) = g(s2k−1), γ(s2k) = f(s2k), sk ∈ I, k ∈ N.

According to the first part of the proof, we have

K(γ)(s2k−1) = K(g)(s2k−1), K(γ)(s2k) = K(f)(s2k), k ∈ N.

Hence, by the continuity of K(γ), K(f) and K(g) at s0, letting k → ∞, we
get (13).

When x0 is the right endpoint of I, the argument is similar.
Now, we are in a position to construct the function h. For an arbitrary

y0 ∈ R let us define a function Py0 : I → R by

Py0(t) := y0, t ∈ I. (24)

Of course, Py0 , as a constant function, belongs to CWϕ(I). To define the
function h : I × R→ R, fix s0 ∈ I, y0 ∈ R arbitrarily and put

h(s0, y0) := K(Py0)(s0). (25)

Since, by (24), for all functions f ,

f(s0) = Pf(s0)(s0),

according to what has already been proved, we have

K(f)(s0) = K(Pf(s0))(s0) = h
(
s0, f(s0)

)
.

As the uniqueness of the function h is obvious, the proof is completed.

As a by-product of the proof of the above theorem we obtain the following

Remark 4. By the construction of γ it follows that if f(a) = g(a) (or f(b) =
g(b)) and f, g are continuous (not necessarily of bounded ϕ-variation), then
there exist a sequence (xk)k∈N convergent to a (or b, respectively) and γ ∈
Wϕ(I) such that

γ(x2k) = f(x2k) and γ(x2k−1) = g(x2k−1),

for all k ∈ N.
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Definition 5. Let X ⊂ R and a function h : X × R → R be fixed. The
mapping H : RX → RX given by

H(f)(x) := h
(
x, f(x)

)
, ϕ ∈ RX , (x ∈ X),

is said to be a composition (Nemytskij or superposition) operator. The function
h is referred to as the generator of the operator H. (Here RX denotes the set
of all functions f : X → R).

As an immediate consequence of Theorem 3 we obtain

Corollary 6. Let I = [a, b] (a, b ∈ R, a < b) be a closed interval. If a local
operator K maps CWϕ(I) into C(I), then it is a Nemytskij (composition)
operator, i.e., there exists a unique function h : I × R→ R such that

K(f)(t) = h
(
t, f(t)

)
, t ∈ I,

for all f ∈ CWϕ(I).

Now, let us consider locally defined operators acting between two spaces
of continuous functions of generalized bounded variation.

Let ϕ,ψ ∈ F . Note that if a local operator K maps CWϕ(I) into CWψ(I),
then, obviously, K maps CWϕ(I) into C(I). Therefore, by Theorem 3, we
have

Theorem 7. Let ϕ,ψ ∈ F and I = [a, b] (a, b ∈ R, a < b) be a closed interval.
If a locally defined operator K maps CWϕ(I) into CWψ(I), then there exists
a unique function h : I × R→ R such that, for all f ∈ CWϕ(I),

K(f)(s) = h
(
s, f(s)

)
, s ∈ I.

Corollary 8. Let ϕ,ψ ∈ F and I = [a, b] be a closed interval. If a locally de-
fined operator K maps CWϕ(I) into CWψ(I), then it is a Nemytskij operator.

4 A characterization of some generators of the Nemytskij
operator.

Definition 9. Let G1(X,Y ) ⊂ Y X with a norm ‖·‖1 and G2(X,Y ) ⊂ Y X with
a norm ‖ · ‖2 be two Banach spaces. We say that an operator H : G1(X,Y )→
G2(X,Y ) satisfies the (global) Lipschitz condition if there is a constant 0 <
µ < 1 such that

‖H(f1)−H(f2)‖2 ≤ µ‖f1 − f2‖1, f1, f2 ∈ G1(X,Y ). (26)
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Let us quote the following result.

Theorem 10 ([4, Theorem 3.1, Remark 3.6]). Let (X, | · |X), (Y, | · |Y ) be
real normed spaces and let C be a closed convex subset of X. Suppose that
ϕ,ψ ∈ F and h : I×C → Y . If a composition operator H : CI → Y I generated
by h maps Wϕ(I, C) into Wψ(I, Y ) and is uniformly continuous, then the left
regularization of h, i.e., the function h− : I− ×X → Y , defined by

h−(t, y) := lim
s↑t

h(s, y), t ∈ I−; y ∈ C,

exists and
h−(t, y) = A(t)y +B(t), t ∈ I−; y ∈ C,

for some A : I− → L(X,Y )I and B ∈ BVψ(I−, Y ). Moreover, the functions
A and B are left continuous in I−. (Here L(X,Y ) stands for the space of all
linear mappings A : X → Y and I− := I \ {inf I}).

Thus, under the additional assumption that the locally defined operator
is uniformly continuous, we get a complete characterization of its generating
function h. Namely, we get the following

Theorem 11. Let ϕ,ψ ∈ F and I = [a, b] (a, b ∈ R, a < b) be a closed
interval. If a local operator K : CWϕ(I) → CWψ(I) is uniformly continuous,
then there exist a, b ∈ CWψ(I) such that

K(f)(s) = a(s)f(s) + b(s), f ∈ CWϕ(I), (s ∈ I). (27)

Moreover, if ψ � ϕ and an operator K : RI → RI is defined by (27)
for some functions a, b ∈ CWψ(I), then the operator K maps CWϕ(I) into
CWψ(I), is locally defined and satisfies the global Lipschitz condition (so it is
uniformly continuous).

Proof. By Theorem 7 there exists a unique function h : I×R→ R such that
(11) holds for all f ∈ CWϕ(I). Fix (x0, y0) ∈ I×R, take an arbitrary sequence
(xn), for n ∈ N and xn ∈ I, convergent to x0 and the function Py0 : I → R
defined by (24). Since, by (25),∣∣h(xn, y0)− h(x0, y0)∣∣ = ∣∣h(xn, Py0(xn))− h(x0, Py0(x0)∣∣

=
∣∣K(Py0)(xn)−K(Py0)(x0)

∣∣,
applying the continuity ofK(Py0) at x0, we get the continuity of h with respect
to the first variable. Thus, by Theorem 10,

h(t, y) = a(t)y + b(t), t ∈ I, y ∈ R,
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for some a, b : I → R. Since h(·, y0) = K
(
Py0(·)

)
∈ CWϕ(I) for all y ∈ R

(where Py0 : I → R is defined by (24)) and b(t) = h(t, 0); a(t) = h(t, 1)− b(t),
the functions a, b ∈ CWψ(I) which together with (11) gives the required claim.

Since every operator defined by (27) is local, we get the inverse statement
by [2, Theorem 7(b)], which completes the proof.

Remark 12. Every Lipschitzian local operator acting from CWϕ(I) into
CWψ(I) is an affine mapping.

5 An application.

The composition operator plays an important role in the theory of functional
equations of the iterative type

f(x) = h
(
x, f(α(x)

)
, x ∈ I, (28)

where α : I → I and h : I × R → R are given and f is unknown. Note that,
taking into account the definition of composition operator H, equation (28)
can be written as

f = (H ◦ F )(f),
where the operator F (f) := f ◦ α, under some fairly general assumptions on
α, is linear and ‖F‖ < ∞. Since the existence and uniqueness of solutions
of equation (2) depends on the class of the unknown function, the fixed point
theory is frequently used in this field (cf. for instance [5]).

An application of the classical Banach principle to equation (28) requires
H ◦F to be a contraction mapping. This usually implies that H is Lipschitzian
(with a constant µ such that µ‖F‖ < 1). In particular, to apply this method
to find a solution f in the class CWϕ(I) it is necessary to assume that H
satisfies condition (26) and, according to our Theorem 11, that the generator
h of the operator H is of form (27). Consequently, the study of solutions
f ∈ CWϕ(I) of equation (28) with the aid of the Banach metod is possible
only if f is linear, i.e., if it is of the form

f(x) = a(x)f
(
α(x)

)
+ b(x), x ∈ I.
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