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THE INJECTIVITY OF THE CROFTON
TRANSFORM

Abstract

As an extension of a result from [F] an example is constructed of two
different plane curves whose Crofton transforms are almost everywhere
finite and equal each other on a metrically dense set.

1 Introduction

Let L denote the space of all lines in R2 endowed with the natural topology
and measure. The reader is referred to [F] for the definition of this natural
topology and measure on L as well as other definitions not in this paper. The
result obtained in [F] (Theorem 10.1) states that within a certain subclass
of rectifiable subsets of R2 (which includes in particular rectifiable arcs and
curves) a set is retrievable from its Crofton transform uniquely modulo a set
of linear measure zero, provided that the transform is given on a subset of full
measure of L.

One may think that a set might be retrievable from its Crofton transform
even under a weaker assumption about the subset of L on which the transform
is given, namely that the set is metrically dense. (In which case the almost
everywhere finiteness of the Crofton Transform would have to be introduced
as an extra assumption since it wouldn’t be implied by the rectifiability of its
generating set.) The example below shows that the assumption of full measure
in the quoted result can’t be weakened to metrically dense.

Example 1.1 There are two distinct rectifiable closed Jordan curves σj , j =
1, 2 in R2 with Nσj < ∞| · |2 almost everywhere on L for j = 1, 2 and for
which {` ∈ L : Nσ1(`) = Nσ2(`)} is | · |2 metrically dense in L.

Key Words: Crofton transform, inversion, injectivity, rectifiable curve
Mathematical Reviews subject classification: Primary: 28A75
Received by the editors August 13, 1995

615



616 Henry Fast

2 Definitions and Notation

We use the notation introduced in [F]. (In particular we would like to remind
the reader that the value of the Crofton transform NE(`) of an E ⊂ R2 is
the number (finite or ∞) of points of the set ` ∩ E.) In addition we use the
following:

1. Op (L) denotes the class of open subsets of L.

2. V(L) denotes the base of neighborhoods in the topology on L of the
form: {` ∈ L : δ(zj , `) < ε} for j = 1, 2, where ε > 0 and zj are two
distinct points.

3. For S ⊂ R2, Conv(S) denotes the closed convex hull of S.

4. For S ⊂ R2, V(L|S, const) = {V ∈ V(L) : NS is constant on V } (the
S-neighborhoods of constancy).

5. Let P denote the class of simple closed polygons.

6. For S ∈ P letH(S) = {φ : S → S′ : φ is a homeomorphism and S′ ∈ P}.
In particular φIS denotes the identity mapping of S onto itself.

7. For any σ = (σ1, σ2) ∈ 2R
2 × 2R

2

let E(σ) = {` ∈ L : Nσ1(`) = Nσ2(`)}.

Note that for S ∈ P

(a) since the set of vertices of S is finite, every G ∈ Op (L) contains a
neighborhood of constancy of NS

(b) NS <∞ except on a finite subset of L for S ∈ P.

Definition 2.1 Let ε > 0, S ∈ P, V ∈ V(L) and let m be a nonnegative even
integer. A mapping φ ∈ H(S) is an (ε-m)-upgrader of S over a neighborhood
V means:

(u1) V ⊂ {` ∈ L : Nφ(S)(`)−NS(`) = m}

(u2) Conv(S) = Conv(φ(S))

(u3) max{|φ(z)− z| : z ∈ S} < ε

(u4) diam(φ(S)5 S) < ε

(u5) |S|1 ≤ |φ(S)|1 ≤ |S|1 + ε.
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(u6) NS(`) ≤ Nφ(S)(`) when NS(`) <∞.

Note that for m = 0, φIS is a trivial (ε-m) upgrader of S.

Definition 2.2 Let ε > 0 and let σj ∈ P for j = 1, 2. An ordered pair ψ =
(ψ1, ψ2) ∈ H(σ1) × H(σ2) is an ε-equalizer of the ordered pair σ = (σ1, σ2)
over a neighborhood V ∈ V(L) means

(e1) V ⊂ E(ψ(σ))

(e2) max{|ψj(z)− z| : z ∈ σj} < ε for j = 1, 2.

Note that if V ⊂ E(σ), then (φIσ1 , φIσ2) is a (trivial) ε-equalizer of σ over
V for every ε > 0.

3 Lemmas

The following lemmas form the basis for the forthcoming construction.

Lemma 3.1 Let m be a nonnegative even integer, S ∈ P and V ∈ V(L) with
V ∩ {` ∈ L : NS(`) > 0} 6= ∅. Then for ε > 0 sufficiently small there are
V ′ ⊂ V and V ′ ∈ V (L, S, const) and an (ε-m)-upgrader φ of S over V ′.

Proof. Select ` ∈ V which does not meet any of the vertices of S. Let
V ∗ ∈ V(L|S, const) such that ` ∈ V ∗ ⊂ V. Since for m = 0 clearly φIS is a
(ε-0) upgrader of S over V ∗, assume m > 0. Select an arbitrary point z ∈ S∩`
and let ε > 0 be sufficiently small so that the ε- disk about z meets S on a
straight-line segment. Call this segment J. For ε sufficiently small we also have
ε < δ(z, S \ J). Select two distinct points zj ∈ int Conv(S) ∩ ` for j = 1, 2
with |z2 − z1| < ε and |zj − z| < ε, j = 1, 2 and connect them by a polygonal
arc Z (a ’zigzag’) having the following properties:

(a) Z ⊂ int Conv(S)

(b) consecutive vertices of Z different from its endpoints zj are on opposite
sides of ` all at the same distance from `

(c) |Z|1 < 2ε.

Rotate Z by an angle α about the midpoint of z1 and z2 situated on `
to a new position Zα choosing α sufficiently small to preserve the inclusion
Zα ⊂ int Conv(S) and to keep the vertices of the zigzag from crossing ` in
the process. Connect the two endpoints of Zα, now on opposite sides of `,
with the two endpoints of J using two polygons Ij for j = 1, 2 satisfying the
conditions:
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(a’) Ij ∩ ` = ∅ for j = 1, 2

(b’) Ij ⊂ Conv(S) for j = 1, 2

(c’) |Ij |1 < 2ε for j = 1, 2.

The polygon J ′ = I1 ∪ Zα ∪ I2 joins the endpoints of J and satisfies
J ′ ⊂ Conv(S) and |J ′|1 < 6ε. Through appropriate choices of the number
of vertices of Z and of αNJ′(`) = m + 1. Since NJ(`) = 1, the difference
NJ′(`) − NJ(`) = m. Define φ ∈ H(S) as the identity on S \ J and as a
homeomorphism of J onto J ′. We have φ(S) = S′ and NS′(`) − NS(`) =
NJ′(`)−NS(`) = m.

Note that in the above construction ` does not meet any of the vertices of
S′. Thus there is a V ′ ⊂ V ∗ with V ′ ∈V (L|S′, const) such that ` ∈ V ′ and
Nφ(S)(`

′)−NS(`′) = m for `′ ∈ V ′. This shows that (u1) holds for φ. It is easy
to check that the remaining five upgrader defining properties are satisfied as
well. �

Lemma 3.2 Let σ = (σ1, σ2) ∈ P × P and let G ∈ Op(L) and let there be
a ` ∈ G for which Nσ1(`), Nσ2(`) > 0. For ε > 0 sufficiently small there is a
V ⊂ G with V ∈ V(L) and an ε-equalizer of σ over V. Moreover, this equalizer
has one of the two forms: ψ = (φ, φIσ2) where φ ∈ H(σ1) or ψ = (φIσ1 , φ)
where φ ∈ H(σ2).

Proof. When G ∩ E(σ) 6= ∅ select any V such that V ⊂ G ∩ E(σ) with
V ∈ V(L). Then ψ = (φIS1 , φIS2) is a (trivial) equalizer satisfying the conclusion
of the Lemma.

If G ∩ E(σ) = ∅, select a V such that V ⊂ G with V ∈ V(L) and a ` ∈ V
such that no vertices of either σ1 nor σ2 are on `. Assume for definiteness that
Nσ2(`) − Nσ1(`) = m > 0. Use as φ1 an (ε-m)-upgrader φ of σ1 over V as
produced in Lemma 3.1. Then ψ = (φ, φIσ2) satisfies both (e1) and (e2). Thus
it is an equalizer, as claimed. The case m < 0 yields the alternate form. �

Lemma 3.3 Let D ⊂ R2 be closed. Then |{` : ND > 0}|2 ≤ diam(D).

Proof. Let χ denote the characteristic function of {` : ND > 0} and L(ν)
denote the subset of L consisting of lines in direction ν where ν ∈ C (that is,
|ν| = 1. Then

|{` : ND > 0}|2 =

∫ ∫
L

|χ(`)||d(`)|2 =

∫
C

|dν|1
∫
L(ν)

|χ(`)||d(`)|1 ≤
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diam(D)

∫
C

|dν|1 = diam(D).

We assume here that the measure on C is normalized; that is,
∫
|dν|1 = 1. �

Lemma 3.4 Let σ = (σ1, σ2) ∈ P × P such that Conv(σ1) = Conv(σ2) and
let G ∈ Op (L). For ε > 0 sufficiently small there are V ⊂ G with V ∈ V(L)
and an ε-equalizer ψ of σ over V such that |E(σ) \ E(ψ(σ))|2 < ε.

Proof. If there is an V ⊂ G with V ∈ V(L) having the property that
V ⊂ E(σ) then the trivial equalizer ψ = φIσ1 , φIσ2) over that V will do. That
will be the case when G∩Conv(σ1) = ∅ and in this case G∩Conv(σ2) = ∅ as
well.

ShouldG be such that no such V exists, select an arbitrary V ⊂ G with V ∈
V(L|σ1

, const)∩V(L|σ2, const). In this case we also require Nσ1(`), Nσ2(`) > 0
for every ` ∈ V.

Without loss of generality assume that m = Nσ2 −Nσ1 > 0 over V. Let φ
be an (ε−m)-upgrader of σ1 over V. Set ψ = (φ, φIσ2). Then ψ is an ε-equalizer
of σ over V and is of one of the two forms as provided by Lemma 3.2. The
deformation produced in σ1 by ψ is confined to an ε-disk about one of its
points. By Lemma 3.3 every `′ ∈ E(σ) \ E(ψ(σ)) meeting such disk belongs
to a subset of L whose | · |2-measure is at most ε. �

Lemma 3.5 Let r ∈ (0, 1) and G ∈ Op (L). The equalizer in Lemma 3.4 may
be chosen such that |G ∩ E(σ) ∩ E(ψ(σ))|2 ≥ r · |G ∩ E(σ)|2.

Proof. This is an immediate consequence of Lemmas 3.3 and 3.4 when ε is
taken sufficiently small. �

Definition 3.1 A quintuple (σ,W, E ,Ψ, Ψ̂) is called a chain, means:

(a) σ = (σ1, σ2) ∈ P × P with Conv(σ1) = Conv(σ2),

(b) W = {Vn}∞n=1 : Vn ∈ V(L)

(c) E= {εn}∞n=1 : εn > 0.

(d) Ψ = {ψn}∞n=1

(e) Ψ̂ = {ψ̂n}∞n=1

satisfying

(1) ψ̂n = (ψ̂1
n, ψ̂

2
n) = ψn◦· · ·◦ψ1 = (ψ1

n◦· · ·◦ψ1
1 , ψ

2
n◦· · ·◦ψ2

1), and ψ̂0(σ) = σ,
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(2) ψn+1 is an εn-equalizer of ψn(σ) over Vn

(3) Vn+1 ∈ V(L|ψn(σ), const),

(4) Conv ψ̂jn(σj); j = 1, 2 are all equal.

Lemma 3.6 Let σ = (σ1, σ2) be a pair of polygons from ∩P and let {Gn}∞n=1

be a countable base of Op (L). There is a chain (σ,W, E ,Ψ, Ψ̂) with the prop-
erty: for every natural m and 1 ≤ k ≤ m

|Gk ∩
m⋂

i=k−1

E(ψ̂i(σ))|2 ≥
m−k+1∏
i=1

(
1− 1

2i

)
|Gk ∩ E(ψ1(σ))|2. (∗)

Proof. Assume inductively that for a given m we already have a m-partial
chain in which (*) holds for k = 1, ...,m. When m = 1 the inequalities (*) are
reduced to |G1 ∩ E(σ) ∩ E(ψ1(σ))|2 ≥ 1

2 |G1 ∩ E(σ)|2.
Lemma 3.5 applied to the open set Gm+1 and ψ̂m(σ) as the primary pair

of polygons yields the existence of a Vm+1 ⊂ Gm+1 with V ∈ V(L), of an

εm+1 > 0 and of an εm+1-equalizer ψm+1 of the pair ψ̂m(σ) over Vm+1 such
that

|Gm+1∩E(ψ̂m(σ))∩E(ψm+1 ◦ ψ̂m(σ))|2 = |Gm∩E(ψ̂m(σ))∩E(ψ̂m+1(σ))|2 ≥
1

2
|Gm+1 ∩ E(ψ̂m+1(σ))|2

and this is the m+ 1-st of the inequalities of (*) for m+ 1.
Note that by the Lemma 3.5 the same εm+1 when selected sufficiently

small, yields along with its corresponding ψm+1 in addition to the above

|Gk ∩
m⋂

i=k−1

E(ψ̂i(σ)) ∩ E(ψm+1(σ))|2 = |Gk ∩
m+1⋂
i=k−1

E(ψ̂i(σ))|2 ≥

(
1− 1

2m−k+2

)
|Gk ∩

m⋂
i=k−1

E(ψ̂i(σ))|2 ≥
m−k+2∏
i=1

(
1− 1

2i

)
|Gk ∩ E(ψ1(σ))|2,

for all the k = 1, ...,m simultaneously, in short,

|Gk ∩
m⋂

i=k−1

E(ψ̂i(σ))|2 ≥
(m+1)−k−1∏

i=1

(
1− 1

2i

)
|Gk ∩ E(ψ1(σ))|2,

which is the k’th inequality of (*) with m+ 1 for values 1 ≤ k ≤ m. �
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Lemma 3.7 Under the condition of the previous Lemma there exists a chain
(σ,W,E, Φ, Ψ̂) such that the set

E =

∞⋃
n=1

∞⋂
k=n

E(ψ̂k(σ))

is | · |2 metrically dense in L.

Proof. Passing from a fixed m to the limit as k →∞ in (*) and considering

that
∏∞
i=1(1 − 1

2i ) > 0, |Gm ∩ E(ψ̂m(σ))|2 > |Vm|2 > 0 and Vm ⊂ Gn ∩
E(ψn(σ)), we obtain

|Gm ∩
∞⋂
i=m

E(ψ̂i(σ))|2 ≥
∞∏
i=1

(
1− 1

2i

)
|Gm ∩ E(ψ̂m(σ))|2 > 0,

which ends the proof. �

4 The Main Result

Now we are ready to establish the example mentioned in Section 1. Let σ1
0

be the boundary of the unit square and let σ2
0 be the simple closed octagon

obtained from σ1
0 by bending each of its four edges inward into the square.

We have σj0 ∈ P for j = 1, 2 and Conv(σ1
0) = Conv(σ2

0). Let (σ0,W,E,Ψ, Ψ̂)

be a chain with
∑∞
n=1 εn <∞. Then limn→∞ ψ̂n = f uniformly on σ0, where

f = (f1, f2) : σ0 → R2 × R2. The two continuous mappings fj : σj0 → R2

produce two closed Jordan curves σj = fj(σ
j
0) in R2 for j = 1, 2

which (when each εn; n = 1, 2, ... is sufficiently small) are evidently distinct.
Condition (u5) guarantees their rectifiability.

By (u6) we have Nψj
n(σ1) ≤ Nψj

n+1(σ
2) for j = 1, 2 and n = 1, 2, .... Since

each σj is rectifiable, their Crofton Transforms are finite |·|2 almost everywhere
on L. This implies that | · |2-almost every sequence [Nψ̂j

n(σj)(`)]
∞
n=1 attains its

limit for a certain value nj = nj(`) of the subscript. For a given ` ∈ E, by
Lemma 3.8, there is an m ∈ N such that Nψ̂1

n(σ
1)(`) = Nψ̂2

n(σ
2)(`) for n ≥ m,

which implies that Nσ1(`) = Nσ2(`).
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