
RESEARCH Real Analysis Exchange
Vol. 22(1), 1996-97, pp. 201–212

T. H. Steele, Department of Mathematics, Weber State University, Ogden,
UT 84408-1702, e-mail: thsteele@@weber.edu

TOWARDS A CHARACTERIZATION OF
ω-LIMIT SETS FOR LIPSCHITZ

FUNCTIONS

Abstract

Recent research has shown that there is a significant cleavage be-
tween the structure of ω-limit sets for continuous functions, and the
structure of ω-limit sets for Lipschitz functions. While every non-empty
nowhere dense compact set is an ω-limit set for a continuous function,
most of these sets cannot be an attractor for a Lipschitz function. When
one considers the topological structure of these two classes of ω-limit
sets, however, there is no such divergence. In this paper we investigate
the necessarily measure based structural differences between these two
classes of sets. We then use these results to work towards a characteri-
zation of ω-limit sets for Lipschitz functions.

1 Introduction

A set E is called an ω-limit set, or an attractor, for a continuous function f
mapping a compact interval I into itself if there exists an x in I such that
E = ωf (x) is the cluster set of the sequence {fn(x)}∞n=0. Recent work by
Bruckner, Ceder and Smı́tal in [BC], [BS1] and [BS2] not only completely
characterizes ω-limit sets for continuous functions, but also demonstrates how
the structure of these attractors is affected by imposing conditions on the
chaotic behavior of the function in question. In [BSt] we show that there
is a significant cleavage between the structure of attractors for continuous
functions, and the structure of attractors for Lipschitz functions. We furnish
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the class K of non-empty closed subsets of I = [0, 1] with the Hausdorff metric
d, and from this complete metric space develop a dense Gδ subset comprised
of Cantor sets that cannot be attractors for any Lipschitz function. This is in
marked contrast to the continuous case, since any Cantor set is an ω-limit set
for some continuous function with zero topological entropy [BS2].

Our goal in this paper is to gain a better understanding of the structure of
attractors for Lipschitz functions. To this end, we develop a characterization
of homoclinic attractors for Lipschitz functions, as well as a sufficient condition
for a nowhere dense perfect set to be an attractor for a Lipschitz function with
zero topological entropy.

After a short preliminary section in which we develop a few basic defini-
tions, establish notation, and record some simple results, we lay the foundation
of our main results in section three. There we study necessary and sufficient
conditions for a nowhere dense compact set to be mapped onto another by a
Lipschitz function. We then apply these findings to the structure of ω-limit
sets in section four, in which we develop our main results.

2 Preliminaries

In developing their characterization of ω-limit sets for continuous functions,
Bruckner and Smı́tal make extensive use of the notion of a homoclinic trajec-
tory. Let M be a nowhere dense compact set, with A = {a0, a1, . . . , ak−1} 6= ∅
a set of limit points of M . For i = 0, 1, . . . , k − 1, we take {M i

n}∞n=0 to
be a system of non-empty pairwise disjoint compact subsets of M such that
M \

⋃
i,n

M i
n = A and lim

n→∞
M i
n = ai for any i. Moreover, let f : M → M be a

continuous map with A a k-cycle of f such that f(ai) = ai−1 for i > 0 and
f(a0) = ak−1. If f(M i

n) = M i−1
n for i > 0 and any n, f(M0

n) = Mk−1
n−1 for

n > 0, and f(M0
0 ) = ak−1, then M is called a homoclinic set (of order k) with

respect to f .

Since we will also be discussing attractors of Lipschitz functions with zero
topological entropy, we will have need to make use of the following theorem
due to Smı́tal [S].

Theorem 2.1 (Smı́tal’s Theorem) Let f : I → I be a continuous function
with zero topological entropy, and let E be an infinite attractor of f . Then
there is a sequence {Jk}∞k=1 of f -periodic intervals so that, for any k,

(1) Jk has period 2k;

(2) Jk+1 ∪ f2
k

(Jk+1) ⊆ Jk;
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(3) E ⊆
2k⋃
i=1

f i(Jk);

(4) E ∩ f i(Jk) 6= ∅ for every i.

Both Smı́tal’s Theorem and the notion of a homoclinic trajectory have
portions of the attractor mapping over other portions. Central to our inves-
tigation, then, is a development of necessary and sufficient conditions which
insure that, for two nowhere dense compact sets E and F , there exists a Lip-
schitz function f : E → F so that f(E) = F . An important tool in this
investigation is the generalized Hausdorff measure. Let Φ denote the set of
functions φ that are continuous and increasing on I = [0, 1] with φ(0) = 0.
For φ ∈ Φ, set

µφ,n(E) = inf

{
Σφ(|Ii|) : E ⊆

⋃
Ii, and Ii is an open interval

of length |Ii| ≤
1

n

}
.

Then µφ = lim
n→∞

µφ,n defines a measure on the Borel sets in I. In what follows,

we are concerned primarily with closed sets.
We will call a portion P of a closed set E a nonempty set of the form

P = E ∩ J , where J is an open interval. If J has rational endpoints, we will
call P a rational portion of E. We denote the class of Lipschitz functions on
I by Lip, and those f ∈ Lip with Lipschitz constant M by LipM . We use
λE to denote the Lebesgue measure of E, and let |E| be the diameter of E.
Finally, we let E → F indicate the existence of f ∈ Lip such that f(E) = F ;

if we have f ∈ LipM , we write E
M→ F .

3 Intermediate Results

The goal of this section is to develop necessary and sufficient conditions on
nowhere dense compact sets E and F which insure the existence of a Lipschitz
function f : E → F so that f(E) = F .

We begin with the following elementary observation from [BSt]:

Proposition 3.1 If φ ∈ Φ and f ∈ LipM for some M ∈ N, then µφf(E) ≤
Mµφ(E) for every Borel set E.

From Proposition 3.1, we see that the µφ measures of E and F must be
closely related if E → F . In our next proposition we develop a much finer
bound on this growth in measure provided that the gauge function φ is concave.
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Proposition 3.2 Let φ ∈ Φ such that φ is concave, with f ∈ LipM . Then

S = lim
δ→0

φ(Mδ)

φ(δ)
exists, and µφf(E) ≤ Sµφ(E).

Proof. It suffices to show that µφ(ME) = Sµφ(E). Since φ is concave,

lim
δ→0

φ(Mδ)

φ(δ)
exists and is bounded, so that for any ε > 0 there exists n(ε) ∈

N such that n ≥ n(ε) implies
φ(M/n)

φ(1/n)
≤ S + ε. Recall that µφ,n(E) =

inf{
∑
i

φ(|Ii|) : E ⊆
⋃
i

Ii, and |Ii| ≤ 1
n}. Fixing ε > 0 thus yields µφ,n(ME) ≤∑

i

φ(|MIi|) ≤ (S + ε)
∑
i

φ(|Ii|) for any 1
n cover of E for which n ≥ n(ε).

Letting n go to infinity gives us

µφ(ME) ≤ Sµφ(E). (1)

Suppose {Ii} is a cover ofME such that |Ii| ≤ M
n for all i, so that { 1

M Ii} is a 1
n -

cover of E. Since S = lim
δ→0

φ(Mδ)

φ(δ)
, for any ε > 0 there exists N(ε) ∈ N so that

n ≥ N(ε) implies
φ(M/n)

φ(1/n)
≥ S − ε. Fix ε > 0. Then µφ, 1n (E) ≤

∑
i

φ(| Ii
M
|) ≤

1
S−ε

∑
i

φ(Ii) for any M
n cover of ME such that n ≥ N(ε). Letting n go to

infinity gives us µφ(E) ≤ 1
Sµφ(ME), so that

Sµφ(E) ≤ µφ(ME). (2)

Putting (1) and (2) together, we have Sµφ(E) = µφ(ME). �

Our next two results show that given any φ ∈ Φ, there exists a φ̃ ∈ Φ
which is concave, and has the property that for any E ∈ K, µφ(E) = µφ̃(E).
Thus, when dealing with ω-limit sets, we will be able to presume that our
gauge functions are concave, and make good use of our previous proposition.

Lemma 3.3 Let φ ∈ Φ. If the lower right Dini derivative of φ is finite, for
instance D+φ(0) = s <∞, and E ∈ K for which λE = c, then µφ(E) = sc.

Proof. Let {xn} ⊆ [0, 1] such that lim
n→∞

xn = 0, and lim
n→∞

φ(xn)− φ(0)

xn − 0
=

lim
n→∞

φ(xn)

xn
= s. Then, for any ε > 0, there exists N ∈ N so that m > N

implies
φ(xm)

xm
< s+ ε. Since λE = c, for any δ > 0 there exists an open cover
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{In}Mn=1 of E such that
M∑
n=1

λIn < c + δ. Now, let us fix k ∈ N. Then there

exists Nk ∈ N such that m > Nk implies xm ≤ 1/k and
φ(xn)

xn
< s+ ε. Now,

let {In}Mn=1 be a sequence of open intervals that cover E, with
M∑
n=1

λIn < c+δ,

and |In| = xjn for some jn > Nk and for all n = 1, 2, . . . ,M . Then µφ,k(E) ≤
M∑
n=1

φ(|In|) =
M∑
n=1

φ(xjn) < (s+ε)
M∑
n=1

xjn , and since
M∑
n=1

xjn =
M∑
n=1

λIn < c+δ,

we have µφ,k(E) < (s+ ε)(c+ δ) = sc+ sδ + εc+ εδ. Thus, µφ(E) ≤ sc. But
since λE = c and D+φ(0) = s, we’ve also that µφ(E) ≥ sc, so that, in fact,
we have µφ(E) = sc. �

Lemma 3.4 Suppose φ ∈ Φ with D+φ(0) = ∞. Then there exists φ̃ ∈ Φ, φ̃
concave, such that µφ(E) = µφ̃(E) for all E in K.

Proof. We first construct our function φ̃. For any n, let An = {x ∈ [0, 1] :
φ(x)
x = n}, and let xn = minAn. Now, let Bn = {y ∈ [xn+1, xn]: there exists

ε > 0 such that x ∈ Bε(y) implies φ(x)
x ≥ φ(y)

y }. If Bn 6= ∅, let Bn
′ ⊆ Bn

with y ∈ Bn
′ if φ(y)

y ≤ φ(x)
x for every x ∈ Bn, and let xn

′ = minBn
′. If

Bn = ∅, let xn
′ = xn. Let y1 = x1

′, y2 = x2
′ and let y3 be the first element of

{xn′}∞n=3 such that the slope between (y2, φ(y2)) and (xn
′, φ(xn

′)) is greater
than the slope between (y1, φ(y1)) and (y2, φ(y2)). In general, if we have
defined y1, y2, . . . yn = xm

′, let yn+1 be the first element of {xi′}∞i=m+1 such
that the slope between (yn, φ(yn)) and (xi

′, φ(xi
′)) is greater than the slope

between (yn−1, φ(yn−1)) and (yn, φ(yn)). Let φ̃(x) = φ(x) if x ∈ {yn} and
extend φ̃ linearly on the intervals (yn+1, yn). Finally, let φ̃(x) = φ̃(y1) for
x ∈ [y1, 1].

Now, since φ(x) ≥ φ̃(x) on [0, 1], it follows that µφ(E) ≥ µφ̃(E) for all E

in K. Similarly, since {yn} $ [0, 1], we’ve that µφ|{yn}(E) ≥ µφ(E) for all E
in K. Thus, we need only establish that µφ|{yn}(E) = µφ̃(E) for all E in K
for our desired conclusion to follow.

To this end, let {zn} be any countable collection of points in [0, 1] that
have the origin as an accumulation point. It suffices to show that for any E
in K we have

µφ̃|{zn}(E) = µφ|{yn}(E).

Since we may assume that {yn} ⊆ {zn}, as the union of any two countable
sets is itself countable, we have that

µφ̃|{zn}(E) ≤ µφ|{yn}(E) for any E in K. (1)
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To get the opposite inequality, fix k ∈ N and ε > 0, and take {In}Nn=1 to

be an open cover for a particular set E so that
N∑
n=1

φ(|In|) =
N∑
n=1

φ̃(|In|) ≥

µφ|{yn},k(E) >
N∑
n=1

φ(|In|) − ε. Let p(k) ∈ N such that 1
p(k) < min{In :

n = 1, 2, . . . , N}. Then, since φ̃ is concave, we have µφ̃|{zn},p(k)(E) + ε ≥
µφ|{yn},k(E). As k goes to infinity, we have µφ̃|{zn}(E) + ε ≥ µφ|{yn}(E).

Since our ε was arbitrary, we have µφ̃|{zn}(E) ≥ µφ|{yn}(E). �

Suppose we have two nowhere dense compact sets E and F so that E
M→ F .

From Proposition 3.2, we know that µφ(F ) ≤ SMφ µφ(E) for all φ ∈ Φ, where

SMφ = lim
δ→0

φ(Mδ)
φ(δ) . A natural question for us to now ask is the following. If

we have two sets that are non-trivially compatible for some α ∈ Φ, must they
then be compatible for all φ ∈ Φ? This is the subject of our next result.

Proposition 3.5 Let E and F be elements of K. If there exists φ ∈ Φ such
that µφ(E) and µφ(F ) are both non-zero and finite, then for all α ∈ Φ, µα(E)
and µα(F ) are both either zero, non-zero and finite, or infinite.

Proof. Let A and B be positive real numbers so that A < µφ(E) < B and
A < µφ(F ) < B. We prove our assertion by considering two cases.

CASE 1: Suppose there exists α ∈ Φ such that µα(E) = 0, but µα(F ) > 0.
Since µα(E) = 0 and µα(E) = lim

n→∞
µα,n(E) where µα,n(E) increases as n

increases, we have that µα,n(E) = 0 for all n. Thus,

µφ◦α,n(E) = inf

{ M∑
i=1

φ ◦ α(|Ii|) : E ⊆
M⋃
i=1

Ii, |Ii| ≤
1

n

}
≤ inf

{
Mφ(

∑
α(Ii)) : E ⊆ ∪Ii, |Ii| <

1

n

}
= 0,

since φ ◦ α(|Ii|) ≤ φ
(∑
i

α(|Ii|)
)

for all i. Now, since µα(F ) > 0, we know

that D+α(0) > 0. Let f(x) = mx, where 0 < m < D+α(0). Thus, µαf(E) ≤
µφ◦α(E) = 0, but Proposition 2.4 of [BSt] implies µφf(E) > 0 since µφ(E) > 0.
Therefore, µα(F ) = 0, as well.

CASE 2: Suppose there exists σ ∈ Φ such that µσ(E) =∞, but µσ(F ) <
∞. We assume that both φ and σ are concave. Since µφ(E) < B, we know
that for any n, µφ,n(E) < B as well, as is the case with F . Since µσ(E) =∞,
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for any M ∈ N there exists an N ∈ N so that n ≥ N implies µσ,n(E) > M . Let

us fix ε > 0, set r =
µσ(F )

A
, and let N ∈ N so that n ≥ N implies µσ,n(E) >

rB > r(µσ(E) + ε). Take n1 ≥ N , and let {Ii} be a finite sequence of open
intervals such that

⋃
i

Ii ⊇ E and |Ii| ≤ 1
n1

, for any i, with
∑
i

φ(|Ii|) < B. Then

there exists I1
∗ ∈ {Ii} such that

σ(|I1∗|)
φ(|I1∗|)

> r. Let n2 >
1

|I1∗|
, and now take

{Ii} so that
⋃
i

Ii ⊇ E and |Ii| ≤
1

n2
for any i, with

∑
i

φ(|Ii|) < B. Then there

exists I2
∗ ∈ {Ii} such that

σ(|I2∗|)
φ(|I2∗|)

> r. We continue this process, developing

the sequence {|Ii∗|} so that limi→∞ |Ii∗| = 0, and for any i,
σ(|Ii∗|)
φ(|Ii∗|)

> r. From

the proof of Lemma 3.4, we know that µφ(E) = µφ|{zi}(E) for any E ∈ K,
where zi = |Ii∗| for each i. Similarly, we have µσ(E) = µσ|{zi}(E) as well.

But
σ(zi)

φ(zi)
> r for any i implies µφ|{zi}(F ) > rµφ(F ) > µσ(F ). Therefore,

µσ(F ) =∞ as well. �

Now, let us suppose we have two compact nowhere dense sets E and F
so that f(E) = F for some f in LipM . Let {Fn} be an enumeration of the
clopen portions of F ; that is, those portions which are both open and closed
in the relative topology of F . To each Fn there corresponds f−1(Fn) = En, a
clopen subset of E, such that

(1)
µα(Fn)

µα(En)
≤ SMα for all concave α ∈ Φ, and

(2)
|Fn|
|En|

≤M .

If, on the other hand, we suppose that (p, q) ⊂ (minF,maxF ) is a com-
plementary interval of F , then there exists (r, s) a complementary interval of
E so that (p, q) ⊆ f((r, s)), and |q − p| ≤M |s− r| (3).

Let us take {F pn} and {F qn} to be subsequences of {Fn} such that p ∈ F pn
and q ∈ F qn for each n in N, and |F pn | and |F qn | both go to zero as n → ∞.
Then if f−1(F pn) = Epn, and we set Ep = ∩∞n=1E

p
n, it follows that f−1(p) = Ep.

Thus, for any x ∈ Ep and y ∈ Eq, we have that M |x− y| ≥ |p− q|.
From our observation (3), we get the following interesting result.

Lemma 3.6 Let {bn} be an enumeration of the complementary intervals of
F such that |b1| ≥ |b2| ≥ |b3| ≥ · · · , with {an} an analogous enumeration
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for E. If E
M→ F , then there exists a subsequence {am(n)} ⊆ {an} so that

|bn|
|am(n)|

≤M for all n ∈ N.

We are now in a position to develop the necessary and sufficient conditions

on two nowhere dense compact sets E and F which insure E
M→ F . From our

earlier discussion, we know that Lipschitz functions can only impose a certain
amount of growth on both the measure and the length of any portion in the
domain. The basic idea of our theorem, then, is to insure that the length and
measure of portions of E and F are compatible with each other as well as with
the Lipschitz constant M .

Theorem 3.7 Suppose E and F are both nowhere dense compact subsets of
the unit interval, with {Fn} an enumeration of the clopen portions of F . Then

E
M→ F if and only if to every Fk ∈ {Fn} we can associate a clopen subset

Ek ⊆ E so that

(1)
µα(Fk)

µα(Ek)
≤ SMα for all concave α ∈ Φ,

(2)
|Fk|
|Ek|

≤M ,

(3) a. if Fk ⊆ Fj, then Ek ⊆ Ej
b. if Fk ∩ Fj = ∅, then Ek ∩ Ej = ∅
c. if Fn = Fk ∪ Fj is a disjoint union, then En = Ek ∪ Ej is a disjoint
union,

(4) if x ∈ Ep = ∩p∈Fn
En and y ∈ Eq, then |x− y| ≥ |p− q|

M
.

Proof. The necessity of our result is an immediate consequence of the ex-
istence of a LipM function f such that f(E) = F . As for its sufficiency, we
first note that condition (3) allows us to well define the set Ep in (4). Thus
we are able to define the function f : E → F where x ∈ Et implies f(x) = t.
Condition (4) assures us that f is LipM . �

4 Main Results

With Theorem 3.7 we are now able to gain a good understanding of what
it takes for a nowhere dense compact set to be a homoclinic attractor for a
Lipschitz function. The critical aspect of these sets is that we are able to
decompose them into compact subsets that not only develop a homoclinic
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trajectory but also can be mapped onto one another by a Lipschitz function
with a given constant.

Theorem 4.1 Let E ⊆ I be a nowhere dense compact set, with f : E → E a
Lipschitz function of constant N − ε for some ε > 0. Suppose E is homoclinic
with respect to f . Then there is a Lipschitz extension F : I → I of f with
constant N so that E = ωF (x) is an ω-limit set of F for some x ∈ I.

Proof. From Theorem 2 and Lemma 2 of [BS1], it suffices to show that
there is a Lipschitz extension F : I → I of f so that for any x ∈ E and
any neighborhood U of x, the set F (U) is a neighborhood of F (x) = f(x),
with F ∈ LipN . To this end, let {Jn} be a sequence of open intervals such
that diam Jn < 1/n and Jn ∩ E 6= ∅ for any n, and so that every open set
intersecting E contains some Jn. Define by induction continuous extensions
{Fn}∞n=0 of f to I as follows: Let F0 be linear on every interval contiguous to
E, and put K0 = ∅. If Fm and Km are defined, let Km+1 = (am+1, bm+1) be
a complementary interval of E contained in Jm − {K0 ∪K1 ∪ · · · ∪Km}. Let
Fm+1(x) = Fm(x) if x /∈ Km+1, and let |Fm+1(Km+1)| = (N − ε/2)(bm+1 −

am+1), with Fm+1(Km+1) centered around
F0(bm+1) + F0(am+1)

2
. Since f ∈

Lip (N − ε), we can take Fm ∈ LipN for every m. Since ||Fm+1 − Fm|| < N
m ,

we have that limn→∞ Fm = F uniformly, so that F ∈ LipN as well as having
the properties we desire. �

With Theorems 3.7 and 4.1 in mind, we can now state a corollary that gives
us both necessary and sufficient conditions for a set E in I to be a homoclinic
attractor for a Lipschitz function.

Corollary 4.2 Let E be a nowhere dense compact set in I. Then E is a
homoclinic attractor of order k for a Lipschitz function f : I → I if and only
if

(1) there exists a set of limit points A = {a1, a1, . . . , ak−1} of E, and for
each i = 0, 1, . . . , k−1 a sequence {Ein}∞n=0 of non-empty pairwise disjoint
compact subsets of E so that E \

⋃
i,n

Ein = A, and lim
n→∞

Ein = ai for each i;

(2)
ai−1 − ai
M1

≤ ai − ai−1 for i = 1, . . . k − 2,
ak−1 − a0

M1
≤ a0 − a1, and

ak−2 − ak−1
M1

≤ ak−1 − a0 for some M1 ∈ R;

(3) Ein
M2→ Ei−1n for i > 0 and any n, and E0

n
M2→ Ek−1n−1 for n > 0 for some

M2 ∈ R; and
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(4) the function g : E → E given by g(ai) = ai−1 for i > 0, g(a0) = ak−1,
g(Ein) = Ei−1n for i > 0 and any n, g(E0

n) = Ek−1n−1 for n > 0, and
g(E0

0) = ak−1 is Lipschitz, necessarily of constant M ≥ max{M1,M2}.

The second and third conditions of our corollary are clearly superfluous
in that condition (4) implies them both. The idea to note, however, is that
conditions (2) and (3), while necessary, are not themselves sufficient. For
E to be a homoclinic attractor of a Lipschitz function, three things must
happen. First, we must be able to decompose E into sets A and Ein that
develop a homoclinic trajectory. Second, we must be able to accommodate
that homoclinic trajectory in the piecewise fashion of conditions (2) and (3)
using Theorem 3.7. Finally, the function g : E → E implied by (2) and (3)
must itself be Lipschitz, that is, the pieces must fit together in such a way that
our Lipschitz condition is preserved. Theorem 4.1 then insures the existence
of an appropriate extension of g : E → E to all of our interval I.

Prior to discussing attractors for Lipschitz functions with zero topological
entropy, we should recall the following result due to Bruckner and Smı́tal.

Theorem 4.3 ([BS2]) The set W is an ω-limit set for some continuous func-
tion f with zero topological entropy if and only if W is either finite with car-

dinality a power of two, or of the form W = Q
�
∪ C where Q is a Cantor set,

C is countable and, if C 6= ∅, then

(1) W = C, the closure of C, and

(2) card (C ∩ J) ≤ 2 for every interval J complementary to Q, and card (C ∩
J) ≤ 1 if J ∩ convQ = ∅.

Since Lipschitz functions are continuous, we know that those sets which
are attractors for Lipschitz functions with zero topological entropy must have
the form described in Theorem[BS2, 4.3]. Our final theorem tells us that, so
long as we can find a sequence of closed intervals {Tk} and LipM functions
{fk} that behave in a fashion similar to what was found in Smı́tal’s Theorem,
then our nowhere dense perfect set is an attractor for some f ∈ LipM with
zero topological entropy.

Theorem 4.4 Suppose W is a nowhere dense perfect subset of the unit inter-
val. Then W is an ω-limit set for a Lipschitz function f of constant M and
zero topological entropy if there exists a sequence of closed intervals {Tk} and
a sequence of LipM functions {fk} defined on [0, 1] so that

(1) for each k, {f ik(Tk)}2ki=1 are pairwise disjoint and Tk = f2
k

k (Tk);

(2) for each k, Tk+1 ∪ f2
k

k+1(Tk+1) ⊆ Tk;
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(3) for each k, W ⊆
2k⋃
i=1

f ik(Tk);

(4) for each i and k, W ∩ f ik(Tk) 6= ∅;

(5) for each i, |f ik(Tk)| → 0 as k →∞.

Proof. We begin by noting that since fk is already a Lipschitz function
with constant M for any k, our sequence of functions {fk} is both uni-
formly bounded and equicontinuous on [0, 1]. From the Ascoli-Arzelà The-
orem, then, there exists a uniformly convergent subsequence {fnk

} ⊆ {fn};
say, limnk→∞ fnk

= f . Then f also satisfies conditions (1) through (5), and
f(W ) = W . Since the set {g ∈ C(I, I) : g has zero topological entropy} is
closed in C(I, I), f also has zero topological entropy. Now, let ε > 0. From
condition (5) there exists an N ∈ N so that n > N implies |f i(Tn)| < ε for
each i. Moreover, since Tn = f2

n

(Tn), there exists xn ∈ Tn that is periodic
with period 2n. It follows, then, that d(ωf (xn),W ) < ε, where d is the Haus-
dorff metric and ωf (xn) = {xn, f(xn), . . . , f2

n−1(xn)} is the ω-limit set of f
generated by xn. We know from [BBHS], however, that the family of ω-limit
sets of f is closed with respect to the Hausdorff metric. Since ωf (xn) → W
as n→∞, our conclusion follows. �

It is worth noting that the requirements of Theorem 4.2 impose a strong
measure condition on the set W :

Suppose W satisfies the hypotheses of Theorem 4.2, and µα(W ) is either
zero, finite, or infinite for α ∈ Φ. Then together with W , µα(P ) is either zero,
finite, or infinite for any portion P of W .

Proof. Suppose P is a portion of W . Then there exists k in N and j ∈
{1, 2, . . . 2k−1} so that f j(Tk ∩ W ) ⊆ P , and C ⊆ {1, 2, . . . 2k−1} so that
∪j∈Cf j(Tk ∩ W ) ⊇ P . Since f j(Tk) is mapped onto f i(Tk) by a Lipschitz
map for any i ∈ C, it follows that µα(P ) and µα(Tk ∩W ) are together either
zero, finite, or infinite for any α ∈ Φ. But ∪0≤i≤2k−1f i(Tk) ⊇ W , so by the
same argument we have that µα(P ) and µα(W ) are together either zero, finite,
or infinite. �

This is in marked contrast to the continuous case, since for any two Cantor
sets E and F there exists an order preserving homeomorphism f : I → I so
that f(E) = F .
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