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THE PREVALENT DIMENSION OF
GRAPHS

Abstract

We show that the set of functions in C[0, 1] with a graph of packing
dimension 2 (or, equivalently, upper entropy dimension 2) is prevalent.

1 Prevalence

In his excellent monograph Measure and Category [8], Oxtoby compares and
contrasts the most familiar two notions of “almost nowhere” on the real line.
The extension of these ideas, Lebesgue measure zero and Baire first category,
to infinite dimensional spaces is an interesting problem.

The notions of Baire category extend immediately to any complete, sep-
arable metric space and, in particular, to C[0, 1]. A set is said to be of first
category or meager if it may be expressed as a countable union of nowhere
dense sets. A set is said to be generic or comeager if it is the complement of
a meager set. A classic theorem of Banach states that the set of functions in
C[0, 1] which are nowhere differentiable forms a comeager subset ([8] chapter
11). This is frequently phrased as, the generic continuous function is nowhere
differentiable. As another example, Humke and Petruska [4] prove that the
set of functions in C[0, 1] whose graph has lower entropy index one is comeager
and the set of functions in C[0, 1] whose graph has upper entropy dimension
two is comeager. See section 2 for definitions. Their statement that the generic
function in C[0, 1] has a graph with lower entropy index 1 strengthens a theo-
rem of Mauldin and Williams which states that the generic function in C[0, 1]
has a graph with Hausdorff dimension 1 ([7] Theorem 2).

There are fundamental difficulties, however, with attempts to extend mea-
sures to infinite dimensional spaces. Prevalence is a notion defined in [5] which
generalizes the measure theoretic “almost nowhere” without actually defining
a measure on the entire space. An equivalent notion was originally introduced
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in [1] as pointed out in [6]. Prevalence is defined as follows: Let V be a Banach
space. A Borel set A ⊂ V will be called shy if there is a positive Borel measure
µ on V such that µ(A+ v) = 0 for every v ∈ V . More generally, a subset of a
shy Borel set will be called shy. In [5] it is shown that shyness satisfies all the
properties one would expect of a generalization of measure zero. For example:

1. Shyness is shift invariant.

2. Shyness is closed under countable unions.

3. A subset of a shy set is shy.

4. A shy set has empty interior.

5. If V = Rn, then the shy sets coincide with the measure zero sets.

The complement of a shy set will be called prevalent. The purpose of this
paper is to present a result similar to Humke and Petruska’s, but phrased in
terms of the measure theoretic notion of prevalence.

2 Dimension

In this section, we define the upper entropy index, ∆, and from that the
upper entropy dimension, ∆̂. These notions are equivalent to the well known
packing index and packing dimension of Taylor and Tricot [9]. Many readers
will, also, recognize these definitions as the upper box counting dimension and
the modified upper box counting dimension in [3] sections 3.1 through 3.3.
Our notation follows [2] section 6.5. Proofs of the equivalences of the various
definitions may be found in [3] or [10].

For ε > 0, the ε-square mesh for R2 is defined as the collection of closed
squares {[iε, (i+ 1)ε]× [jε, (j + 1)ε]}i,j∈Z. For a totally bounded set E ⊂ R2,
define

Nε(E) = # of ε-mesh squares which meet E

and

∆(E) = lim sup
ε→0

logNε(E)

− log ε
. (1)

An easy but important property of ∆ is that it respects closure. That is
∆(E) = ∆(E). Another ([F] p. 41) is that the limsup need only be taken
along any sequence {cn}∞n=1 where c ∈ (0, 1) and we still obtain the same
value. One problem with ∆ is that it is not σ-stable. In other words it is
possible that ∆(∪nEn) > supn{∆(En)}. For example, ∆(Q) = 1 even though
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Q is countable. For this reason, ∆ is used to define a new set function, ∆̂,
defined by:

∆̂(E) = inf{sup
n
{∆(En)} : E = ∪nEn}.

This new σ-stable set function, ∆̂, is the upper entropy dimension.

We could, also, define a lower entropy index, and from that a lower entropy
dimension, by replacing the lim sup in equation 1 by a lim inf. We will not
refer to the lower entropy dimension any further, so we will not develop the
notation here.

We may now state the main result. Let C[0, 1] denote the Banach space of
continuous, real valued functions defined on [0, 1] with the uniform metric ρ.
For f ∈ C[0, 1], let G(f) = {(x, f(x)) : x ∈ [0, 1]} denote the graph of f .

Theorem 2.1. The set {f ∈ C[0, 1] : ∆̂(G(f)) = 2} is a prevalent subset of
C[0, 1].

3 Application

In this section, we prove several lemmas and Theorem 2.1. First we fix some
notation. Let I = [k2−m, (k + 1)2−m] ⊂ [0, 1] be a dyadic interval, where
k,m ∈ N are fixed. For f ∈ C[0, 1], let GI(f) = {(x, f(x))}x∈I be that
portion of the graph of f lying over I. For any interval [a, b] ⊂ [0, 1] define
Rf [a, b] = sup{|f(x)− f(y)| : a < x, y < b}. For n > m, let

M2−n(f) = 2n
(k+1)2n−m−1∑
i=k2n−m

Rf [i2−n, (i+ 1)2−n].

For γ ∈ [1, 2), let Aγ = {f ∈ C[0, 1] : ∆(GI(f)) > γ}.

Lemma 3.1. For every f ∈ C[0, 1] and natural number n > m,

M2−n(f) ≤ N2−n(GI(f)) ≤ 2n−m+1 +M2−n(f).

Proof. See [3] proposition 11.1.2

Corollary 3.1. For every non-constant f ∈ C[0, 1],

∆(GI(f)) = lim sup
n→∞

logM2−n(f)

log 2n
.
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Proof. Note that lim infn→∞ 2−nM2−n(f) > 0. Thus, there is a positive,
finite bound T so that

1 ≤ N2−n(GI(f))

M2−n(f)
≤ 2n−m−1 +M2−n(f)

M2−n(f)
≤ T.

The result easily follows.2

Lemma 3.2. The set {f ∈ C[0, 1] : ∆(GI(f)) = 2} is a Gδ subset of C[0, 1]
and each set Aγ is a Gδσ.

Proof. For any rational number q ∈ (1, 2) and any natural number n > m,
let

Aq(n) = {f ∈ C[0, 1] :
logM2−n(f)

log 2n
> q}.

Note that each Aq(n) is open, as M2−n(f) varies continuously with f . Now

Aγ =
⋃

q∈Q∩(γ,2)

∞⋂
j=1

∞⋃
n=j

Aq(n)

and

{f ∈ C[0, 1] : ∆(GI(f)) = 2} =
⋂

q∈Q∩(1,2)

∞⋂
j=1

∞⋃
n=j

Aq(n),

which expresses the sets in the desired manner.2

Lemma 3.3. For all f ∈ C[0, 1] and λ 6= 0, ∆(GI(f)) = ∆(GI(λf)).

Proof. This is a simple consequence of the fact that Rλf [a, b] = λRf [a, b].2.

Lemma 3.4. For all f, g ∈ C[0, 1],

∆(GI(f + g)) ≤ max{∆(GI(f)),∆(GI(g))}.

Proof. This is a simple consequence of the inequality

Rf+g[a, b] ≤ Rf [a, b] +Rg[a, b] ≤ 2 max{Rf [a, b], Rg[a, b]}.2

Lemma 3.5. For all γ < 2, Aγ is a prevalent, Borel set.

Proof. Aγ is a Borel set by lemma 3.2. We need to show that the comple-
ment, denoted Acγ , is a shy set. Let g ∈ C[0, 1] satisfy ∆(GI(g)) > γ. The
existence of such a g is guaranteed by the fact that the generic g ∈ C[0, 1] satis-
fies ∆(GI(g)) = 2 (see [4], Proposition 2). Let µ be the Lebesgue type measure
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concentrated on the line [g] defined by [g] = {λg ∈ C[0, 1] : λ ∈ [0, 1]}. Let
h ∈ C[0, 1]. We will show that #{(Acγ+h)∩[g]} = 1. Therefore, µ(Acγ+h) = 0.
Suppose that f1, f2 ∈ Acγ are such that f1 + h ∈ [g] and f2 + h ∈ [g]. Then
there exists λ1, λ2 ∈ [0, 1] such that f1 + h = λ1g and f2 + h = λ2g. This
implies h = λ1g − f1 = λ2g − f2. Thus f1 − f2 = (λ1 − λ2)g. This can only
happen if λ1 = λ2 by lemmas 3.3 and 3.4. Therefore, f1 = f2. Since h is
arbitrary, this says that Acγ is a shy set or Aγ is a prevalent set.2

By expressing {f ∈ C[0, 1] : ∆(GI(f)) = 2} as a countable intersection

{f ∈ C[0, 1] : ∆(GI(f)) = 2} =
⋂

γ∈Q∩(1,2)
Aγ ,

we obtain the following:

Corollary 3.2. The set {f ∈ C[0, 1] : ∆(GI(f)) = 2} is a prevalent, Borel
subset of C[0, 1].

Finally, we prove theorem 2.1.
Proof. Let {In}∞n=1 be an enumeration of the dyadic intervals and let

An = {f ∈ C[0, 1] : ∆(GIn(f)) = 2}.

Then An is a prevalent, Borel set by corollary 3.2, as is A = ∩∞1 An, being the
countable intersection of prevalent, Borel sets. If

B = {f ∈ C[0, 1] : ∆̂(G(f)) = 2},

then we claim that A ⊂ B. Let f ∈ A and let G(f) =
⋃∞

1 En be a de-
composition. Since ∆ respects closure, we may assume that the En’s are
closed. Since G(f) is closed, one of the En’s must be somewhere dense by
the Baire category theorem. Therefore, En ⊃ GIk(f) for some n, k. Thus,

∆(En) ≥ ∆(GIk(f)) = 2 and ∆̂(G(f)) = 2. Therefore, B is a prevalent set
since it is the superset of a prevalent, Borel set.2
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