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DARBOUX QUASICONTINUOUS
FUNCTIONS

Abstract

Let C(f) denote the set of points at which a function f : I — I is
continuous, where I = [0,1]. We show that if a Darboux quasicontin-
uous function f has a graph whose closure is bilaterally dense in itself,
then f is extendable to a connectivity function F : I? — I and the set
I\ C(f) of points of discontinuity of f is f-negligible. We also show that
although the family of Baire class 1 quasicontinuous functions can be
characterized by preimages of sets, the family of Darboux quasicontin-
uous functions cannot. An example is found of an extendable function
f I — R which is not of Cesaro type and not quasicontinuous.

1 Extensions

We begin with the following definitions of classes of functions which could be
stated for R instead of I or R? instead of I2.

D: A Darboux function f : I — I maps connected sets to connected sets,
and so it has the intermediate value property.

Conn: A connectivity function F : I? — I has the graph of its restriction F|C
connected for each connected subset C' C I?. According to [15], [10],
and [16], this is equivalent to

PC: F : I? — I is peripherally continuous if for each € I? and all open
sets U with x € U and V with F(z) € V, there exists an open set W
containing « such that W C U and F(bd W) C V.

Ext: A function g : I — I is said to be extendable if there exists a connectivity
function G : I? — I such that G(z,0) = g(z) for all z € I. For such
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an extendable function g, we then say that a set A C I is g-negligible if
whenever f : I — I is such that f = g on I\ A and the graph of f|A is
a subset of the closure, g, of the graph of g, then f is extendable, too.

AC: Every open neighborhood in I? of the graph of an almost continuous
function f : I — I contains the graph of a continuous function g : I — I.

QC: We say f : I — I is quasicontinuous if for each « € I and open sets U
containing x and V' containing f(x), there exists a nonempty open set
W C U such that f(W) C V. That is, f|C(f) is dense in the graph of

1.

DIVP: An f: I — I has the dense intermediate value property if f(A) € Dy =
{DNJ: Disdensein I and J is a nonempty interval or singleton} for
every A € Dy.

CT: A function f: I — [ is of the Cesaro type if there exist nonempty open
sets U and V in I such that for each y € V, f~!(y) is dense in U. Note
that this implies the graph of f is somewhere dense in I2.

Let £, = {«} x I. A function f : I — I has a closure that is bilaterally
dense in itself if for each z € (0,1), cl(f]|(0,2)) N €, = cl(fl(x,1)) N Ly Tt
follows from [11] that for a Darboux function f: I — I, f N ¢, is a connected
set for each z € I, and C(f) is a dense G5 subset of I if f also has a Gs
graph. Of course, a function f equals its graph {(z, f(x)) : « € I}. I
and I, denote the z-projection and y-projection, respectively, of I? onto I.
In [9], Gibson and Reclaw give an example of a Darboux quasicontinuous
function f : I — I whose graph is not connected, and in [8], Gibson and
Natkaniec give an example of an almost continuous quasicontinuous function
f I — I which is not extendable. Examination of many other examples in
the literature revealed that whenever a Darboux quasicontinuous function f
was not extendable, then the closure of its graph failed to be bilaterally dense
in itself. The first theorem shows that this is always the case. Example 1 in [9]
is quasicontinuous with closure bilaterally dense in itself, but is not Darboux.
Kellum and Garrett’s function f: I — [—1, 1] in Example 1 of [12] is in AC, a
G set, but not of Baire class 1. Letting K denote the Cantor ternary set in
I and J = {ej, ea,e3,...} the set of endpoints of the complementary intervals
of K, they define

sin WM if z belongs to the component (m,n) of I\ K
fley=1<1 ifre K\J
if x =e,.

3=
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In [6], Gibson asks if this function is extendable. Since f is Darboux, quasi-
continuous, and has a closure bilaterally dense in itself, then according to the
following result, f is extendable and K is f-negligible.

Theorem 1. If g: I — I is a Darboux quasicontinuous function whose graph
has a closure that is bilaterally dense in itself, then g is extendable, and I\C(g)
is g-negligible.

PROOF. We identify I with the subset I x {0} of I?. By a “triangle” ¢, we
mean ¢ = int(s?) (the set theoretic interior of s? in the space I?), where s%is a
closed 2-simplex in I? with a 1-dimensional face lying in I x {0}. The “base”
boftisb=1tnN (I x{0}). For each positive integer n and 0 < ¢ < 2™ — 1,

define H(Q%, 12421) = {x € I : gN{, meets both I x {%} and I x {1;—,}}}

Each H (2%, Z;f) is closed and nowhere dense in I, and

R W J I+ oo ontt
Ut (575 ) 0 <i <21y o |l (5 5or ) 10 <5 < 21,

Forn =1,2,3,... and 0 <4 < 2" — 1, we let T}, ; denote a finite collection
of disjoint triangles ¢; of diameter < % in I? whose bases b; form a finite
collection B,, ; of disjoint open intervals of I x {0} with endpoints denoted

endpts (b;) C C(g) U{0,1} such that

(1) I x {0} = J{cl(b;) : b; € Bn},

(2) Ty i is a refinement of 15, ; for k > 1,
(3) T 41,0 is a refinement of T}, on_1

(4) B, 1 is a refinement of B,, ; for k > 1,
(5) By +1,0 is a refinement of B, on_1, and

if 0 or 1 is an endpoint of b;, then cl(¢;)

(6)

is a neighborhood of (0,0) or (1,0), respectively , in I?.

Picture the elements of each T}, ; arranged like adjacent teeth of a handsaw and
the sawteeth of the next collection, which is either 7T}, ;41 or T}, 41 0, constructed
inside the sawteeth of T;, ;.
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Since B, ; is an open cover of H(2L, ’;,}) with mesh < %,

i 141

if x € I'\ C(g), then there exist n and i such that x € H(L, i)
ALRAL

in which case x € bj or x = 0 or = 1 and z is an endpoint of some

(7) b; € By i, and we may assume B,, ; is constructed so that

glendpts (b,)\ {0,1)) € [, "

bilaterally dense in itself and ¢g|C(g) is dense in g.

} because g has a closure that is

We can define an extension G : I? — I of g so that for each n and i,

the variation of G on bd(t;) (the set theoretic boundary in I?)

8 1

®) is < — for each t; € T}, 4,
n

. i 1+1
G(bd(t;)) C [min g(endpts (b7)), max g(endpts (b;))], but if 2 =0 or 1
9 and z = endpt (b;), then G(bd(t;)) = g(endpts (b;) \ {0,1}).
If 2 € C(g) and z =0 or 1 and z = endpt (b;) for some b; € By, ;,
then G(bd(t;)) C [min g(endpts (b;)), max g(endpts (b;))], and

) and x € b; € B, ;, then

(10) G is continuous on I* U {cl(t;) : t; € Ty}

Here is how to obtain condition (8). Suppose E denotes the set of endpoints
of all intervals belonging to B, ;—1 along with the endpoints of just those
members b; of B, ; constructed as described in (7) which each contain at least

one point of H (2%, ’;—,}) and which together cover H (2%, Z;—nl) Suppose ¢ and

d are consecutive points of F such that no point of H (2%, g”—nl) lies between
¢ and d. Because of (7) and (9), we may as well suppose that if ¢ = 0,
then ¢ € C(g). Even though |g(d) — g(c¢)| might not be a small value, a finite
number of triangles of diameter < % belonging to T}, ; can be constructed
as follows forming sawteeth from c¢ to d so that the total variation of G on
the slanted sides of each of the triangles will be less than % First choose
a partition P = {z9 = ¢,x1,22,...,2; = d} of [¢,d] in C(g) with norm

less than % Next, since g is Darboux, for m = 1,2,...,k, there exists a
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finite (possibly very irregular) partition P, of [2,—1, %] such that g|P,, is
monotone and |g(y) — g(x)| < % for each pair of consecutive points z and y
in P,,. PU Uﬁ@:l P, partitions [c, d] into subintervals whose interiors are to
belong to B,,; and are bases of a sawtooth collection of triangles of diameter
< % that are to belong to 7T}, ;. Then the extension G of g can be defined to be
piecewise linear and of total variation < % on the slanted sides of each triangle
in this collection. We now show that G : I? — I is in PC and hence in Conn.
We only have to check peripheral continuity on I x {0} because according to
(10), G is continuous on 1%\ (I x {0}). Let € > 0.

Case 1: z € I\ C(g). Then by (7) and (9), G is peripherally continuous at
(z,0).

Case 2: z € C(g) and z is an endpoint of an interval belonging to some
Bp,i. If & = 0 or 1, then by (9), G is peripherally continuous at (z,0).
Therefore suppose x # 0, 1. Then z is an endpoint of adjacent intervals b; and
bk in Bn,p for each B”J) € {Bm,ia Bm,i-‘rl» cee ,Bm+170, Bm+171, ce } There
exists an n > m such that % <€, tj Uty has diameter < %, and the variation
of G on bd(t;Ut) is < Z. Since by (10), G restricted to I*\{cl(t;) : t; € T p}
is continuous at (z,0), there exists an open semicircular disk D in I? having
(x,0) at the center of its diameter and not containing the other vertices of ¢;
and t;, such that the diameter of the open neighborhood W =t; Ut, U D of
(z,0) in I? is < 2 and diam({G(z,0)} UG(bd(W))) < 2 < e. This shows G is
peripherally continuous at (z,0).

Case 3: & € C(g) and z is not an endpoint of any b; in any B, ;. For
each n and ¢, there exists b; € B,; such that (2,0) € b;. Let {a;} be a
sequence whose jth term a; is an endpoint of b; in C(g). Then a; — x and
G(a;,0) = G(z,0). Since the variation of G on bd(t;) is < +, G is peripherally
continuous at (x,0).

To show I'\ C(g) is g-negligible, suppose f : I — I with f = g on C(g) and
fl(I'\ C(g)) C g. Since g|C(g) is dense in g and since f = g on C(g), f = .
We show that

F(z,t) = G(z,t) on I*\ ((I\C(g)) x {0})
’ f(z)  on (I\C(g)) x {0}

is a peripherally continuous extension of f. F' is peripherally continuous at
each point of 12\ ((I\ C(g)) x {0}) because F' = G on this set, which contains
bd(W) in case 2 and contains bd(¢;) in case 3. Let € I\ C(g), e > 0 and
0 > 0. There exist an n and ¢ such that % < ¢ and

[i 141

T ]c(F(:c,o)—e,F(x,o)+e)mH2(ymew).
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Then for some j, € b; € B, ; and F(bd(¢;)) = G(bd(¢;)) C {%, ’;1} C
(F(z,0) — €, F(x,0) +¢€). Therefore F is peripherally continuous at each point

of (I'\ C(g)) x {0}, too, and so I\ C(g) is g-negligible. O

A function f : I — R belongs to B, the class Baire*1, if each perfect
set in I contains a portion on which the restriction of f is continuous. In
the space DB; of Darboux Baire class 1 functions f : I — R with the met-
ric d(f,g) = min{1,sup |f(x) — g(z)|} of uniform convergence, let G be the
subspace of quasicontinuous functions, and let Gy be the subspace of quasi-
continuous functions having closures that are bilaterally dense in themselves.
In [5], Darji, Evans, and O’Malley show that G is closed and nowhere dense
in DB; and that DB is of the first category in G. Gy is closed in DB; and
a proof similar to theirs would show that the subspace of DB} consisting of
functions whose closures are bilaterally dense in themselves is of first category
in g().

2 Preimages

For A,B C P(R), the family of all subsets of R, let C4p5 = {f € R¥ :
for every A € A, f(A) € B} and C ;s = {f € R® : for every B € B, f~}(B) €
A}. A family F of real functions is characterizable by images of sets if F =
C s and by preimages of sets if F = C’Z}B for some A, B C P(R). The class
QC of all quasicontinuous functions is characterizable by preimages [13] but
not by images [3]. We examine the classes QCN By, QCNDIVP, and QCND.

Theorem 2. QCN B is characterizable by preimages of sets.

PrROOF. Let

A={ACR: Aisan F, set and for every interval (a,b) meeting A,

(a,b) N A contains a somewhere dense G subset of R}

and let B be the family of all open intervals (¢,d) in R. If f €Bj, then
A = f~Ye,d) is an F, set and if f €QC, then each nonempty set (a,b) N
f7(c,d) contains a somewhere dense G5 subset (of continuities of f). There-
fore QCNB; C CZ,lB' Now suppose f € C;}B. Then for every (a,b) and
(c,d), if (a,b) N f~1(c,d) is nonempty, then it contains a somewhere dense G
subset G of R. Since f~!(c,d) is an F, set for each (¢,d) € B, f €B; and
therefore C'(f) is a dense G set. By the Baire Category Theorem, C(f) NG
is a somewhere dense Gs subset of R. It follows that f €QC. ]
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In [4], Ciesielski and Natkaniec show that the class DIVP cannot be char-
acterized by preimages. Their exact same proof verifies the next result because
the functions fy and f; they construct there in DIVP are also in QC.

Theorem 3. QCN DIVP cannot be characterized by preimages of sets.
Theorem 4. QCN D cannot be characterized by preimages.

PROOF. Assume, otherwise, that there exist .4, B C P(R) such that QCND=
C’;}B. We may suppose that A = {f~1(B) : f €QCND and B € B} and
B¢ {0,R}. Let B € B\{0,R}. Let {d, :n=0,1,2,...} be a dense sequence
in B and {e,, : » =0,1,2,...} be a dense sequence in R\ B. C denotes the
Cantor ternary set, and J,, denotes the union of closures of all the components
of I'\ C with length yl% C' is the union of disjoint c-dense subsets C and
Cs. Let Cy be the set of the endpoints of all the intervals J,. Put

e, ifxeJy,
eg ifze(Cr\CoUMN\I(,1))
fo(.’L‘) =4qd, ifzxe oy
takes on every value of R c-many times on every nonempty
relative subinterval (a,b) N (Cs \ Co).

Let C3 = {x € Co\ Cy : fo(x) € B}. Then fo € QCND and f;'(B) =
C3 U UfLO:O Jont+1 € A. Notice Cs is c-dense in Cy. Now define

en ifx € Jopga

do ifze(Cy\(C5UCH)U(RN(0,1))

d, ifxeJy,
takes on every value of R on every nonempty relative sub-
interval (a,b) N ((C1 \ Cp) U Cs) with f1((a,b) N (C1\ Cp)) =B
and f1((a,b)NC3) =R\ B.

Then f; €QCND and f; (B) = (R\ (C3UCy)) Uy Jan € A, R = f31(B)U
fr(B) and £, H(B)N f;Y(B) = 0. {0,R} C A because the constant functions
are in QCND. Define h € R by h(z) =iifx € f;7'(B) and i = 0, 1. Therefore
h € C;'5\D, a contradiction. O

3 Ext\(CTUQC)

Smital and Stanova showed that there exists an almost continuous function
f I — R which is in neither CT nor QC [14]. In [7], Gibson asked if there
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exists an extendable function f : I — R which is in neither CT nor QC. We
see the answer is yes by applying the next theorem to either of the following
examples.

Example 1. Let f: I — I be Croft’s function, which has the properties that
f is Darboux, Baire class 1, and f = 0 a.e. but not identically 0. (See p.12 in
[2].) Let E # 0 be that set of measure zero. Then f~1(0) =1\ F and I \ E
is dense in I.

Example 2. More generally, suppose ) # E C I with E an F, set bilaterally
c-dense in itself and I\ F dense in I. For example, E could be a certain union
of countably many Cantor sets. By Theorem 2.4 on p. 13 in [2], there exists
a Darboux Baire class 1 function f: I — I such that f=1(0) =1\ E.

Theorem 5. If f : I — I is a Darboux Baire class 1 function and E is
a set obeying ) # E C I, f71(0) = I\ E and I \ E is dense in I, then
f € Ext\(CTU QC).

ProOOF.  According to Brown, Humke, and Laczkovich [1], a Baire class 1
function f is Darboux if and only if f is extendable. The graph of a Baire
class 1 function f is nowhere dense in I x I and hence f ¢CT. Since E # (),
there exists a € E. Since f~1(0) = I\ E, f(a) > 0. Therefore f is not
quasicontinuous at a because f(a) > 0, f(I\ E) =0, and I \ F is dense in
1. O
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