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LEARNING THEOREMS

Abstract

We will prove learning theorems that could explain, if only a little,
how some organisms generalize information that they get from their
senses.

1 Theorems and open problems

Given a metric space M, an infinite sequence x0, x1, . . . of points of M and
an unknown real valued function f : M → R, suppose that we have learned a
sequence of n data points (x0, f(x0)), . . . , (xn−1, f(xn−1)). How to predict the
value f(xn)? Assuming some regularity of f the simplest way that appears
reasonable is the following. Define a function fn : M → R (n > 0) such that
for every x ∈M we pick the last term xk of the sequence x0, . . . , xn−1 among
those which are the nearest to x and let fn(x) = f(xk).

Theorem 0. If M is compact and f is continuous, then

lim
n→∞

|fn(xn)− f(xn)| = 0.

This easily follows from the facts that f is uniformly continuous and the
sets {x0, . . . , xn−1} approximate the set {x0, x1, . . . } in Hausdorff’s distance.

The main purpose of this paper is to prove other theorems of that kind
related to the Laws of Large Numbers. We add also a little improvement of a
convergence theorem of the Kaczmarz-Agmon Projection Algorithm.

Let λ be a Radon probability measure in the Euclidean space Rd, and
x0, x1, . . . be independent random variables taking values in Rd with distribu-
tion λ. Let P be the product measure λω in (Rd)ω. With M = Rd and the
same definition of fn as above (thus fn depends on (x0, . . . , xn−1)) we have
the following theorem.
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Theorem 1. If f : Rd → R is λ-measurable then, for every ε > 0,

lim
n→∞

P (|fn(xn)− f(xn)| < ε) = 1.

Remark. By the theorem of Fubini, if

P (|fn(xn)− f(xn)| < ε) ≥ 1− δ,

then
P (λ{x : |fn(x)− f(x)| < ε} ≥ 1−

√
δ) ≥ 1−

√
δ.

Theorem 1 will be proved in Section 2. It is a simple consequence of
the Besicovitch generalization of the Lebesgue Density Theorem to all Radon
measures in Rd. (See P. Mattila [4] and, for related results, S. G. Krantz and
T. D. Parsons [3]. That generalization is no longer true for all Radon measures
in the infinite dimensional Hilbert space l2, see P. Mattila and R. D. Mauldin
[5].)

It would be interesting to estimate the rate of convergence in Theorem 1;
it seems that fn → f in measure λ for P -almost all sequences (x0, x1, . . . ).
Recently D. H. Fremlin proved the latter in the case d = 1 (see [2, Corollary
3B]) and, for all d, in the case when when λ is the Lebesgue measure in the
unit cube [0, 1]d and λ(Rd − [0, 1]d) = 0 ([2, Theorem 5B]).

We will show in Section 4 that, even in the case when M is the cube [0, 1]d

with the Euclidean metric and λ is the Lebesgue measure in [0, 1]d, convergence
almost everywhere may fail: For every 0 ≤ a < 1 there exist closed subsets E
of [0, 1]d with λ(E) = a, such that if f is the characteristic function of E then
fn(x)→ f(x) fails P -almost surely for almost all x ∈ E.

Let us return to the general case of a Radon measure λ in Rd. If f is
bounded, convergence almost everywhere can be secured by a more sophisti-
cated algorithm:

f̄n(x) =
1

n

n∑
i=1

fi(x).

Theorem 2. If the function f : Rd → R is λ-measurable and bounded, then
for P -almost all sequences x0, x1, . . . the sequence f̄1, f̄2, . . . converges to f
λ-almost everywhere.

However, the evaluation of f̄n requires more computation than the evalu-
ation of fn. Hence some learning organisms may be able to apply fn but not
f̄n.

I do not know if Theorem 2 can be extended to all λ-integrable f . However,
it fails for some λ-measurable f ; see Section 4.
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Now we will state variants of Theorems 1 and 2 suggested to the author
by Roy O. Davies. Let S be a probability measure space with measure µ and
P = µω. Let P0, P1, . . . be a sequence of finite or countable partitions of S into
measurable sets such that P0 = {S} and Pn+1 is finer than Pn for n = 0, 1, . . . .

We assume that the σ-field F of subsets of S generated by P0 ∪P1 ∪ . . . is
such that µ is the closure of µ restricted to F , i.e., µ is defined over all subsets
of S of the form A∆N , where A ∈ F and N is any subset of a null set of F ,
such that µ(A∆N) = µ(A), where ∆ is the symmetric difference of sets.

Then, given a µ-measurable function f : S → R and a sequence x0, x1, . . .
of points of S, we define functions fn : S → R (n > 0): For every x ∈ S we
choose the least set Q ∈ P0 ∪P1 ∪ . . . such that x ∈ Q and {x0, . . . , xn−1}∩Q
is not empty. Then we choose the largest k < n such that xk ∈ Q, and we put
fn(x) = f(xk).

Theorem 3. Theorem 1 is true in this setting.

Recently D. W. Stroock (to appear in a new edition of [9]) extended The-
orems 1 and 3 showing that E[|fn(xn)− f(xn)|p]→ 0, for all p ≥ 1, under ad-
ditional assumptions but in a more general setting turning them into tracking
theorems.

Again we do not know if Theorem 3 can be strengthened to claim that
fn → f in measure almost surely. Again convergence almost everywhere can
fail but, if f is bounded, it holds for the first means; in other words:

Theorem 4. Theorem 2 is true in this setting.

Again we do not know if Theorem 4 generalizes to all integrable f , but we
will show examples of Lebesgue-measurable unbounded functions f for which
convergence f̄n(x) → f(x) fails almost surely for all x in a set of measure as
close to 1 as we wish.

There are essentially only two other learning theorems in the style of the
above. The first expresses the convergence of the Kaczmarz Projection Algo-
rithm. For completeness let me state them here with a little refinement in the
second one.

Let H be a real Hilbert space, p ∈ H and f0, f1, . . . a sequence in H such
that, for all n, fn+1 is an orthogonal projection of fn into any hyperplane Ln
separating fn from p or containing p.

Theorem 5. The following inequality holds:

∞∑
n=0

||fn+1 − fn||2 ≤ ||p− f0||2.
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The proof will be given in Section 5. The next theorem which pertains to
the Kaczmarz–Agmon Algorithm is more important in various applications.

Let f0 ∈ H−B, where B is a non-empty open ball in H. For all n let fn+1

be the orthogonal projection of fn into any hyperplane Ln that separates fn
from B. If, for some n, fn is on the boundary of B, we let fm = fn for all
m > n.

Theorem 6. The following inequality holds

∞∑
n=0

||fn+1 − fn|| <
R2

2r
− r

2
,

where R is the distance of f0 from the center of B and r is the radius of B.
Moreover, the right side is the least upper bound of all possible sums on the
left.

The proof will be given in Section 5. This improves a similar theorem in
[4], where the term −r/2 was missing. For related results and applications see
[1,6,7,8]. Now we will show the relation of Theorems 5 and 6 to Theorem 0
and illustrate their applications.

Suppose that f : [0, 1]→ R is a continuous function and we seek polynomi-
als fn of degrees < m with real coefficients uniformly approximating f , such
that each fn is constructed in terms of (x0, f(x0)), . . . , (xn−1, f(xn−1)).

To define appropriate algorithms producing such fn we need the following
concepts. Let Hm be the m-dimensional vector space over R of all polyno-
mials over R of degree < m. We introduce in Hm some Hilbert norm || · ||.
Various choices of || · || are possible, e.g. the Euclidean norm for the vectors
of coefficients or the L2 norm (

∫
h2)1/2.

For each point (x, y) ∈ [0, 1] × R, the set {h ∈ Hm : h(x) = y} is a
hyperplane in Hm. Hence there exists a unique hx,y ∈ Hm of minimum norm
such that hx,y(x) = y.

Of course hx,y = yhx,1. Hence

|y| ≤ c||hx,y||, (1)

where c = 1/minx∈[0,1] ||hx,1||.
Let pf be the polynomial of best uniform approximation of f in Hm and

δ = maxx∈[0,1] |pf (x) − f(x)|. Thus δ is the distance in C[0, 1] between Hm

and f .
Finally for every γ ≥ 0 we define an algorithm Aγ producing the sequence

f0, f1, . . . : First, f0 ∈ Hm is arbitrary (the default choice is f0 = 0). Then,
given fn ∈ Hm we put

fn+1 = fn − hxn,vn ,
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where

vn =


en − γ if that value is positive,

en + γ if that value is negative,

0 otherwise,

where en is the error made by fn at xn, that is,

en = fn(xn)− f(xn).

Then, if |en| ≤ γ, fn+1 = fn and, if |en| > γ, fn+1(xn) = f(xn) ± γ.
Moreover, if |en| > γ ≥ δ, then one of the two hyperplanes {h : h(xn) =
f(xn) ± γ} in Hm separates fn from pf . Let Ln be that hyperplane. Then
fn+1 is the orthogonal projection of fn into Ln. If γ = δ, then pf ∈ Ln and
Theorem 5 applies; if γ > δ, there exists a ball B of positive radius and center
pf in Hm such that Ln separates fn from B, and Theorem 6 applies.

To explain their significance let [x]+ = max{0, x}. Then by (1), Aγ implies
the inequalities

[|en| − γ]+ = |vn| ≤ c||hxn,vn || = c||fn+1 − fn||.

Hence Theorem 5 yields ∑
([|en| − γ]+)2 <∞

and Theorem 6 yields ∑
[|en| − γ]+ <∞,

respectively.
Thus in both cases γ = δ and γ > δ, whenever some error |en| is larger

than γ the algorithm Aγ is learning.

2 Proofs of Theorems 1 and 3

Proof of Theorem 1. For all ε > 0 and all integers k let

Skε = f−1[kε, (k + 1)ε).

For all x ∈ Rd let Sε(x) = Skε such that x ∈ Skε. By the Besicovitch-Lebesgue
Density Theorem (see e.g. [4, Corollary 2.14]), λ-almost every x ∈ Rd is a point
of λ-density 1 of its set Sε(x), that is,

lim
r→0

λ(B(x, r) ∩ Sε(x))

λ(B(x, r))
= 1,
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where B(x, r) = {y ∈ Rd : |y − x| < r} for all r > 0.
Let an(x) (n > 0) be the last term of x0, . . . , xn−1 among those which are

the nearest to x. Thus fn(x) = f(an(x)), and for λ-almost all x and λω-almost
all (x0, x1, . . . ) we have an(x)→ x. Therefore, if x is a point of λ-density 1 in
Sε(x),

lim
n→∞

λn{(x0, . . . , xn−1) : an(x) ∈ Sε(x)} = 1.

Hence, for λ-almost all x,

lim
n→∞

λn{(x0, . . . , xn−1) : |fn(x)− f(x)| < ε} = 1.

Choose any δ > 0. Then for all large enough n,

λ{x : λn{(x0, . . . , xn−1) : |fn(x)− f(x)| < ε} > 1− δ} > 1− δ.

And, since the random variables xn and (x0, . . . , xn−1) are independent, for
all large enough n, we have

λn+1{(x0, . . . , xn) : |fn(xn)− f(xn)| < ε} > (1− δ)2.

Of course this inequality implies Theorem 1.

Proof of Theorem 3. We can assume without loss of generality that

1◦ µ(A) > 0 for all A ∈ P0 ∪ P1 ∪ . . .

2◦ If µ(
⋂∞
n=0An) > 0, then

⋂∞
n=0An is of power continuum.

It follows that the system (S, µ, P0, P1, . . . ) can be identified with a system
of the form ([0, 1), λ, P ′0, P

′
1, . . . ) where λ is the Lebesgue measure and all

A′ ∈ P ′0 ∪ P ′1 ∪ . . . are intervals of the form [a, b) with 0 ≤ a < b ≤ 1, and
b− a = µ(A) if A′ corresponds to A.

Let now, for all x ∈ S, An(x) be the unique A ∈ Pn such that x ∈ A. Since
the corresponding A′ are intervals, the original Lebesgue Density Theorem
easily implies

(LDT’) For every µ-measurable set X ⊆ S almost all x ∈ X have the
property

lim
n→∞

µ(X ∩An(x))

µ(An(x))
= 1.

Using (LDT’) instead of the original theorem of Lebesgue, the proof of
Theorem 3 is quite similar to the proof of Theorem 1. So we omit further
details.

Remark. For a generalization of (LDT’) due to J. Marcinkiewicz see [9,
Theorem 5.2.12].
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3 Proofs of Theorems 2 and 4

Proof of Theorem 2. By the theorem of Fubini it suffices to show that,
for λ-almost all x ∈ Rd, for λω-almost all (x0, x1, . . . ) ∈ (Rd)ω, f̄n(x)→ f(x),
as n→∞.

We use the notation of Section 2. For every ε > 0, λ-almost every x ∈ Rd
is a point of λ-density 1 of Sε(x). Hence not only do we have that for λ-
almost all x, an(x) → x, for λω-almost all sequences x0, x1, . . . , but also the
frequency of those terms ai(x) in the sequence a1(x), a2(x), . . . that belong to
Sε(x) equals 1. By the assumption of Theorem 2, |f | < A for some constant
A. Hence there exists a k such that

kε ≤ lim inf
n→∞

f̄n(x) ≤ lim sup
n→∞

f̄n(x) ≤ (k + 1)ε.

Therefore lim f̄n(x) exists and equals f(x) for almost all x and (x0, x1, . . . ).

Proof of Theorem 4. We use (LDT’) and the proof is almost the same as
the above, so I omit the details.

4 Counter-examples to convergence almost everywhere

We will show that in Theorems 1 and 3 convergence fn → f almost everywhere
may fail almost surely (however we do not know if convergence in measure must
hold almost surely), and that in Theorems 2 and 4, the assumption that f is
bounded cannot be omitted (however we do not know if it cannot be replaced
by the assumption that f is integrable).

In this section λ denotes the Lebesgue measure restricted to the unit cube
Id (I = [0, 1]) and P = λω. For any set S, |S| denotes the cardinality of S.

We begin with the construction of a counter-example related to Theorem
1 with divergence over a set of measure a, for any desired a < 1.

We will need the following propositions.

Proposition 1. For every closed set A ⊂ Id with λ(A) < 1 and every ε, ρ > 0
with ε < 1 − λ(A), there exists an open set V ⊂ Id − A with λ(V ) = ε and
λ(∂V ) = 0 (∂V denotes the boundary of V ) such that for all x ∈ Id − A and
all r > ρ

λ(B(x, r) ∩ V )

λ(B(x, r))
>
ε

2
.

Proof. Let n be a natural number and C the set of cubes disjoint with A of
a partition of Id into nd congruent cubes. Let n be large enough such that
the union of the cubes of C is of measure > ε. Let V be the union of |C| open
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sets with boundaries of measure 0, each of measure ε/|C| located in distinct
cubes of C. It is clear that if n is large enough, V satisfies Proposition 1.

Let a1(x), a2(x), . . . be defined as in Section 2 and V (A, ε, ρ) be the open
set given by Proposition 1.

Proposition 2. For every x ∈ Id −A, ε > 0 and any natural number N ,

lim
ρ→0

P (|{a1(x), a2(x), . . . } ∩ V (A, ε, ρ)| > N) = 1.

Proof. Recall three facts:

1◦ λ(V (A, ε, ρ)) = ε and hence it does not depend on ρ.

2◦ V (A, ε, ρ) is more and more evenly spread in Id −A as ρ→ 0.

3◦ The points x0, x1, . . . are chosen uniformly and independently in Id.

It is evident that Proposition 2 follows from these facts.

Let α = 1− a. Now we define recursively three sequences A0, A1, . . . ; ρ0 >
ρ1 > . . . ; and n(0), n(1), . . . . Let A0 = ∅, ρ0 = 1 and n(0) = 0. Assume that
Ak, ρk and n(k) are given. Then, by Proposition 2, there exists a ρ > 0 and
an integer n > n(k) such that for all x ∈ Id −Ak

P
(
{an(k)(x), an(k)+1(x), . . . , an−1(x)} ∩ V

(
Ak,

α

2k+1
, ρ
)
6= ∅
)
≥ 1− 1

k2
. (2)

Let ρk+1 be any such ρ < ρk and n(k+1) the least corresponding n. Finally
we define

Ak+1 = Ak ∪ V
(
Ak,

α

2k+1
, ρk+1

)
,

where V denotes the closure of V , and

A∗ =

∞⋃
k=0

Ak.

Let Int(A∗) denote the interior of A∗. Then, by Proposition 1 , λ(Int(A∗)) =
λ(A∗).

Proposition 3. λ(A∗) = α and for every x ∈ Id−A∗ almost surely x0, x1, . . .
is such that for all large enough k

{an(k)(x), . . . , an(k+1)−1(x)} ∩ V
(
Ak,

α

2k+1
, ρk+1

)
6= ∅.
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Proof.

λ(A∗) =

∞∑
k=0

λ
(
V
(
Ak,

α

2k+1
, ρk+1

))
=

∞∑
k=0

α

2k+1
= α.

Since limn→∞
∏
k>n

(
1− 1

k2

)
= 1, by (2) we get the second part of Proposition

3.

Let now f be the characteristic function of the interior of A∗ (denoted
Int(A∗)). Thus for every x that is of density 1 in Id − A∗, almost surely
the sequence f(a1(x)), f(a2(x)), . . . diverges (since it contains almost surely
infinitely many 0’s and, by Proposition 3, infinitely many 1’s). Since for every
n, fn(x) = f(an(x)), the sequence f1(x), f2(x), . . . also diverges. Since λ(Id−
Int(A∗)) = 1− α = a this concludes our construction.

Now we will construct an example related to Theorem 2, namely a mea-
surable (but unbounded) f : Id → R such that f̄n → f almost everywhere
fails almost surely.

Let f(x) = 0 if x ∈ Id − Int(A∗) and f(x) = ck if x ∈ V
(
Ak,

α
2k+1 , ρk+1

)
.

It is clear that if the constants ck grow sufficiently fast, then by Proposition
3, for all x ∈ Id− Int(A∗), almost surely the means f̄n(x) will not converge to
0. For example if ck ≥ n(k) then almost surely, for all large enough k,

f̄n(k)(x) =
1

n(k)

n(k)∑
i=1

f(ai(x)) ≥ 1.

The examples concerning Theorems 3 and 4 are quite similar so we omit
the details.

5 Proofs of Theorems 5 and 6 (In Outline)

Proof of Theorem 5. By the definition of fn+1 there is a hyperplane Ln
which contains p or separates fn from p such that fn+1 is the orthogonal
projection of fn into Ln. Then there exists also a hyperplane L′n such that
p ∈ L′n and, if f ′n+1 denotes the orthogonal projection of fn into L′n, then

||f ′n+1 − p|| = ||fn+1 − p|| (3)

and

||f ′n+1 − fn|| ≥ ||fn+1 − fn||. (4)
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In order to find such an L′n it suffices to consider a hyperplane P parallel to
Ln and containing p, and then to rotate P around p toward fn such that the
projection f ′n+1 of fn into that rotated P satisfies (3). Then the inequality (4)
is automatically satisfied.

By (3) and (4) there exists a sequence f0 = f ′0, f
′
1, f
′
2, . . . and a sequence

of hyperplanes L′1, L
′
2, . . . all containing p, such that f ′n+1 is the projection of

f ′n into L′n and
||fn+1 − fn|| ≤ ||f ′n+1 − f ′n||

for all n.
Hence, to prove Theorem 5, we can assume without loss of generality that

p ∈ Ln for all n.
With that condition Theorem 5 reduces immediately to the case of a 2-

dimensional H and it follows easily from the Pythagorean Theorem.

Proof of Theorem 6. By an argument similar to the above one we can
assume without loss of generality that all hyperplanes Ln (separating fn from
B) are tangent to B. And again the problem reduces to the case of a 2-
dimensional H.

Then by elementary geometric considerations the least upper bound of the
sums equals the length of a certain spiral S on the plane R2 which is defined
as follows. We take a straight segment of length A =

√
R2 − r2 and place it

on R2 such that it is tangent at one of its ends to a circle C of radius r. Then
we think of this segment as a flexible thread and wind it completely around
C such that it is always tangent to C. The free end of the thread traces the
required spiral S. Thus the far end of S is at the distance R from the center
of C, the near end of S at the distance r from this center, and it is easy to see
that the length of S is ∫ A/r

0

(A− rα)dα =
R2

2r
− r

2
.

This yields Theorem 6.
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