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ON THE HAAR MEASURES IN
TOPOLOGICAL FIELDS

Abstract

By virtue of the uniqueness theorem for the Haar measure on a
topological group, a simple argument is sufficient to show that the Haar
measures on a locally–compact topological field, corresponding to the
additive and multiplicative structures of the field, are absolutely contin-
uous with respect to one another.

1 Prologue.

In his consideration of the interplay between measure theory and topology in
a locally–compact topological group, Halmos [3] has shown that a relatively–
invariant measure on the Borel σ–ring of subsets of the group and the Haar
measure on the group are connected by an integral relationship. Since the
additively–invariant Haar measure on a locally–compact topological field proves
to be multiplicatively, relatively invariant, one is led to suspect that the ad-
ditive and multiplicative Haar measures on the field should be related in the
manner suggested by the foregoing result. Indeed, Halmos has observed that
this is the case in the ordinary real field, and the resolution of this conjec-
ture in the general setting involves only the application of some of the nifty
ideas supplied by Halmos, and by Weiss and Zierler [5], and the time–honored
techniques of measure theory.

2 Exposition.

Let X be a proper, locally–compact topological field, let X+ = (X; +) and
X∗ = (X∗; ·) be the associated additive and multiplicative subgroups, let µ
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and ν be the Haar measures corresponding to X+ and X∗, and let S denote
the σ–ring of Borel subsets of X. Since a proper field topology is nontrivial,
as well as nondiscrete, X is a Hausdorff space.

Lemma 1. Let x ∈ X, and let µx be the measure given by the relation

µx(E) = µ(xE),∀ E ∈ S.

Then µx is invariant under translations, and thus, by virtue of the uniqueness
of the Haar measure, µx is a constant multiple of µ.

Proof. For each b ∈ X, one has

µx(b+ E) = µ(x(b+ E)) = µ(xb+ xE)

= µ(xE) = µx(E), ∀ E ∈ S;

hence,
µx = φ(x)µ.

In a lovely treatment of the classification problem for locally–compact divi-
sion rings, Weiss and Zierler [5] have shown that this classification can be de-
termined in short order by approaching the problem from a measure–theoretic
point of view. Ab initio they observe that the real–valued function φ is ev-
erywhere continuous, and from this fundamental property follows the absolute
continuity of µ and ν with respect to one another.

Lemma 2. The function
φ : X → R

satisfies the following conditions:
(i) φ(x) ≥ 0, ∀ x ∈ X; φ(x) = 0 iff x = 0;
(ii) φ(xy) = φ(x)φ(y), ∀ (x, y) ∈ X ×X;
(iii) There exists a positive number M such that

φ(1 + a) ≤M, ∀ a ∈ X 3 φ(a) ≤ 1;

(iv) φ is everywhere continuous.

The validity of the first two of these propositions is evident, and demon-
strations of the latter two can be found in [5]. From (iii) follows also the
condition

φ(x+ y) ≤ φ(x) + φ(y), ∀ (x, y) ∈ X ×X,
so that φ is a valuation for X. (In the ordinary real field, for example, φ is
simply the absolute value function.)
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Lemma 3. One has, for each f , nonnegative and measurable (S),∫
aE

f(x)dµ(x) =

∫
E

f(ax)dµa(x), ∀E ∈ S, ∀a ∈ X ,

where µa = φ(a)µ.

Proof. (i) For F ∈ S,
∫
aE
χF (x)dµ(x) = µ(aE ∩ F ), and∫

E

χF (ax)dµa(x) =

∫
E

χa−1F (x)dµa(x) = µa(E ∩ a−1F )

= µ(a(E ∩ a−1F )) = µ(aE ∩ F ).

(ii) For each nonnegative, simple function f =
∑n

j=1 cjχFj ,∫
aE

f(x)dµ(x) =

n∑
j=1

cj

∫
aE

χFjdµ(x) =

n∑
j=1

cjµ(aE ∩ Fj)

=

n∑
j=1

cjµ(a(E ∩ a−1Fj) =

n∑
j=1

cjµa(E ∩ a−1Fj)

=

n∑
j=1

cj

∫
E

χa−1Fj
(x)dµa(x) =

n∑
j=1

cj

∫
E

χFj (ax)dµa(x)

=

∫
E

n∑
j=1

cjχFj
(ax)dµa(x) =

∫
E

f(ax)dµa(x).

(iii) For f nonnegative and measurable (S), let {fn}∞n=1 be a nondecreasing
sequence of simple functions for which f = limn fn. Then∫

aE

f(x)dµ(x) = lim
n

∫
aE

fn(x)dµ(x)

= lim
n

∫
E

fn(ax)dµa(x) =

∫
E

f(ax)dµa(x).

Lemma 4. For each Borel set E, the restriction of φ to the domain E is
measurable (S).

Proof. If E be compact, then for each c ∈ R, {x : φ(x) ≤ c} ∩ E is a
closed subset of E and is, thus, compact and so measurable. In the gen-
eral case, there is a countable family {Cn : n ∈ } of compact sets such that
E ⊂

⋃∞
n=1 Cn[[3]; 24]. Hence, for each c ∈ R, {x : φ(x) ≤ c} ∩

⋃∞
n=1 Cn ∈ S,

and thus also {x : φ(x) ≤ c} ∩ E ∈ S as well.
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Theorem 5. The set function θ, well defined by

θ(E) =

∫
E

1

φ(x)
dµ(x), ∀ E ∈ S,

is “the” multiplicative Haar measure.

Proof. For each E ∈ S and a ∈ X∗, one has

θ(aE) =

∫
aE

1

φ(x)
dµ(x) =

∫
E

1

φ(ax)
dµa(x)

=

∫
E

1

φ(ax)
φ(a)dµ(x) =

∫
E

1

φ(x)
dµ(x) = θ(E);

thus, θ is multiplicatively invariant and so must be a reasonable facsimile of
ν.

Now let λ be the measure given by

λ(E) =

∫
E

φ(x)dθ(x), ∀ E ∈ S.

Lemma 6. For every f nonnegative and measurable (S),∫
E

f(x)dλ(x) =

∫
E

f(x)φ(x)dθ(x),

and ∫
E

f(x)dθ(x) =

∫
E

f(x)
1

φ(x)
dµ(x).

Proof. Here, again, the standard technique, as employed above, suffices.

Corollary 7. λ = µ.

Proof. For each E ∈ S,

λ(E) =

∫
E

φ(x)dθ(x) =

∫
E

φ(x)
1

φ(x)
dµ(x) = µ(E).
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3 Epilogue

An unexpected corollary of this brief study of the Haar measures in a topo-
logical field is a serendipitous consequence of the fundamental work of Weiss
and Zierler.

Theorem 8. Every proper, locally–compact topological field is σ–compact.

Proof. Let X be a topological field of this nature. It suffices to show that, for
every natural number t, St =: {x : φ(x) ≤ t} is compact, since X =

⋃∞
t=1 St.

This fact, in turn, is essentially contained in one of the demonstrations given
in [5], an adaptation of which follows.

Let C be a compact neighborhood of 0, and let V be a neighborhood of 0
such that V C ⊂ C, and let a be an element of V ∩C for which 0 < φ(a) < 1.

Suppose that, for some n, anSt ⊂ C. Then St ⊂ a−nC. Now St is closed
and a−nC is compact, and so St must be compact.

Suppose, on the other hand, that the inclusion anSt ⊂ C holds for no
n ∈ N. Then, for each n, there is an sn ∈ St such that ansn 6∈ C. Since
each ak ∈ C and φ(a) < 1, limk φ(ak) = 0 yields limk a

k = 0. Thus, for
n fixed, aksn ∈ C, for all sufficiently large k, by virtue of the continuity
of multiplication. From the well–ordering principle follows the existence of
kn ≥ n such that aknsn 6∈ C but akn+1sn ∈ C. But then each aknsn lies
in the compact set a−1C, so that {aknsn : n ∈ N} has a cluster point, c, in
a−1C. Since φ(aknsn) = (φ(a))knφ(sn) ≤ t(φ(a))n, limn φ(aknsn) = 0. From
the continuity of φ follows also φ(c) = 0, and thus c = 0. Since no aknsn ∈ C,
this is impossible, and so one must have anSt ⊂ C, for some n ∈ N.
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