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CLASSIFICATION OF POINTS OF LOWER
SEMI-CONTINUITY OF A

MULTIFUNCTION IN TOPOLOGICAL
SPACES

Abstract

In this paper we introduce the notion of y-lower semi-continuity and
point out a distinction between a point of lower semi-continuity in global
sense and a point of lower semi-continuity in local sense in general topo-
logical spaces after classifying points of y-lower semi-continuity (resp.
lower semi-continuity) and also study their interrelationships. In par-
ticular, we find a necessary and sufficient condition for a bijective open
multifunction on a T2 space to be lower semi-continuous. Finally, a suf-
ficient condition for an open bijective multifunction on the real line to
have at most countable points of lower semi-discontinuity is formulated.

1 Introduction.

In this paper X, Y always denote topological spaces, φ the empty set, N the
set of natural numbers, R the set of real numbers and U the usual topology.
A multifunction F : X → Y is a point to set correspondence and we assume
F (x) 6= φ for all x ∈ X. If A ⊂ X,F (A) =

⋃
{F (x) : x ∈ A}, and for B ⊂ Y ,
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F−1(B) = {x : F (x) ∩B 6= φ}. A multifunction F : X → Y is called strongly
injective [1] (resp. surjective [2], [6]) if x1, x2 ∈ X with x1 6= x2 implies
F (x1)∩F (x2) = φ (resp. F (X )=Y ); F is called bijective (or a bijection) if F
is both strongly injective and surjective, and F is called open (resp. closed) if
F (U ) is open (resp. closed) in Y for every open (resp. closed) U in X. Clearly,
if F is surjective then B ⊂ FF−1(B) for each B ⊂ Y . The closure and the
interior of a set A is denoted by Cl A and IntA respectively. The boundary [5]
of a set A is defined by BdA = A−IntA. A is said to be weakly separated [5]
from B if and only if A∩ClB = φ for A,B ⊂ X. A multifunction F : X → Y
is called lower semi-continuous [6] if F−1(V ) is open in X for each open V in
Y and F is called lower semi-continuous at x ∈ X [4] if whenever y ∈ F (x)
and for every open V containing y, there exists an open U with x ∈ U such
that F (z) ∩ V 6= φ for all z ∈ U . Clearly F is lower semi-continuous if and
only if F is lower semi-continuous at each point in the domain space. From
now on both of the phrases ‘lower semi-continuous’ and ‘lower semi-continuity’
(resp. ‘lower semi-discontinuous’ and ‘lower semi-discontinuity’) will often be
abbreviated by l.s.c. (resp. l.s.d.). The logical constant ‘exclusive or’ will be
denoted by ‘xor’.

This paper is based on two simple observations. Firstly, it is trivial that
if F : X → Y is not l.s.c. then it fails to be so for at least one x ∈ X. It
may happen that F fails to satisfy the requisites if not all but for at least
one y ∈ F (x) and becomes lower semi-discontinuous at x ∈ X (i.e., not lower
semi-continuous at x ∈ X). This observation leads to the definition of l.s.c.
(resp. l.s.d.) for F : X → Y at x ∈ X with respect to an y ∈ F (x), or
briefly, y-l.s.c. (resp. y-l.s.d.) at x ∈ X. Our second observation stems from
a natural question (cf. [3] ) that when a multifunction F : X → Y is l.s.c. for
some z ∈ X but not all, then whether a point of l.s.c. for such a multifunction
shares the same characteristic with a point of l.s.c. for an l.s.c. multifunction.
We have seen that there is a difference and used it to classify points of y-l.s.c.
(resp. l.s.c.) by defining sy-points and wy-points (resp. by defining s-points,
w -points and c-points) and studied their intrinsic properties : for instance,
under certain condition the domain space is partitioned; the existence of a
point of l.s.d. is ensured by the existence of a wy-point, or in other words,
for an l.s.c. multifunction all points of the domain space are characterized
by s-points. Also the existence of the maximum open neighbourhood of y for
an sy-point is found and with the help of this largest open neighbourhood
of y for a special type of sy-point we have got a necessary and sufficient
condition for a bijective open multifunction on a Hausdorff space to be l.s.c.
Further properties of this largest open neighbourhood is also studied. Finally
a sufficient condition for an open bijective multifunction on the real line to
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have at most countable points of lower semi-discontinuity is formulated.

2 Classification of points of lower semi-continuity.

In this section we first introduce the following notions.

Definition 2.1. A multifunction F : X → Y is called lower semi-continuous
at x ∈ X with respect to an y ∈ F (x) (or simply, y-l.s.c. at x ∈ X) if for
every open V containing y, there exists an open U with x ∈ U such that
F (z) ∩ V 6= φ for all z ∈ U . x is then called an y-l.s.c. point.

Definition 2.2. A multifunction F : X → Y is called lower semi-discontinuous
at x ∈ X with respect to an y ∈ F (x) (or simply, y-l.s.d. at x ∈ X ) if F is
not y-l.s.c. at x ∈ X. x is then called an y-l.s.d. point.

Naturally examples for Definition 2.1 and Definition 2.2 are due. But
before that we give a necessary and sufficient condition for a multifunction F
to be y-l.s.d. at x ∈ X in the following theorem.

Theorem 2.3. A multifunction F : X → Y is y-l.s.d. at x ∈ X if and only
if there exists an open neighbourhood V of y such that x ∈ Bd F−1(V ).

Proof. Let F be y-l.s.d. at x ∈ X. Then there exists an open V containing
y such that for every open U with x ∈ U we have F (z) ∩ V = φ for at least
one z ∈ U . If possible, for every open neighbourhood of y (and hence for
V ), x ∈ Int F−1(V ). We set U = Int F−1(V ). Clearly x ∈ U . Now let
z ∈ U ⊂ F−1(V ). Then F (z) ∩ V 6= φ, a contradiction. So, x ∈ Bd F−1(V ).
Conversely, let there be an open neighbourhood V of y ∈ F (x) such that
x ∈ BdF−1(V ). If possible, let F be y-l.s.c. at x. Then for V, there exists an
open U with x ∈ U such that F (z) ∩ V 6= φ for all z ∈ U , i.e., U ⊂ F−1(V ).
So x ∈ U = Int U ⊂ Int F−1(V ) which contradicts with x ∈ Bd F−1(V ).
Hence F is y-l.s.d. at x.

Example 2.4. Let F : [0, 1]→ [0, 1] be defined by F (1) = {1}, F ( 1
2 ) = { 34 , 1},

F (x) = {x, 1} for x 6= 1
2 , 1. For 1 ∈ F ( 1

2 ) we see F−1(V ) = [0, 1] is
open where V is any open set containing 1 as F−1({1}) = [0, 1]. So F is
1-l.s.c. at each x ∈ [0, 1]. But for 3

4 ∈ F ( 1
2 ), taking V = ( 3

4 − ε, 34 + ε),

0 < ε < 1
4 we see 1

2 ∈ Bd F
−1(V ) because F−1(V ) = ( 3

4 − ε,
3
4 + ε) ∪ { 12} and

Int F−1(V ) = (3
4 − ε,

3
4 + ε). So F is 3

4 -l.s.d. at x = 1
2 .

Corollary 2.5. Let F : X → Y be a multifunction and O be any open set
in Y. If Bd F−1(O) 6= φ then each x ∈ Bd F−1(O) is a point of l.s.d. with
respect to each of the image points of x in O.
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Now we classify points of y-l.s.c. (respectively l.s.c.) for a multifunction
F : X → Y in the following.

Definition 2.6. A point x ∈ X is called an sy-point of F : X → Y with
respect to an y ∈ F (x) (or simply, an sy-point) if there exists an open neigh-
bourhood N (y) of y such that for any open sub-neighbourhood O(y) of y [i.e.,
O(y) is a neighbourhood of y such that O(y) ⊂ N(y)], F−1(O(y)) is open.
x ∈ X is called an s-point of F : X → Y (or simply, an s-point) if for each
y ∈ F (x), x is an sy-point.

Example 2.7. In Example 2.4, it is easy to verify that x = 3
4 is an s1-point

and x ( 6= 1
2 ,

3
4 ) is an s-point. But x = 3

4 is not an s-point because x = 3
4 is

not an s 3
4
-point.

Definition 2.8. A point x ∈ X is called a wy-point of F : X → Y with respect
to an y ∈ F (x) (or simply, a wy-point) if for any open neighbourhood of y there
exists an open sub-neighbourhood O(y) of y such that x ∈ IntF−1(O(y)) and
Bd F−1(O(y)) 6= φ. x ∈ X is called a w -point of F : X → Y (or simply, a
w -point) if for each y ∈ F (x), x is a wy-point.

Example 2.9. In Example 2.4, x = 3
4 is a w 3

4
-point but clearly x = 3

4 is not

a w -point. Next we consider the multifunction F : [0, 1] → [0, 1] defined by
F ( 1

2 ) = { 34 , 1}, F ( 3
4 ) = { 34}, F (1) = {1} and F (x) = {x, 1} otherwise. It is

easy to check that x = 3
4 is a w -point.

Notation. We use the following notation throughout the paper.

(i) Xy
l (Xl), X

y
s (Xs), X

y
w (Xw), Xy

ld (Xld) denote respectively the set of
all points of y-l.s.c. (l.s.c.), the set of all sy-points (s-points), the
set of all wy-points (w -points), the set of all points of y-l.s.d. (l.s.d.) of
a multifunction F : X → Y .

(ii) Fl(x) = {y : y ∈ F (x) and x is a point of y-l.s.c. },
Fld(x) = {y : y ∈ F (x) and x is a point of y-l.s.d.},
Fs(x) = {y : y ∈ F (x) and x is an sy-point },
Fw(x) = {y : y ∈ F (x) and x is a wy-point }.

Also by the ‘image points of a point x ∈ X’, ‘↓-image points of a point
x ∈ X’ and ‘↑-image points of a point x ∈ X’ we mean the points of F (x),
Fld(x) and Fl(x) respectively.
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Definition 2.10. A point x ∈ X is called a c-point of F : X → Y (or simply,
a c-point) if x is an sy-point for at least one y ∈ F (x) and also x is a
wy-point for at least one y ∈ F (x) and F (x) = Fs(x) ∪ Fw(x), or in other
words, Fs(x) 6= φ, Fw(x) 6= φ and F (x) = Fs(x) ∪ Fw(x). The set of all
c-points of F : X → Y is denoted by Xc.

Example 2.11. In Example 2.4, F ( 3
4 ) = { 34 , 1} and x = 3

4 is a w 3
4
-point and

also an s1-point. Hence x = 3
4 is a c-point.

Theorem 2.12. Let F : X → Y be a multifunction. If x is either an sy-point
or a wy-point then F is y-l.s.c. at x.

Proof. We prove only the first case. Let x ∈ X be an sy-point. Then there
exists an open neighbourhood N (y) of y such that F−1(O(y)) is open for all
open sub-neighbourhoods O(y) of y. Let V be an open set containing y. Now
V1 = N(y)∩V is an open neighbourhood of y and V1 ⊂ N(y), so F−1(V1) = U
is open. Clearly x ∈ U , and if z ∈ U then φ 6= F (z) ∩ V1 ⊂ F (z) ∩ V . So F is
y-l.s.c. at x.

Corollary 2.13. If x ∈ X is an s-point or a w-point or a c-point then F is
l.s.c. at x.

Theorem 2.14. If x is an sy-point of F : X → Y then there is no y-l.s.d.
points of F in X, or in other words, Xy

s 6= φ implies Xy
ld = φ.

Proof. Let x ∈ X be an sy-point. Then there is an open neighbourhood
N (y) of y such that for each open sub-neighbourhood M (y) of y, F−1(M(y))
is open. If possible, let x1 be a point of y-l.s.d. Then by Theorem 2.3, there
exists an open neighbourhood O(y) of y such that x1 ∈ Bd F−1(O(y)). Let
O′(y) = N(y) ∩ O(y). Then x1 ∈ Bd F−1(O′(y)), a contradiction because
O′(y) ⊂ N(y) implies F−1(O′(y)) is open.

The converse of Theorem 2.14 is not true in general as shown by the fol-
lowing example.

Example 2.15. Let F : (X, τ)→ (Y, τ∗) be defined by F (x) = {1, 2}, F (y) =
{2, 3}, F (z) = {3} where X = {x, y, z}, Y = {1, 2, 3}, τ =

{
φ,X, {x}

}
and

τ∗ =
{
φ, Y, {1, 2}

}
. Clearly both of X1

ld and X1
s are void.

Theorem 2.16. If x is an sy-point of F : X → Y then there is no wy-points
of F in X, or in other words, Xy

s 6= φ implies Xy
w = φ.
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Proof. Let x ∈ X be an sy-point. Then there is an open neighbourhood
N (y) of y such that for each open sub-neighbourhood M (y) of y, F−1(M(y))
is open. If possible, let x1 be a wy-point. Then for each open neighbourhood
of y and hence for N (y) there exists an open sub-neighbourhood O(y) of y
such that x1 ∈ Int F−1(O(y)) and Bd F−1(O(y)) 6= φ. Hence F−1(O(y)) is
not open which is a contradiction. So x1 is not a wy-point.

The converse of Theorem 2.16 is not true in general as shown by the fol-
lowing example.

Example 2.17. Let F : [0, 1] → [0, 1] be a multifunction defined by F (x) =
{x2}, 0 6 x < 1

2 , F ( 1
2 ) = [ 14 ,

3
4 ], F (x) = { 12 (x+1)}, 1

2 < x 6 1. We consider the
image point 1

3 . The only x ∈ [0, 1] which is mapped into 1
3 is 1

2 . For the open
neighbourhood V = ( 1

3 − ε,
1
3 + ε) of 1

3 , 0 < ε < 1
12 we have F−1(V ) = { 12}.

So Int F−1(V ) = φ and BdF−1(V ) = { 12}. Hence x = 1
2 is a point of 1

3 -l.s.d.,
i.e., x = 1

2 is not a point of 1
3 -l.s.c. Then by Theorem 2.12, x = 1

2 is neither
an s 1

3
-point nor a w 1

3
-point.

It is not necessarily true that Xs 6= φ implies Xw = φ as follows from
Example 2.9 where x = 3

4 is a w -point and x = 1
3 is an s-point. However, we

have

Corollary 2.18. For F : X → Y , (a) Xs ∩Xw = φ, (b) Xs ∩Xc = φ,
(c) Xw ∩Xc = φ.

Theorem 2.19. For F : X → Y , Xy
l = Xy

s xor Xy
l = Xy

w, or in other
words, all points of y-l.s.c. are sy-points xor wy-points.

Proof. By Theorem 2.12 and Theorem 2.16 we get Xy
s ⊂ X

y
l xor Xy

w ⊂ X
y
l .

Now, let x ∈ Xy
l and x 6∈ Xy

w. Then there exists an open neighbourhood N (y)
of y such that for every open sub-neighbourhood O(y) of y we have either (i)
x /∈ Int F−1(O(y)) or (ii) x ∈ Int F−1(O(y)) and Bd F−1(O(y)) = φ. If at
least one O(y) satisfies (i) then x is a point of y-l.s.d., a contradiction. So all
O(y) satisfy (ii) and hence x is an sy-point, i.e., x ∈ Xy

s . Now, Xy
w = φ by

Theorem 2.16. Consequently, Xy
l ⊂ Xy

s xor Xy
l ⊂ Xy

w. Hence Xy
l = Xy

s xor
Xy
l = Xy

w.

Corollary 2.20. For a multifunction F : X → Y , (i) Xl = Xs ∪ Xw ∪ Xc

and (ii) X = Xs ∪Xw ∪Xc ∪Xld.

In the following theorem the existence of a wy-point is ensured by the
existence of a point of l.s.d. in a certain manner.
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Theorem 2.21. Let x ∈ Xy
w for a multifunction F : X → Y . Then either

there is an y-l.s.d. point or y is a limit point of the ↓-image points of l.s.d.
points.

Proof. Since x is a wy-point, for every open neighbourhood U of y there
exists an open neighbourhood O(y) of y with O(y) ⊂ U such that
x ∈ Int F−1(O(y)) and Bd F−1(O(y)) 6= φ. Let x1 ∈ Bd F−1(O(y)). Now
either y ∈ F (x1) or y 6∈ F (x1). If y ∈ F (x1) then by Theorem 2.3, x1 is an
y-l.s.d. point. If y 6∈ F (x1) then by Corollary 2.5, there is an l.s.d. point in
F−1(O(y)) and hence in F−1(U), i.e., y is a limit point of the ↓-image points
of l.s.d. points.

Remark 2.22. From Theorem 2.21 it follows that for F : X → Y , Xw 6= φ
or Xc 6= φ implies Xld 6= φ, and consequently, for F to be l.s.c. (i.e., l.s.c. at
each point of the domain space) each point of the domain space must be an
s-point.

A natural question now arises whether the existence of a point of l.s.d.
ensures the existence of a wy-point. The answer is in negation which is evident
from the following example.

Example 2.23. We consider the multifunction F : [0, 1]→ [0, 1] of Example
2.17. Clearly except x = 1

2 each x ∈ [0, 1] is an s-point and x = 1
2 is a point

of l.s.d. for each y ∈ F ( 1
2 ). So there is no wy-point for F.

3 Maximum open neighbourhood, its applications and
the cardinality of Rld.

In this section we prove the existence of a unique maximum open neighbour-
hood of an y ∈ F (x) for an sy-point x and its consequences in different aspects.

Theorem 3.1. If F : X → Y is a multifunction and x ∈ Xy
s then there

exists a unique largest open neighbourhood Ms(y) of y such that for any open
sub-neighbourhood O(y) of y, F−1(O(y)) is open.

Proof. Since x ∈ Xy
s there exists an open neighbourhood N(y) of y such that

F−1(O(y)) is open whenever O(y) is any open sub-neighbourhood of y. Let
{Nα(y)} be the family of all such open neighbourhoods Nα(y) where α belongs
to an index set I. Clearly, {Nα(y)} is partially ordered by the set inclusion

relation. Then Ms(y) =
⋃
α∈I

Nα(y) is clearly the largest open neighbourhood
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of y sought in the theorem. Let M(y) be any open neighbourhood of y such
that M(y) ⊂Ms(y). Now

F−1(M(y)) = F−1(M(y) ∩Ms(y))

= F−1(
⋃
α∈I

(M(y) ∩Nα(y)))

=
⋃
α∈I

F−1(M(y) ∩Nα(y)).

As M(y) ∩ Nα(y) is an open neighbourhood of y and contained in Nα(y),
F−1(M(y) ∩ Nα(y)) is open for each α according to the property of Nα(y).
Consequently, F−1(M(y)) is open.

We observe that the largest open neighbourhood Ms(y) of y for an sy-point
may or may not intersect Fld(x1) and Fw(x2) for some x1, x2 ∈ X. For this
we furnish the following examples.

Example 3.2. Let F : [0, 1]→ [0, 1] be defined by F ( 1
2 ) = [12 ,

3
4 ] and F (x) =

{x} otherwise. It is easy to verify that 1
2 is an s 1

2
-point and Ms(

1
2 ) = [0, 1].

Also, for 0 < ε < 1
4 , F−1(( 3

4 − ε,
3
4 + ε)) = ( 3

4 − ε,
3
4 + ε) ∪ { 12}. Therefore, 1

2

is a point of 3
4 -l.s.d. and 3

4 is a w 3
4
-point. Hence Ms(

1
2 ) intersects Fld(

1
2 ) and

also Fw( 3
4 ).

Example 3.3. We consider the multifunction F : [0, 1] → [0, 1] of Example
2.17. Clearly 1 is an s1-point and Ms(1) = [0, 1] − [ 14 ,

3
4 ]. Also for each

y ∈ [ 14 ,
3
4 ], 1

2 is an y-l.s.d. point and this is the only l.s.d. point. It is evident
that there is no wy-point in [0,1]. Hence Ms(1) does not intersect Fld(x1) and
also Fw(x2) for any x1, x2 ∈ [0, 1].

This observation leads to the following simple but useful theorem which
builds up almost all of our results in the sequel.

Theorem 3.4. Let x be an sy-point of F : X → Y . If Ms(y) intersects Fld(x
′)

for some x′ ∈ X then {x′} can not be weakly separated from F−1(O(y)) where
O(y) is any open neighbourhood of y contained in Ms(y).

Proof. To prove the theorem we need the following lemma which we state
without proof.

Lemma 3.5. If A,B ⊂ X such that A ∪ B is open but B is not open then
Bd B ⊂ Cl A.
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Continuing the proof, let x′ ∈ Xld such that Fld(x
′) ∩Ms(y) 6= φ. Let

y′ ∈ Fld(x′) ∩Ms(y). By Theorem 2.3, there exists an open neighbourhood
M(y′) of y′ such that x′ ∈ Bd F−1(M(y′)) and also x′ ∈ Bd F−1(M ′(y′))
whenever M ′(y′) is an open neighbourhood of y′ for which M ′(y′) ⊂ M(y′).
We put N(y′) = Ms(y) ∩M(y′). Clearly N(y′) is an open neighbourhood of
y′ and can not contain y. For, if it contains y then N(y′) would be an open
neighbourhood of y and N(y′) ⊂Ms(y). Hence F−1(N(y′)) should be an open
set, i.e., Bd F−1(N(y′)) = φ, a contradiction because x′ ∈ Bd F−1(N(y′)) as
N(y′) ⊂ M(y′). Now we consider any open neighbourhood O(y) of y such
that O(y) ⊂ Ms(y). Then x′ must belong to Cl F−1(O(y)) because of the
following reason.

Consider the set O(y)∪N(y′) = O′(y). Hence F−1(O′(y)) is open because
O′(y) is an open neighbourhood of y and O′(y) ⊂ Ms(y). Again F−1(O′(y))
= F−1(O(y)) ∪ F−1(N(y′)). But x′ ∈ Bd F−1(N(y′)). Hence by Lemma 3.5,
x′ ∈ Cl F−1(O(y)).

Theorem 3.6. Let F : X → Y be a strongly injective open multifunction from
a Hausdorff space X into Y . If x is an sy-point and Ms(y), the largest open
neighbourhood of y intersects Fld(x

′) for some x′ ∈ X then x′ must be equal
to x.

Proof. Let N(x) be any open neighbourhood of x in X. Since F is open,
F (N(x)) will be open in Y . Consider the set F (N(x))∩Ms(y) = W (y). Then
W (y) is an open neighbourhood of y for which W (y) ⊂ Ms(y). Obviously
F−1(W (y)) is open and F−1(W (y)) ⊂ F−1F (N(x)) = N(x) as F is strongly
injective. Again x′ ∈ Cl F−1(W (y)) as proved in Theorem 3.4. Consequently,
x′ ∈ ClN(x). Since X is a Hausdorff space, x and x′ must be identical as was
to be proved.

We use the following terminology for an s-point or a c-point in the rest of
the paper.

Definition 3.7. A multifunction F : X → Y is called honest at x ∈ X if x is
an s-point or a c-point. x is then called honest with respect to F (or simply,
honest). Clearly, an honest point x is an sy-point for at least one y ∈ F (x).
We will often say that x is an honest sy-point to mean it.

Corollary 3.8. Let x be an honest sy-point with respect to a multifunction
F : X → Y and x′ ∈ Xld. If X is Hausdorff and F is open and strongly
injective then Ms(y) ∩ Fld(x′) = φ.

In the following theorem we exhibit the influence of an honest sy-point on
the corresponding largest open neighbourhood for a multifunction defined in
a Hausdorff space with some restrictions.
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Theorem 3.9. Let x be an honest sy-point with respect to F : X → Y . If X
is Hausdorff and F is open and strongly injective then Ms(y) can not contain
any y1 ∈ Fw(x1) for any wy1-point x1.

Proof. If possible, let Ms(y) contain an y1 ∈ Fw(x1) for a wy1-point x1.
Then by Theorem 2.21 either y1 is a ↓-image of an l.s.d. point or there is a
↓-image of an l.s.d. point in Ms(y), which contradicts with Corollary 3.8.

It might have been known that an open bijective multifunction on a Haus-
dorff space need not be lower semi-continuous but we are unable to find any
reference. So we give the following example.

Example 3.10. We consider F : [0, 1]→ [0, 1] of Example 2.17. It is easy to
verify that F is an open bijection on a Hausdorff space. But F−1(( 3

8 ,
5
8 )) = { 12}

is not open. So F is not l.s.c.

Now we study the role of an honest sy-point and give a necessary and
sufficient condition for an open bijection on a Hausdorff space to be lower
semi-continuous.

Theorem 3.11. Let F : X → Y be an open bijection and X be Hausdorff.
Then F is l.s.c. if and only if there exists an honest sy-point such that Ms(y) =
Y .

Proof. Sufficiency. Corollary 3.8 ensures that no point of X is a point of
Xld. Also by Theorem 3.9, no x ∈ X is in Xw or in Xc. Hence x must be in
Xs as X = Xs ∪Xw ∪Xc ∪Xld and hence by Remark 2.22, F is l.s.c.

Necessity. Suppose F is l.s.c. Let x ∈ X and y ∈ F (x). Clearly, Y is an
open neighbourhood of y. Since F is l.s.c., x is an s-point by Remark 2.22,
and hence, x is an honest sy-point. Let O(y) be any open neighbourhood of
y. If possible, let F−1(O(y)) be not open. Then BdF−1(O(y)) 6= φ and so by
Corollary 2.5, there is an l.s.d. point in X, a contradiction. Hence F−1(O(y))
is open and consequently, Ms(y) = Y .

We now state a theorem (without proof) which follows directly from Corol-
lary 2.5.

Theorem 3.12. For a multifunction F : X → Y , if V is an open set in Y
such that it does not contain any ↓-image points of l.s.d. points then F−1(O)
is open when O is any open subset of V .

Next we prove some results on the intrinsic nature of the largest open
neighbourhood Ms(y) of y for an sy-point and the point y itself.
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Theorem 3.13. Let F : X → Y be strongly injective, open and X a Hausdorff
space. If x ∈ Xy

s then y can not be a limit point of the ↓-image points of those
l.s.d. points which are different from x.

Proof. Let x ∈ Xy
s and if possible, let y be a limit point of the ↓-image

points of those l.s.d. points which are different from x. Let Ms(y) be the
largest open neighbourhood of y. Then there is an y1( 6= y) in Ms(y) such
that an y1-l.s.d. point, say x1 exists which is different from x, but this is a
contradiction because x1 = x by Theorem 3.6. �

Theorem 3.14. Let F : X → Y be strongly injective, x ∈ Xy
s and Ms(y) be

the largest open neighbourhood of y ∈ F (x). Then

(a) Ms(y) will contain y1 ∈ Fld(x) (if exists) provided y1 is not a limit point
of the ↓-image points of those l.s.d. points which are different from x,

(b) Ms(y) will contain y1 ∈ Fs(x1), x1 6= x (if exists) provided F is open, X
is Hausdorff and y1 is not a limit point of the ↓-image points of x1,

(c) Ms(y) will not contain any y1 ∈ Fw(x1) for x1 ∈ X (if exists) provided
F is open, closed and X is Hausdorff.

Proof. (a). Let x ∈ Xy
s and let Ms(y) be the corresponding largest open

neighbourhood of y. Then x ∈ F−1(Ms(y)). Let y1 ∈ Fld(x) and y1 is not a
limit point of the ↓-image points of those l.s.d. points which are different from
x. If possible, let y1 6∈ Ms(y). It is clear that an open neighbourhood O(y1)
of y1 exists such that O(y1) does not contain any ↓-image point of those l.s.d.
points which are different from x. Now consider the set N(y) = Ms(y)∪O(y1).
Obviously, N(y) ⊃Ms(y). Now, let N ′(y) be any open sub-neighbourhood of
y such that N ′(y) ⊂ N(y). Then

F−1(N ′(y)) = F−1(N ′(y) ∩N(y))

= F−1(N ′(y) ∩Ms(y)) ∪ F−1(N ′(y) ∩O(y1)).

Now N ′(y)∩Ms(y) is an open neighbourhood of y and N ′(y)∩Ms(y) ⊂Ms(y).
Hence F−1(N ′(y)∩Ms(y)) is open. Again, N ′(y)∩O(y1) ⊂ O(y1). Evidently
Bd F−1(N ′(y) ∩ O(y1)) ⊂ {x}, because if there is any other point x1 6= x
and x1 ∈ Bd F−1(N ′(y) ∩ O(y1)), then that will imply the existence of an
y′1 ∈ F (x1) in N ′(y) ∩O(y1) ⊂ O(y1) such that y′1 6= y1 because F is strongly
injective and so x1 is an y′1-l.s.d. point and hence y′1 ∈ Fld(x1) ∩ O(y1), a
contradiction. But x ∈ Int F−1(N ′(y) ∩Ms(y)). Hence Bd F−1(N ′(y)) = φ.
So N(y) ⊂Ms(y) which is impossible proving (a). �
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(b). Let x ∈ Xy
s and Ms(y) be the corresponding largest open neigh-

bourhood of y. Let x1 (6= x) ∈ Xy1
s . Since F is strongly injective y1 6= y.

Suppose that y1 is not a limit point of the ↓-image points of x1. Hence
there exists an open neighbourhood O(y1) of y1 such that O(y1) does not
contain ↓-image points of l.s.d. points by Theorem 3.13 and F−1(O(y1)) is
open by Theorem 3.12. If possible, let y1 6∈ Ms(y). Now, we consider the set
M(y) = Ms(y) ∪O(y1). Let M ′(y) be any open sub-neighbourhood of y, i.e.,
M ′(y) ⊂M(y). Then

F−1(M ′(y)) = F−1(M ′(y) ∩M(y))

= F−1(M ′(y) ∩Ms(y)) ∪ F−1(M ′(y) ∩O(y1)).

Since M ′(y) ∩ Ms(y) ⊂ Ms(y) and is an open neighbourhood of y, hence
F−1(M ′(y) ∩ Ms(y)) is open. Again, since M ′(y) ∩ O(y1) ⊂ O(y1) and is
an open set, F−1(M ′(y) ∩ O(y1)) must also be open by Theorem 3.12. So
M(y) ⊂Ms(y) which is impossible. Hence y1 ∈Ms(y).

(c). Let x ∈ Xy
s and Ms(y) be the largest open neighbourhood of y.

If possible, let Ms(y) contain an y1 ∈ Fw(x1) for an x1 ∈ X. Let N(y1)
be any open neighbourhood of y1 for which N(y1) ⊂ Ms(y). Then there
exists an open neighbourhood N ′(y1) of y1 for which N ′(y1) ⊂ N(y1),
x1 ∈ Int F−1(N ′(y1)) and Bd F−1(N ′(y1)) 6= φ. Let x2 ∈ Bd F−1(N ′(y1))
and y2 ∈ N ′(y1) ∩ F (x2). Then by Corollary 2.5, x2 is an y2-l.s.d. point.
Clearly, y2 ∈ Ms(y) and then by Theorem 3.6, x2 = x. Since x1 6= x2 and F
is strongly injective, we have y1 6= y2. Hence y1 is a limit point of F (x). Since
X is Hausdorff and F is closed it follows that F (x) is closed and so, y1 ∈ F (x)
which implies F (x)∩F (x1) 6= φ, a contradiction as F is strongly injective.

It is easy to notice (as shown in the following example) that for a point
which is both an sy-point and also an sy1 -point (y 6= y1), the largest open
neighbourhood of y and that of y1 may not be equal.

Example 3.15. Let F : [0, 1]→ [0, 1] be defined by F ( 1
2 ) = {0, 14 ,

1
2}, F (1) =

{0, 14 , 1} and F (x) = {x, 0} otherwise. It is easy to verify that 1
2 is an s0-point

as well as an s 1
2
-point and Ms(0) = [0, 1] whereas Ms(

1
2 ) = [0, 1]− { 14}.

However we have the following theorem.

Theorem 3.16. Let F : X → Y be strongly injective, open and X a Hausdorff
space. If x ∈ Xy

s , x ∈ Xy1
s and y 6= y1, then the largest open neighbourhood

Ms(y) of y will also be the largest open neighbourhood Ms(y1) of y1.
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Proof. Let us consider the set N(y) = Ms(y) ∪Ms(y1). Clearly, N(y) is
an open neighbourhood of y. Let N ′(y) be any open neighbourhood of y for
which N ′(y) ⊂ N(y). Then

F−1(N ′(y)) = F−1(N ′(y) ∩N(y))

= F−1(N ′(y) ∩Ms(y)) ∪ F−1(N ′(y) ∩Ms(y1)).

Obviously, F−1(N ′(y) ∩Ms(y)) is open because N ′(y) ∩Ms(y) ⊂ Ms(y) and
is an open neighbourhood of y. Now we set N ′(y) ∩ Ms(y1) = N ′′. Then
N ′′ is also an open set. If y1 ∈ N ′′ then N ′′ is an open neighbourhood of y1
for which N ′′ ⊂ Ms(y1). Hence F−1(N ′′) is open in this case. If y1 6∈ N ′′

and Bd F−1(N ′′) 6= φ, then this will imply the existence of at least one y2-
l.s.d. point x2 in Bd F−1(N ′′) ⊂ X such that y2 ∈ Ms(y1) by Corollary
2.5. But by Theorem 3.6, x2 = x. Hence Bd F−1(N ′′) = {x}. Therefore
BdF−1(N ′′) ⊂ F−1(N ′(y)∩Ms(y)). But F−1(N ′(y)∩Ms(y)) is an open set.
Hence x is an interior point of F−1(N ′(y)). Therefore F−1(N ′(y)) is an open
set. This shows that N(y) ⊂ Ms(y). But by construction N(y) ⊃ Ms(y).
Consequently N(y) = Ms(y). Similarly it can be proved that N(y) = Ms(y1).
Hence Ms(y) = Ms(y1), proving the theorem.

Finally we have a theorem on the cardinality of the set of points of lower
semi-discontinuity which stems from the following example.

Example 3.17. Let F : (R,U)→ (R, τ) be a multifunction defined by

F (x) = {x+ 1}, x = 2, 3, 4, .........

= {1, 2}, x = 1

= {x}, otherwise

where a base for τ is the set of all open intervals with rational end points and
all of the singletons {x} where x = 0, ±1, ±2, ....... It is easy to verify that
the points of l.s.d. are x = 0, ±1, ±2, ....... It is also worthwhile to notice that
(R, τ) is locally connected and second countable.

Before going to the theorem, we first state (without proof) the following
lemma.

Lemma 3.18. Let F : X → Y be an open bijection. Then F−1(A) is con-
nected in X if A is connected in Y .

Theorem 3.19. If F : R → Y is an open bijection of the real line R into
a locally connected space Y satisfying the second axiom of countability, then
the set of points of lower semi-discontinuity of the multifunction F must be
countable at most.
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Proof. Let x ∈ Rld. Then there exists an y ∈ F (x) and an open neighbour-
hood N(y) of y such that x ∈ Bd F−1(N(y)). Since Y is locally connected,
there exists a connected open neighbourhood U(y) of y such that U(y) ⊂ N(y).
Then x ∈ BdF−1(U(y)). Let us consider the family Ω of open connected sets
such that for any arbitrarily chosen x ∈ Rld it will be possible to find at least
one U ∈ Ω for at least one y ∈ F (x) such that y ∈ U and x ∈ Bd F−1(U).
Since Y satisfies the second axiom of countability, there is a countable open
base {On : n ∈ N} of Y . Hence it is possible to find an O ∈ {On : n ∈ N}
such that y ∈ O ⊂ U . Hence as x runs over Rld the corresponding set O
runs over a subfamily of {On : n ∈ N}. Since this subfamily of the sets O is
countable, the corresponding sets U ∈ Ω also form a countable family. Let
{Un : n ∈ N} be the countable family of sets U so obtained. For any x ∈ Rld
it will be possible, obviously, to select an Un ∈ {Un : n ∈ N} for at least one
y ∈ F (x) such that y ∈ Un and x ∈ BdF−1(Un), by construction of the family

{Un : n ∈ N}. So Rld ⊂
⋃
n∈N

Bd F−1(Un). Since F is open and bijective and

Un is connected for each n, F−1(Un) is also connected for each n and it will
have at most two boundary points. Also {F−1(Un) : n ∈ N} is a countable

family of connected sets. Hence
⋃
n∈N

Bd F−1(Un) is countable at most and so,

Rld ⊂
⋃
n∈N

Bd F−1(Un) is also at most countable.
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