Michelle L. Knox, Department of Mathematics, Midwestern State University, 3410 Taft Blvd., Wichita Falls, TX, 76308, USA. email: michelle.knox@mwsu.edu

CONDITIONAL COMPLETENESS OF $C(X, \mathbb{R}_{\tau})$ FOR WEAK *P*-SPACES \mathbb{R}_{τ}

Abstract

Let τ be a topology on the real numbers which is finer than the usual topology such that \mathbb{R}_{τ} is a weak *P*-space. In this paper, conditional completeness and conditional σ -completeness of C(X) and $C(X, \mathbb{R}_{\tau})$ are compared. In particular, it is shown for zero-dimensional spaces that $C(X, \mathbb{R}_{\tau})$ is conditionally σ -complete if and only if X is a P-space and that $C(X, \mathbb{R}_{\tau})$ is conditionally complete if and only if X is an extremally disconnected *P*-space.

1 Introduction.

Given two topological spaces X and Y, C(X, Y) denotes the set of continuous functions $f: X \to Y$. When $Y = \mathbb{R}$ we write C(X) instead and this set is a ring under pointwise addition and multiplication. Furthermore C(X) is a lattice, where the least upper bound of two functions $f, g \in C(X)$ is defined as $(f \lor g)(x) = max\{f(x), g(x)\}$ and the greatest lower bound is defined as $(f \wedge g)(x) = \min\{f(x), g(x)\}.$

Let \mathbb{R}_{τ} denote the real numbers with topology τ . In this paper we will be investigating completeness properties of $C(X, \mathbb{R}_{\tau})$ when \mathbb{R}_{τ} is a *weak P-space*, that is when every countable subset of \mathbb{R}_{τ} is closed. Recall that a lattice L is conditionally $(\sigma$ -)complete if every (countable) nonempty subset of L which is bounded above has a supremum. These completeness properties can be characterized using the topology on X. Before giving this characterization we will need the following topological definitions.

Mathematical Reviews subject classification: Primary: 54C30; Secondary: 26A15 Key words: conditional completeness, *P*-space, density topology Received by the editors July 23, 2007

Communicated by: Ciesielski

In a topological space X the closure of a subset A of X is denoted by $cl_X A$ and the interior of A is denoted by $int_X A$. When a set is both open and closed, it is called clopen. Given $f \in C(X)$, the zeroset of f (denoted by Z(f)) is the set of $x \in X$ such that f(x) = 0. A subset Z of X is called a zeroset if Z = Z(f) for some $f \in C(X)$. The set $X \setminus Z(f)$ is called the *cozeroset* of f and is denoted by coz(f). $Z[X] = \{Z(f) : f \in C(X)\}$ is the set of zerosets of X. We will assume that all domain spaces X in C(X, Y) are Tychonoff, that is completely regular and Hausdorff. In a Tychonoff space the cozerosets form a base for the topology. A space is called *zero-dimensional* if it has a base of clopen sets.

The well-known Stone-Nakano Theorem, stated below, characterizes when C(X) is conditionally $(\sigma$ -) complete using topological properties of X. A space X is called *basically disconnected* if $cl_X coz(f)$ is open for every $f \in C(X)$ and X is called *extremally disconnected* if $cl_X O$ is open for every open subset O of X. This theorem can be found in [5], [6], and [7].

Theorem 1.1 (Stone-Nakano). A space X is extremally disconnected if and only if C(X) is conditionally complete. A space X is basically disconnected if and only if C(X) is conditionally σ -complete.

In this paper we will provide a similar characterization for when $C(X, \mathbb{R}_{\tau})$ is conditionally $(\sigma$ -) complete for any weak *P*-space \mathbb{R}_{τ} . One example of a topology on \mathbb{R} which makes \mathbb{R}_{τ} a weak *P*-space is the density topology, which we will now define. Let *M* be a Lebesgue measurable subset of \mathbb{R} and let m(M) denote the Lebesgue measure of *M*. Let $M' = \mathbb{R} \setminus M$. A point $p \in \mathbb{R}$ is a *density point* of *M* if

$$\lim_{h \to 0^+} \frac{m(M \cap (p - h, p + h))}{2h} = 1.$$

We also say that p is a dispersion point of M if p is a density point of M'. The set M is called density open if every $p \in M$ is a point of density of M. The collection of density open subsets of \mathbb{R} is a topology called the density topology and we denote \mathbb{R} with this topology by \mathbb{R}_d . We use \mathbb{R}^d to denote the real numbers with the discrete topology and we denote the natural numbers by \mathbb{N} . It is known that the density topology is strictly finer than the usual topology on \mathbb{R} . As a result we see that $C(X, \mathbb{R}_d) \subseteq C(X)$ for any space X. Elements of $C(X, \mathbb{R}_d)$ will be called density continuous functions. A proof that \mathbb{R}_d is a Tychonoff space which is not normal can be found in [2].

Although the set $C(X, \mathbb{R}_d)$ is a lattice, it cannot be assumed that it is a group or a ring. In [3] a space X for which $C(X, \mathbb{R}_d)$ is a group or a ring is called a density *P*-space. The following theorem from [3] classifies when a space X is a density *P*-space.

Theorem 1.2. For a space X, the following are equivalent:

- (1) $C(X, \mathbb{R}_d) = C(X, \mathbb{R}^d)$, i.e. every density continuous function is locally constant.
- (2) $C(X, \mathbb{R}_d)$ is a ring.
- (3) $C(X, \mathbb{R}_d)$ is closed under multiplication.
- (4) $C(X, \mathbb{R}_d)$ is a group.
- (5) Z(f) is open for each $f \in C(X, \mathbb{R}_d)$.

Examples of density *P*-spaces include pseudocompact spaces and separable spaces. Since \mathbb{R} is connected as well as separable, it follows from the previous theorem that the only elements of $C(\mathbb{R}, \mathbb{R}_d)$ are the constant functions.

Recall that a topological space X is called a *P*-space if Z(f) is open for all $f \in C(X)$. It is clear from the definitions that *P*-spaces are basically disconnected. Every *P*-space is a *weak P*-space: a space in which every countable subset is closed. The space \mathbb{R}_d is an example of a weak *P*-space which is not a *P*-space. The next theorem gives a useful condition for checking when a topological space X is a *P*-space.

Theorem 1.3. [4] A zero-dimensional space X is a P-space if and only if every countable union of clopen sets is again clopen if and only if every countable intersection of clopen sets is again clopen.

2 Conditional σ -Completeness and Completeness.

Let τ be a topology on \mathbb{R} which is finer than the usual topology. We will use \mathbb{R}_{τ} to denote the real numbers equipped with this topology. It follows that $C(X, \mathbb{R}_{\tau})$ is a sublattice of C(X). Henceforth, unless stated otherwise, τ is a topology on \mathbb{R} which is finer than the usual topology such that \mathbb{R}_{τ} is a weak P-space. In this section we will determine when $C(X, \mathbb{R}_{\tau})$ is conditionally complete and when it is conditionally σ -complete.

Observe that it is possible for $C(X, \mathbb{R}_{\tau})$ to be conditionally σ -complete without C(X) being conditionally σ -complete. One example is \mathbb{R} , which is not basically disconnected so that $C(\mathbb{R})$ is not conditionally σ -complete. However the elements of $C(\mathbb{R}, \mathbb{R}_d)$ are precisely the constant functions. Hence $C(\mathbb{R}, \mathbb{R}_d)$ is conditionally σ -complete. We would like to know if conditional σ -completeness of C(X) implies the same condition for $C(X, \mathbb{R}_{\tau})$. The next example illustrates that a countable subset of $C(X, \mathbb{R}_{\tau})$ which is bounded above may have a supremum in C(X) without having a supremum in $C(X, \mathbb{R}_{\tau})$. In particular it is possible for C(X) to be conditionally σ -complete while $C(X, \mathbb{R}_{\tau})$ is not. To construct this example we need a few definitions. **Definition 2.1.** A family \mathcal{B} of zerosets of X is called a *z*-filter if the following conditions hold:

- (1) $\emptyset \notin \mathcal{F};$
- (2) if $Z_1, Z_2 \in \mathcal{F}$, then there exists $Z_3 \in \mathcal{F}$ such that $Z_3 \subseteq Z_1 \cap Z_2$;

(3) if $Z \in \mathcal{F}$ and $Z' \in Z[X]$ with $Z \subseteq Z'$, then $Z' \in \mathcal{F}$.

A *z*-ultrafilter on X is a *z*-filter which is not contained in any other distinct *z*-filter. A straightforward Zorn's Lemma argument shows that every *z*-filter is contained in a *z*-ultrafilter.

Example 2.2. This example comes from Problem 4M of [1]. Let $\mathcal{F} = \{S \subset \mathbb{N} : S \text{ is cofinite}\}$. It is easy to check that \mathcal{F} is a z-filter on \mathbb{N} which means there exists a z-ultrafilter \mathcal{U} containing \mathcal{F} . Let $\Sigma = \mathbb{N} \cup \{\sigma\}$ where $\sigma \notin \mathbb{N}$ and define a topology on Σ as follows: all points of \mathbb{N} are isolated and the open neighborhoods of σ are the sets $U \cup \{\sigma\}$ for $U \in \mathcal{U}$. Then according to 4M of [1], Σ is an extremally disconnected topological space. Note that $C(\Sigma)$ is conditionally complete because Σ is extremally disconnected.

For each $n \in \mathbb{N}$ define a function $f_n : \Sigma \to \mathbb{R}$ as

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{for } x = 2n\\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that each $f_n \in C(\Sigma, \mathbb{R}_{\tau}) \subset C(\Sigma)$. The space Σ is extremally disconnected, so by the Stone-Nakano Theorem the set $G = \{f_n : n \in \mathbb{N}\}$ has a supremum in $C(\Sigma)$. It is straightforward to check that the function $f : \Sigma \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = 2n \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

is a continuous function. If G has a supremum in $C(\Sigma, \mathbb{R}_{\tau})$, then that supremum must be f. However $f \notin C(\Sigma, \mathbb{R}_{\tau})$. Thus G does not have a supremum in $C(\Sigma, \mathbb{R}_{\tau})$.

From the previous example we see that C(X) can be conditionally complete without $C(X, \mathbb{R}_{\tau})$ being even conditionally σ -complete. The property of conditional σ -completeness of $C(X, \mathbb{R}_{\tau})$ is related to *P*-spaces, as we see in the next theorem.

Theorem 2.3. If X is a zero-dimensional space, then the following are equivalent:

(1) X is a P-space.

(2) $C(X, \mathbb{R}_{\tau}) = C(X).$

64

(3) $C(X, \mathbb{R}^d) = C(X, \mathbb{R}_\tau) = C(X).$

- (4) $C(X, \mathbb{R}_{\tau})$ is conditionally σ -complete.
- (5) $C(X, \mathbb{R}^d)$ is conditionally σ -complete.

PROOF. Since X is a P-space if and only if Z(f) is open for all $f \in C(X)$, X is a P-space if and only if $C(X, \mathbb{R}^d) = C(X, \mathbb{R}_\tau) = C(X)$. Hence (1) and (3) are equivalent. Clearly (3) implies (2). To show (2) implies (1) we will apply Theorem 1.3. Assume X is not a P-space. Then there exists a sequence $\{C_n\}_{n\in\mathbb{N}}$ of disjoint clopen subsets of X such that $\bigcup_{n=1}^{\infty} C_n$ is not closed. Define $f: X \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in C_n \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in C(X)$. Note that $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is a closed subset of \mathbb{R}_{τ} because \mathbb{R}_{τ} is a weak *P*-space. However, $f^{-1}(A) = \bigcup_{n=1}^{\infty} C_n$ is not closed in *X*, so $f \notin C(X, \mathbb{R}_{\tau})$. As a result we see that $C(X, \mathbb{R}_{\tau}) \neq C(X)$ and hence (2) implies (1).

Next suppose (1) holds. We will show (4) and (5). X is zero-dimensional and basically disconnected because it is a P-space. Since $C(X, \mathbb{R}^d) = C(X, \mathbb{R}_\tau) = C(X)$, $C(X, \mathbb{R}^d)$ and $C(X, \mathbb{R}_\tau)$ are also conditionally σ -complete.

Now assume (4) is true. We will use Theorem 1.3 to show (1). Let $\{C_n\}_{n\in\mathbb{N}}$ be a sequence of disjoint clopen subsets of X and for each $n\in\mathbb{N}$ define a function $f_n: X \to \mathbb{R}$ as

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in C_n \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that $f_n \in C(X, \mathbb{R}^d) \subseteq C(X, \mathbb{R}_\tau)$ for all n. By hypothesis the set $\{f_n : n \in \mathbb{N}\}$ has a supremum and it follows that the supremum must be the function f defined above. The set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is closed in \mathbb{R}_τ since it is a weak P-space. Then continuity of f implies $f^{-1}(A) = \bigcup_{n=1}^{\infty} C_n$ is also closed as needed.

The proof of (5) implies (1) is identical to that of (4) implies (1); simply note that $f_n \in C(X, \mathbb{R}^d)$ for all n.

Observe that it is necessary to assume X is zero-dimensional in the previous theorem. Consider the space \mathbb{R} , which is neither zero-dimensional or a Pspace. The only elements of $C(\mathbb{R}, \mathbb{R}_{\tau})$ are the constant functions so that $C(\mathbb{R}, \mathbb{R}_{\tau}) = C(\mathbb{R}, \mathbb{R}^d)$ is conditionally σ -complete. **Corollary 2.4.** If X is zero-dimensional and $C(X, \mathbb{R}_{\tau})$ is conditionally σ -complete, then C(X) is conditionally σ -complete.

PROOF. By Theorem 2.3 if X is a zero-dimensional space and $C(X, \mathbb{R}_{\tau})$ is conditionally σ -complete, then X is a P-space. Since every P-space is basically disconnected, C(X) is conditionally σ -complete.

Example 2.5. To see that the converse of Corollary 2.4 fails, consider again the space Σ from Example 2.2. Since Σ is basically disconnected, Σ is zero-dimensional. As we have already seen $C(\Sigma)$ is conditionally σ -complete. But $C(\Sigma, \mathbb{R}_{\tau})$ is not conditionally σ -complete because Σ is not a *P*-space.

For a zero-dimensional space X, we have established that $C(X, \mathbb{R}_{\tau})$ is conditionally σ -complete precisely when X is a P-space. The next result should not be surprising.

Theorem 2.6. For any space X, the following are equivalent:

- (1) X is an extremally disconnected P-space.
- (2) X is extremally disconnected and $C(X, \mathbb{R}_{\tau}) = C(X)$.
- (3) $C(X, \mathbb{R}_{\tau})$ is conditionally complete and X is zero-dimensional.
- (4) $C(X, \mathbb{R}^d)$ is conditionally complete and X is zero-dimensional.

PROOF. The equivalence of (1) and (2) follows from Theorem 2.3.

We will now show that (2) implies (3). Every extremally disconnected space is zero-dimensional. Therefore X is zero-dimensional. Since X is extremally disconnected, we know C(X) is conditionally complete by the Stone-Nakano Theorem. Then $C(X, \mathbb{R}_{\tau}) = C(X)$ where X is extremally disconnected implies $C(X, \mathbb{R}_{\tau})$ is conditionally complete.

Next assume (3) holds. If $C(X, \mathbb{R}_{\tau})$ is conditionally complete, then $C(X, \mathbb{R}_{\tau})$ is conditionally σ -complete. By Theorem 2.3, $C(X, \mathbb{R}^d) = C(X, \mathbb{R}_{\tau}) = C(X)$ and so $C(X, \mathbb{R}^d)$ is conditionally complete. It follows that (3) implies (4).

Finally assume $C(X, \mathbb{R}^d)$ is conditionally complete and that X is zerodimensional. It follows from Theorem 2.3 that $C(X, \mathbb{R}_\tau) = C(X)$. Also C(X) is conditionally complete, which implies X is extremally disconnected. Therefore (4) implies (1).

Note that if X is of nonmeasurable cardinality and satisfies the conditions of Theorem 2.6, then X is discrete. See Problem 12H of [1] for more information on extremally disconnected P-spaces.

Corollary 2.7. If X is zero-dimensional and $C(X, \mathbb{R}_{\tau})$ is conditionally complete, then C(X) is conditionally complete.

PROOF. According to Theorem 2.6, if X is zero-dimensional and $C(X, \mathbb{R}_{\tau})$ is conditionally complete, then X is extremally disconnected. Hence C(X) is conditionally complete.

References

- L. Gillman & M. Jerrison, *Rings of Continuous Functions*, The University Series in Higher Mathematics, D. Van Nostrand, 1960.
- [2] C. Goffman, C.J. Neugebauer, & T. Nishiura, Density Topology and Approximate Continuity, Duke Math Journal, 28 (1961), 497–505.
- M. L. Knox, A Characterization of Rings of Density Continuous Functions, Real Anal. Exchange, 31(1) (2005-2006), 165–177.
- [4] W. McGovern, Singular f-rings Which Are α-G.C.D. Rings, Top. Appl., 88 (1998), 199–205.
- [5] H. Nakano, Uber Das System Aller Stetigen Funktionen Auf Einem Topologischen Raum, Proc. Imp. Acad. Tokyo, 17 (1941), 308–301.
- [6] M. H. Stone, A General Theory of Spectra, I, Proc. Nat. Acad. Sci. U. S. A., 26 (1940), 280–283.
- M. H. Stone, Boundedness Properties in Function Lattices, Canad. J. Math., 1 (1949), 176–186.