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AN IMPROVEMENT OF A RECENT
RESULT OF THOMSON

Abstract

In [5], Brian S. Thomson proved the following result: Let f be AC*G
on an interval [a,b]. Then the total variation measure p = py associated
with f has the following properties: a) p is a o-finite Borel measure on
[a,b]; b) p is absolutely continuous with respect to Lebesgque measure;
¢) There is a sequence of closed sets F,, whose union is all of [a,b] such
that p(Fn) < oo for each n; d) p(B) = py(B) = [z |f (x)|dx for every
Borel set B C [a,b]. Conversely, if a measure p satisfies conditions
a)—c) then there exists an AC*G function f for which the representation
d) is valid. In this paper we improve Thomson’s theorem as follows: in
the first part we ask f to be only VB*GN(N) on a Lebesgue measurable
subset P of [a,b] and continuous at each point of P; the converse is also
true even for p defined on the Lebesgue measurable subsets of P (see
Theorem 2 and the two examples in Remark 1).

In [5] Brian S. Thomson proved a theorem that can be written in the
following form:

Theorem A.
I. If F:la,b] = R is AC*G on [a,b] then p} : P([a,b]) — [0,+00] has the

following properties:

1) up < m;

2) there is a sequence of closed sets {P,} such that U3 P, = [a,b] and
wh(Pp) < +o0o for each n.

3) (W5)|Bor(jab)) s @ measure (see [{, p. 40]);

4) pp(B) = (L) [5 |F'(t)|dt whenever B is a Borel subset of [a,b].
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IT. Conversely, let y : Bor(]a,b]) — [0,4+00] be a measure such that:

1) p<m;
2') there is a sequence of closed sets {P,} such that US>, P, = [a,b] and
w(Pp) < 400 for each n;

Then there exists a continuous function F : [a,b] — R, F € AC*G on
[a,b], such that (1} )|Bor([a,b]) = M-

In this paper we shall improve Theorem A as it will be shown in Theorem 2
(see also the two examples given in Remark 1).

We denote by m the Lebesgue measure in R. By O(f; X) we shall mean
the oscillation of the function f on the set X, and by f/x the restriction of
the function f on the set X. The conditions AC, ACG, AC* AC*G, V B*,
VB*G and Lusin’s condition (N) are defined as in [3].

Definition 1. Let PCR, ACP(P)={E : EC P} and a: A — [0,+0].

e We say that « is absolutely continuous with respect to m and write
a << mif a(Z) =0 whenever Z € A and m(Z) = 0.

e For P a Lebesgue measurable subset of R, we put Leb(P)={E C P : E
is Lebesgue measurable}.

e For P a Borel measurable subset of R, we put Bor(P)={E C P : Eis
Borel measurable}.

Definition 2. For z,y € R, © # y, let (z,y) denote the closed interval with
the endpoints x and y. Let E C R, d : E — (0, +00),

B*(F;0) = {((x,y>,x) sz €FE, ye (m—é(m),w—i—&(w))}.

n

The finite set ™ = {((xl,y,%x?)}lzl C B*(E;9) is said to be a partition if
{{zi,y:)}7 is a set of nonoverlapping closed intervals. Let f: R — R,

Vs(fi E) = SUP{ Z ‘f(y) - f(l“)‘ :mC B%(F;0) is a partition},
(z,y),z)em

and
Wy (B) = it V5 ().

Note that this ,u;l is the same as that of Thomson [5, p. 186], and it is also
identical with Thomson’s S,-up of [4].
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Lemma 1. Let F: [a,b] = R, E C P C[a,b], F € VB* on E, F' continuous
at each point of P. Then u5(E N P) # +oo.

PROOF. By Theorem 7.1 of [3, p. 229], Fis VB* on ENP. Let X = ENP
and Y = {z € X : z is isolated at least at one side in X }. Since Y is at most
countable [3, p. 260], and F is continuous at each point of P, it follows that
i (Y) = 0. Thomson shows in [4, p. 34] that pj(X\Y) < 2V*(F; X). Hence
pp(X) <2V (F; X) # +o0. O

Theorem 1. Let F : [a,b] — R, and let P be a Lebesgue measurable subset of
[a,b]. Let p : P(P) — [0,+00]. The following assertions are equivalent:

(i) pp < m;
(i) F is VB*GN(N) on P and F is continuous at each point of P;

(iii) F' is continuous at each point of P, derivable a.e. on P, and

() = (L) /E P/ (¢)) dt.

whenever E is a Lebesgue measurable subset of P;

Moreover, each of the three equivalences implies that there exists a sequence

of sets P, such that U, P, = P and ui(P, N P) # 4o0.

PROOF. The three equivalences follow from [2, Theorem 13, (ii), (iii), (vii)]
(because So-pp = p-). The second part follows by Lemma 1 and (ii). O

Lemma 2. Let f : [a,b] — [0,+00) a Lebesgue integrable function, P a closed
subset of [a,b], {(as,b;)}i the intervals continuous to P U {a,b}, and let {o;};
be a sequence of positive numbers. Then there is a function G : [a,b] — R
such that:

a) G(t) =0 fort e PU{a,b};

b) G € AC on [a,b];

c) |G'(¥)| = f(t) a.e. on U2, (ai,b;);

d) G(t) € [0,a;) fort € la;, b, i=1,2,...;

e) G'(t) =0 a.e. on P.
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PRrROOF. We shall use a technique of Thomson [5, p. 190]. For each i, let n;
be a positive integer, and let

a; = a;0 < a;1 < ai2 <...<Gon—1 < 0on, = b

be such that

a; a;

Let g : [a,b] — R,

0 if t € PU{a,b}

g(t) = f(t) ifte [ai72k,ai72k+1], k= O,ni — ]., = 1700

g

—f(t) ifte (aign—1,0i2k), k=1,n4 i=1,

Then G : [a,0] — R, G(z) = [ g(t) dt satisfies our lemma. O

Lemma 3. Let f, f, : [a,b] — R be such that the series Y .- | fu(z) = f(z)
for x € [a,b]. Then

PROOF. Let z,y € [a,b]. Then

|f(y) —f(l‘)’ = ’Z(fn(y) - fn(a:))‘ < Z|fn(y) - fn(x)| < Z O(fn; [aab]) .
n=1 n=1 n=1
Thus we have (1). O

Theorem 2. Let P be a Lebesgue measurable subset of [a,b].

L IfF :[a,b] = R is VB*G N (N) (particularly F € AC*G) on P and
F' is continuous at each point of P, then pf : P(P) — [0,400] has the
following properties:

1) pp<m;
2) there is a a sequence of sets Py, such that Up, P, = P and for each n,

3) (W) |cen(p) is a measure;
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4) pp(B) = (L) [5|F'(t)| dt whenever B C Leb(P).
II. Conversely, let yu : Leb(P) — [0,+00] be a measure such that:

V) p<m;

2 there is a sequence of sets P, such that U, P, = P and for each n,
w(P, N P) # 4o0.

Then there exists a continuous function F : [a,b] — R, F € AC*G on
P, such that ()| ceb(p) = -

Proor. I. 1) follows by Theorem 1, (i), (ii).

2) follows by the last part of Theorem 1.

3) Let {E,}n C Leb(P) be a sequence of pairwise disjoint sets. Then each
E, = A, U B, where A, is a Borel set and m(B,,) = 0. By 1), uk(B,) = 0.
Since p} is a metric outer measure it follows that u% restricted to the Borel
subsets of [a, b] is a measure. Thus we obtain:

#(UnEn) ZuF ) < 3 (i (An) + i (B))

=" i (An) = i (UnAn) < i (UnEn) -

Thus (¢} )|cep(p) is @ measure.
4) See Theorem 1, (ii), (iii).

I Let Qo = 0 and Q,, = U, P; U{a,b}, n = 1,2,.... Forn > 1, let
{(@nj,bnj)} be the intervals contiguous to @,. Clearly p(Q, N P) # +oc.
We shall use Thomson’s technique of [5, p. 189-190]. Since p is absolutely
continuous on P N (Qn \ Qn-1) and pu(P N (Qy \ Qn-1)) # +oo, by the
Radon-Nicodym Theorem, there exists a Lebesgue integrable function g, :

PN (Qn\Qn-1)— [0,400) such that

u(B) = (L) /B gn(t) dt,

whenever B is a Lebesgue measurable subset of PN (Q, \ Qrn—1). We may
consider gy, : [a,b] — R, if we put g,(z) =0 for x € [a, b] \ (PN(Qn\Qn-1))-
Let

Fi(z) = (L) /z g1(t)dt.
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Then F; € AC on [a,b] and F| = g1 a.e. on [a,b]. Clearly F; is constant on
each (a1;,b15). Let {an;}; be a sequence of positive numbers such that

> 1
> an < o (2)
j=1

By Lemma 2, there exists F, 41 : [a,b] — [0, 2%) such that
Foi1(t) =0 for t € Qyu;
b) F,4+1 € AC on [a,b];

d

a)
) F,
c) ‘F,’LH )| = gn+1(t) a.e. on each (anj,bn;);
) Fnpa(t) € [0, 0n5) on [ang, bnjl;

)

e

L
d

F},1(t) =0 a.e. on Q,.
t F:[a,b] — R, F(x) = >.0°, F,(x). Then F is continuous on [a,b] (see

n=1

), b) and (2)). Let R,(x) = > pey Fnik(z). Since each

(@nj,bnj) C [a, 6]\ Qn C [a, 8]\ (PN (Qn \ Qn-1)),

it follows that g,(t) = 0 on (an;, bn;). By c¢) we have that F)(t) =0, so F, is
constant on each (an;,by;). Thus

Fi(z) + ...+ F,(z) = constant on each (a,;,by;) (3)

(because Q1 C Q2 C ...). Since F,.k(t) = 0 on Qpuig_1 for k = 1,00 (see
a)), and Qn C Qnt1 C Qnio C ... it follows that R, (t) = 0 on @,. Thus
F(z)=Fi(z)+... 4+ Fy(z) for € Q,,. Hence F and R,, are AC on Q,,. By
Lemma 3 and (3) we have

ZO an]a n] ZO n; a".?’ ”JD
< Z( Fota; an]7 n]D + O( n+2; [a’n]va]D +. )
- ZO(FnH; [ang, bns]) + ZO(FHH; [ang, bngl) + -
J J
1
<ot ZO(Fn+2; [an+1.5, bnr14]) + -
J

1 1 1

<27n+2n+1+...:2n71.
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(see a), d) and (2)). By [3, p. 232], F and R, are AC* on Q,. Clearly
R (z) =0a.e.on @, and F is AC*G (C VB*GN(N)) on P. It follows that
F'(z)=F/(z)+...+ F.(2) + R, (x) = F/(z) + ... + F/(z) a.e. on Q.
Thus F'(z) = F{(z) = ¢g1(z) on Q1 and
|F'(2)| = [F{(z) + F3(2)| = |[F3(2)| = g2(2) on Q2\ Q1

(because Fj is constant on each (aij,bq;)). Continuing, it follows that
|F'(2)| = [Fi(z) + ...+ F,_1(2) + F(2)| = |[F}(2)| = gn(z) on Qu\ Q-

(because Fi, ..., F,_q are constant on each (an—1,;,bn—1,)). By 3), for any
Lebesgue measurable subset B of P, we have

KR(B) =Y i (BNQAQu) = So6) [ [Pt -

n=1

BA(Q\Qn-1)
=Y [ a®d =3 aB0(@\Qu) = u(B).
"l BN@AQN-) =0
Thus 3 (B) = u(B). O

Remark 1.
e Theorem 2 contains Theorem A of Thomson.

e We recall the following example of [2]:

Let C be the Cantor ternary set and ¢ : [0, 1] — [0, 1] the Cantor ternary
function (see for example [1], pp. 213-214). Then C' contains a Gs-set B
such that m*(¢(B)) = 0, hence ¢ € VB*G N (N) on B. But ¢ ¢ ACG
on B, so ¢ ¢ AC*G on B.

From this example it follows that AC*G C VB*GN(N), so in Theorem 2,
L, the particular case with AC*G is genuine. Moreover yj, = py =0 on
Leb(B) whenever f:[0,1] -» Ris VB*GN(N) on B and continuous at
each point of B (see Theorem 1).

e We consider the following example:
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Let C be the Cantor ternary set. Let {(ani, bni)}, n = 1,2,..., ¢ =
1,2,...,2" 1 be the intervals contiguous to C of length ==, and let

3n
Cpi = ittni Tet F:[0,1] — [0,1],

0 ifeedC
Flr)=<¢1 if = cp;

n

linear on each [an;, ¢ni] and [cpi, byl

Let P = U9, U?;Il (anisbni). Clearly F is continuous on [a,b], F is
AC*G on P, but F is not AC*G on [0, 1].
This example shows that the particular case of Theorem 2, I., also strictly

contains Thomson’s Theorem A, I. because our theorem holds for the
function F', but Thomson’s theorem doesn’t.
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