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ON SETS OF CONVERGENCE POINTS OF
SEQUENCES OF SOME REAL FUNCTIONS

Abstract

The purpose of this paper is to study a set of convergence points of
sequence of real functions from a given class. Here, continuous func-
tions, Borel measurable functions, approximately continuous functions
and derivatives are considered.

The investigation of some sets determined by sequences of functions is
motivated by the well-known result due to Hahn [1] and also Sierpiriski [7]
stating that a subset A of a Polish space X is of type Fgs iff there exists a
sequence {f,: n € N} C RX of continuous functions such that A = {z €
X: (fn(x))n converges} (see also [2, Theorem 23.18, p. 185]). It seems inter-
esting to find the analogous characterization of sets of convergence points for
sequences of functions from other classes. The same problem and its connec-
tions with additional set-theoretic axioms has been considered for transfinite
sequences of functions in [4].

In the present paper the sequences of functions of Baire class «a, approxi-
mately continuous functions and derivatives are examined. All functions con-
sidered here are real functions defined on the real line R. Throughout this
paper the following abbreviations for some classes of subsets of R will be used:

9 (39) — closed (open) subsets of R;
9 (29) — the multiplicative (additive) class « of Borel sets, 0 < o < wy;
M — the o-ideal of meager (first-category) subsets of R;

T4 — the density topology (recall that 7; consists of all Lebesgue measurable
sets having density 1 at each of its points [5]).
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Recall some definitions of various types of functions f: R — R which are
investigated. Each class of functions is denoted by symbol on the left.

B, — f is of Baire class «, where a < w; iff for every open set U C R
fHU) € Xo40s

Iy (u1) — fis lower (resp. upper) semicontinuous iff it is a pointwise limit of
non-decreasing (resp. non-increasing) sequence of continuous functions;

lo (uq) — f is of Young lower (resp. upper) class «, where 0 < o < wy iff
it is a pointwise limit of non-decreasing (resp. non-increasing) sequence

{fan:n €N} CUge, up (resp.Us, 18);
A — f is approximately continuous iff for every open set U C R f~1(U) € 7.

Moreover, we denote by bA the class of all bounded approximately continuous
functions and by A the class of all derivatives.

Denote by L({fn: n € N}) a set of all convergence points of a sequence
{fn:n e N} CRE ie.

L{fn:neN}) ={z eR: {fn(z): n € N} converges}.
Remark 1.

L{{fa:neNh) = () U {z € R: |furn(@) = ful2)] < 1/m}.

meNneNkeN
For a family of functions F C R® define

LF)={L{fn:neN}): {fn:ne N} C F}.

In this language the theorem obtained by Hahn and Sierpinski takes the fol-
lowing form.

Theorem 1. For the family C of continuous functions L£(C) = TI3.

To obtain its generalization onto the case of functions of Baire class a we
will use some well-known facts.

Theorem 2. [8, Theorem 19, p. 30]
Let o < wy and f: R — [—o0, +00]. Then

o felyiff f1((a,)) € XY for each a € R;
o fcuy iff f71((—00,a)) € X% for each a € R.
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Remark 2. For a < wi, By = log1 N Ugy1-
Theorem 3. For o < wy, L(By) =115 5.

PrOOF. Fix a < wy. The inclusion “ C ” follows from Remark 1 and the
definition of B, functions. So it remains to show that if A € IIY 5, then
A = L({fn: n € N}) for some sequence {f,: n € N} C B,. This follows by
the same method as in [2, Theorem 23.18, p. 185]. Since A € I , 5, we have
A =nen Am, where A,, € X9 ,. First, suppose that

(1) for every m € N and A,, € X9, there is a sequence {f,: n € N} C B,
such that

o [f(x)] <1/mforneNandzeR,
o A, =L{f":neN})={zeR: lim, fI*(z) =0}.

Then rewrite |J,,cn{f": 7 € N} as a single sequence {f;: i € N}. Of course,
lim; f;(x) =0 for all z € A. To see this fix z € A, ¢ > 0 and take k € N such
that 1/k < e. Then there is a positive integer ig = ig(g) such that | (z)| < e
forn > ig and m < k. But form > k |f"(x)| < 1/m < 1/k <e,so |fi(z)| <e
for i > ip. On the other hand, if z ¢ A, then x ¢ A,,, for some my € N and
consequently {f0(z): n € N} diverges, so {f;(z): ¢ € N} diverges too.

What is left is to show (1). Fix m € N and A,, € £%,,. Then 4, =
Unen 7, where F* € 110, and Fj* C F7 for n € N. Consider the
following real function g: R — [1, +o0]:

1 if z € Fj"
g(x) = q{n if v € F/"\ F™y forn > 2
+oo ifx e R\ A,

For a € R we have {x € R: g(z) > a} =Rifa<1lor {z € R: g(x) > a} =
R\FmeXl  ifn<a<n+1forn>1and consequently g € lot1, by
Theorem 2. It follows that there is a non-decreasing sequence {g,: n € N} C
B, pointwise convergent to g. For each n € N put ¢,, = min{n, max{g,,1}}.
Then 1 < ¢, < n and @pt1 — @n < n. Clearly, ¢, € B, and lim, ¢, =
g. Moreover, we can interpolate between ¢, and ¢,41 the functions p} =
¥n + %(@nﬂ — y) for K =0,1,...,2n. By renumbering we have a sequence
{pn:m € N} C B, such that 1 = pg < p; < p2 < ..., Pps1 — P < 1/2 and
f = lim, p,. Putting f" = Lsin(rp,) we obtain the sequence satisfying

(1). 0

The next result deals with the case of approximately continuous functions.
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Lemma 1. (cf. [3, Lemma 5]) Every set A € 113 is a countable union of 113
sets closed in the density topology.

PROOF. There are closed (in the usual sense) sets Fj,, n € N such that F =
Unen Fn € A and A\ F has Lebesgue measure zero. Put A, = F,, U(A\ F).
Then every A, is closed in 73 and A = (J,,cy An. Moreover, A,, = F, U (AN
(R\ F)) € IS. O

Corollary 1. Every set A € 11$ can be represented in the form A = Ninen Ams
where for m € N A, is a countable union of 119 sets closed in the density
topology.

Lemma 2. [9, Lemma 11, p. 26] For every set A € Ty N XY there is an
approzimately continuous function f: R — R such that f(x) € (0,1] ifx € A
and f(z) =0 if x ¢ A.

Lemma 3. [6] If g: R — R is a positive function such that for every a € R
{x € R: g(x) > a} € TyNXY, then g is a pointwise limit of a non-decreasing
sequence of approzimately continuous functions.'

PROOF. Enumerate the set of all positive rational numbers as {q;: k € N}.
Fix k € N and define B, = {x € R: g(x) > qx}. Then E; € 7;NXY and by
Lemma 2 there is an approximately continuous function pg: R — R such that
0<pr <lon Ejandpr =0o0nR\ E;. Forn € N put p*¥ = min{qx, npy}.
Then g, - XE, is a pointwise limit of non-decreasing sequence {PF:neN}cA
and pF < g. Let g, = maxlgkgnpﬁ. It is easy to check that:

(i) gn € A,
(i) gn < gnt1 < g,
(i) if g(x) > ¢ for some positive rational ¢, then lim,, g, > q.
It follows that lim, g, = g and {g,,: n € N} is a required sequence. O
Remark 3. Lemma 3 holds also for g: R — [0, +o¢]
Now, we are able to prove the following.

Theorem 4. L£(A) = I1J

1This fact was announced during the conference Summer School on Real Functions The-
ory in Liptovsky Jén (Slovakia) in 1998.
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PRrROOF. It is well-known that A C By (see, e. g. [3]), so the inclusion ” C ”
follows from Theorem 3. Now, fix A € I1]. We claim that A = L({f,.: n € N})
for some sequence {f,: n € N} of approximately continuous functions. To
show this we apply the method similar to that in the proof of Theorem 3. By
Corollary 1 A = (,,cny Am, where for m € N A, = [, oy Fi, Fi* € 19,
FmCFrC...and R\ F* € 7y. Fix m € N. Then ¢g: R — [1, +00] given by
the formula

1 ifx € F*

glx)=14n ifexe FJ*\ F"y forn>2
+oo ifxeR\ A4,

satisfies the assumptions of Lemma 3. Consequently, there is a non-decreasing
sequence {g,: n € N} C A pointwise convergent to g. The same construction
as before gives us a sequence {f;': n € N} C A such that [f"(z)] < 1/m
forn e N,z € Rand A, = L({f*: n € N}) = {& € R: lim, f"(x) = 0}.
Finally, it is enough to rewrite (J,,cy{f5": n € N} as a single sequence { f;: i €
N} to obtain the one we claimed. O

The last result is a consequence of Theorems 3 and 4.
Theorem 5. L(A) =TI

PrOOF. Note that the construction in Theorem 4 uses bounded approxi-
mately continuous functions, so we have actually proved that £(bA) = TIY.
Since bA C A C By (see e. g. [3]), the proof is complete. O

Acknowledgments. The author wishes to express her thanks to the referee
for pointing out the consequences of Theorem 4 for derivatives.
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