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INVARIANT MEASURABLE STRUCTURES
ON GROUPS AND NONMEASURABLE

SUBGROUPS

Abstract

For any group G, the notion of an invariant measurable structure
on G is introduced. The following question is investigated: does there
exist a subgroup of G nonmeasurable with respect to this structure?
It is demonstrated that, for an uncountable solvable group G, such a
subgroup of G always exists.

Let E be a set, let S be a σ-algebra of subsets of E and let I be a proper
σ-ideal of subsets of E, such that I ⊂ S. We shall say that the pair (S, I)
determines a measurable structure on E. Elements from S (respectively, from
I) are usually called measurable sets (respectively, small sets) with respect
to this structure. Such a situation can frequently be met in various domains
of mathematics. The best known examples are: the measurability in the
Lebesgue sense and the so-called Baire property (see, for instance, [1], [2] and
[3]). In the first case, S is the σ-algebra of all Lebesgue measurable subsets
of the real line R and I is the σ-ideal of all Lebesgue measure zero sets in
R. In the second case, S is the σ-algebra of all subsets of R having the Baire
property and I is the σ-ideal of all first category sets in R.

A class of morphisms (homomorphisms) can be introduced for measurable
structures e.g. in the following way. We say that a surjective mapping

φ : (E, (S, I))→ (E′, (S′, I ′))

is a homomorphism if, for any set X ∈ S′, we have φ−1(X) ∈ S and, for any
set Y ⊂ E′, the relation

φ−1(Y ) ∈ I ⇔ Y ∈ I ′
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is fulfilled. We thus obtain a certain subcategory of the standard category
consisting of all sets and mappings between them. Further, a measurable
structure (S, I) satisfies the countable chain condition if there is no uncount-
able disjoint family of sets belonging to S \ I. It can easily be observed that
any homomorphic image of a measurable space satisfying the countable chain
condition satisfies this condition, too.

Suppose now that the original set E is an uncountable group denoted by
the symbol (G, ·). We say that a measurable structure (S, I) on G is left
invariant (or, simply, invariant) if both classes of sets S and I are invariant
with respect to the group of all left translations of G.

The class of groups equipped with invariant measurable structures forms a
subcategory of the above-mentioned category when the class of morphisms is
restricted to those mappings which simultaneously are group homomorphisms.

Let G be an uncountable group and let (S, I) be an invariant measurable
structure on G satisfying the countable chain condition. The following ques-
tion seems to be of some interest: does there exist a subgroup of G which is
not measurable with respect to (S, I)? It turns out that this question admits a
positive solution for a sufficiently wide class of groups. In particular, as shown
below, any uncountable solvable group G contains a nonmeasurable subgroup.

In order to establish this fact, we need some auxiliary notions and propo-
sitions. The following two statements are purely combinatorial.

Lemma 1. Let (I, S) be a measurable structure satisfying the countable chain
condition and let {Zα : α < ω1} be an uncountable family of sets belonging
to S. Further, let m > 0 be a fixed natural number and suppose that, for any
m-element subset D of ω1, the relation

∩{Zα : α ∈ D} ∈ I

is fulfilled. Then there exists an uncountable subset A of ω1 such that Zα ∈ I
for each ordinal α from A.

Proof. The proof of this lemma is not hard. It can be carried out by
induction on m (for details, see [6]). The case m = 2 is, in fact, equivalent to
the countable chain condition.

Let Y be a set of cardinality ω1. Consider a double family

(Yn,ξ)n<ω,ξ<ω1

of subsets of Y . We shall say that this family is an admissible transfinite
matrix for Y if it possesses the next two properties:
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(a) for each ordinal number ξ < ω1, the partial family (Yn,ξ)n<ω is increas-
ing by inclusion and

card(Y \ ∪{Yn,ξ : n < ω}) ≤ ω;

(b) for each natural number n, there exists a natural number m = m(n)
such that, for any set D ⊂ ω1 with card(D) = m, we have the equality

∩{Yn,ξ : ξ ∈ D} = ∅.

Lemma 2. For any set Y with card(Y ) = ω1, there exists an admissible
transfinite matrix.

Proof. The proof of Lemma 2 easily follows from the existence of an Ulam
matrix over Y (in connection with this matrix and some of its applications,
see e.g. [1], [2] or [3]). Indeed, let

(Xn,ξ)n<ω,ξ<ω1

be an arbitrary Ulam matrix for Y . Then we have:
(c) for each ordinal number ξ < ω1, the set Y \ ∪{Xn,ξ : n < ω} is at

most countable;
(d) for each natural number n, the partial family {Xn,ξ : ξ < ω1} is

disjoint.
Let us define

Yn,ξ = ∪{Xk,ξ : k ≤ n}

for all n < ω and ξ < ω1. Then it is not hard to verify that the family
(Yn,ξ)n<ω,ξ<ω1 is an admissible matrix of subsets of Y (namely, for any natural
number n, we may put m(n) = n+ 2).

Remark 1. Recall that Ulam matrices are usually utilized in order to estab-
lish the classical fact that ω1 is not a real-valued measurable cardinal. In this
connection, it should be noted that the existence of an admissible matrix is
also sufficient to prove the non-real-valued measurability of ω1. Moreover, if
(Yn,ξ)n<ω,ξ<ω1 is an arbitrary admissible matrix of subsets of a set Y with
card(Y ) = ω1 and (S, I) is a measurable structure on Y satisfying the count-
able chain condition and such that all countable subsets of Y belong to I,
then there are uncountably many sets Yn,ξ nonmeasurable with respect to this
structure (the proof can be deduced from Lemma 1). It would be interest-
ing to investigate other relationships between Ulam matrices and admissible
matrices.
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Starting with Lemmas 1-2 and applying some well-known results concern-
ing the algebraic structure of infinite commutative groups (see, for instance,
the classical monograph by Kurosh [4]), we obtain the following statement.

Lemma 3. Let (G,+) be an arbitrary uncountable commutative group and let
(S, I) be an invariant measurable structure on G satisfying the countable chain
condition. Then there exists a subgroup of G nonmeasurable with respect to
this structure.

Proof. Let us sketch the proof of this lemma (which plays the key role in
further considerations). First, we may assume, without loss of generality, that
all countable subsets of G belong to I. Then we represent G in the form

G = ∪{Γk : k < ω},

where {Γk : k < ω} is an increasing (with respect to inclusion) countable
family of subgroups of G, such that every group Γk can be represented as a
direct sum of cyclic groups. Now, only two cases are possible.

1. For all natural numbers k, the inequality card(G/Γk) ≥ ω1 holds. In this
case, taking into account the fact that our σ-ideal I is proper, we easily infer
that there exists a natural number p such that Γp 6∈ I. On the other hand, the
group G contains an uncountable family of pairwise disjoint translates of the
group Γp. Hence Γp cannot be measurable with respect to the given structure.

2. There exists a natural number k such that card(G/Γk) ≤ ω. In this case,
we fix a k with this property and consider the group Γk. If Γk is nonmeasurable
with respect to our structure, then there is nothing to prove. Suppose now
that Γk ∈ S. Then we obviously have

card(Γk) ≥ ω1, Γk ∈ S \ I.

Therefore, it suffices to demonstrate that Γk contains a subgroup nonmeasur-
able with respect to the restriction of our measurable structure to Γk. Since
Γk is uncountable and is a direct sum of cyclic groups, we can write

Γk = G1 +G2 (G1 ∩G2 = {0}),

where G1 and G2 are some subgroups of Γk, and G1 satisfies the following
relations:

(1) card(G1) = ω1;
(2) G1 is a direct sum of cyclic groups.
We may suppose that G2 ∈ S (otherwise, there is nothing to prove). Since

there are uncountably many pairwise disjoint translates of G2, we simultane-
ously have G2 ∈ I. Let us put

G1 =
∑
ξ<ω1

G1,ξ,
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where each G1,ξ is the cyclic group generated by some element yξ (the sum in
the equality above is direct). Also, let us denote

Y = {yξ : ξ < ω1}

and consider any admissible matrix (Yn,ξ)n<ω,ξ<ω1 for the set Y whose cardi-
nality is ω1. For all n < ω and ξ < ω1, define

Hn,ξ = [Yn,ξ] +G2,

where [Yn,ξ] denotes the group generated by Yn,ξ. Treating the set Y as a
weak analogue of a Hamel basis, we come to the following relations:

(*) for each ordinal ξ < ω1, the set Γk \ ∪{Hn,ξ : n < ω} belongs to the
σ-ideal I;

(**) for any natural number n and for any set D ⊂ ω1 with card(D) =
m(n), we have

∩{Hn,ξ : ξ ∈ D} = G2 ∈ I.

Now, it is clear that there exist a natural number n and an uncountable set
B ⊂ ω1, for which all the groups Hn,ξ (ξ ∈ B) do not belong to I. Applying
Lemma 1 to the family (Hn,ξ)ξ∈B , we conclude that there are uncountably
many groups from this family, nonmeasurable with respect to our structure.
Lemma 3 has thus been proved.

We denote by M the class of all those uncountable groups G which have
the property that, for any invariant measurable structure (S, I) on G satis-
fying the countable chain condition, there exists at least one subgroup of G
nonmeasurable with respect to (S, I).

Lemma 4. Let G and H be two groups and let φ : G → H be a surjective
group homomorphism. If H ∈M , then G ∈M , too. In other words, the class
M is closed under homomorphic pre-images.

Proof. Indeed, suppose that H ∈M and let (S, I) be an arbitrary invariant
measurable structure on G satisfying the countable chain condition. We put

S′ = {X ⊂ H : φ−1(X) ∈ S}, I ′ = {X ⊂ H : φ−1(X) ∈ I}.

Then (S′, I ′) turns out to be an invariant measurable structure on H satisfying
the countable chain condition. Consequently, there exists a group H0 ⊂ H
nonmeasurable with respect to (S′, I ′). This implies that the group G0 =
φ−1(H0) is nonmeasurable with respect to (S, I).

In particular, if H ∈ M and F is an arbitrary group, then the product
group G = H × F belongs to M .
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Theorem 1. Any uncountable solvable group belongs to M .

Proof. Let G be an arbitrary uncountable solvable group and let

G = Gk ⊃ Gk−1 ⊃ ... ⊃ G1 ⊃ G0 = {e}

denote the composition series for G. We use induction on k. Only two cases
are possible.

1. The factor group Gk/Gk−1 is uncountable. In this case, we have a
canonical surjective homomorphism

φ : Gk → Gk/Gk−1,

where Gk/Gk−1 is a commutative group. Hence we may apply Lemmas 3 and
4 which yield at once that G = Gk ∈M .

2. The factor group Gk/Gk−1 is at most countable. In this case, it is
not hard to see that the relation Gk−1 ∈ M ⇒ Gk ∈ M holds true. But
Gk−1 turns out to be an uncountable solvable group with composition series
of smaller length. According to the inductive assumption, we get Gk−1 ∈ M .
Consequently, Gk ∈M and the theorem has thus been proved.

Remark 2. It would be interesting to characterize the groups of the classM in
purely algebraic terms. Note that M differs from the class of all uncountable
groups. For example, the Jónsson group of cardinality ω1 constructed by
Shelah [5] does not belong to M .
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