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GENERAL FORMULATIONS OF SOME
THEOREMS OF CLUSTER SETS

Abstract

Two theorems on symmetry properties of cluster sets relative to a
grill for the domain of the functions are proved here. One of these
contains a result of Young [8] and its analogue for qualitative and other
cluster sets. (Wilczynski [7] introduced the notion of qualitative cluster
sets.) The other contains a result of Erdés and Piranian [2], one of
Dolzhenko [1], and analogous results for other cluster sets.

1 Introduction

In this section we introduce basic notation. Throughout the paper R, Es and
H are taken to represent the real line, complex plane, and the open upper half
plane, respectively.

Definition 1. A collection P of subsets of R (respectively Es) is called a grill
[6] in R (respectively Eo) if

(i) 0 ¢ P,
(ii) A€ P and A C B implies B € P, and
(ili) AU B € P implies either A € P or B € P.
If a collection P satisfies (i), (ii) and
(ili)" U2, A, € P implies A,, € P for at least one n,

then P is called a o-grill. Clearly a o-grill is a grill.
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Definition 2. Let P be a grill in R (respectively E5) and F C R (respectively
Es). A point y € R (respectively Es) is said to be a p-point of E if ENN,.(y) €
P for all r > 0, where N,.(y) = (y —r,y) U (y,y+71) or N.(y) ={z : z €
Es, |z — y| < r} according to the requirement. The set of all p-points of E
will be denoted by E,,.

It can be verified that the operator £ — E U E, is a Kuratowski-closure
operator defined on the class of all subsets of R (respectively Es), and hence
it will generate a topology for R (respectively Es).

For § and ¢, 0 < 8 < p <, let
Sop={z:z€H, 0 <arg(z) < ¢}.

Then Sp, = S is the sector in H with vertex at the origin. Let Sy, (x) = S(z)
be the translate of S and which is obtained by taking the origin at = € R. For
xz € R and r > 0, we also set

K(@,r)={z:z€H, |z—z|<r} and S(z,r)=S(z)NK(z,r).

2 The Single Variable Case

In this section we shall consider the theorem for functions of a single variable.
Let f: R — W, where W is a topological space. Let P be a grill in R. For
UCW, set
[fU)={z:z€R, flx)NU #0}.

Let f be an one or multi-valued function. Then the right hand P-cluster set
C;ﬁ (f,x) of f at x € R is the set of all w € W such that for every open set U
of W containing w, f~Y(U) N (z,x +r) € P for all » > 0. The definition of
Cp(f,x), i.e. the left hand cluster set of f at x, is similar and is obtained by
replacing (z,z + r) with (z — 7, z) from the definition of C}(f, x).

Now we shall prove the auxiliary lemmas and theorems.

Lemma 1. Let P be a grill in R and E C R be arbitrary. Then the set T' of
all points © in R such that (x,z+r)NE € P for allr > 0 but (x—r,z)NE ¢ P
for some r > 0 is countable.

ProOF. For a positive integer n, let
T.(E)={z : z € R, EN(z,z+r) € Pfor all r > 0 and EN(z—1/n,z) ¢ P}.

Then clearly,
T CUZ T,(E).
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Suppose that for some n = k, Ti(E) = 1" is uncountable. Let 2’ € T” be a
two sided limit point of 7’. Let {z,,} C T’ be a sequence converging to =’ and
T < Tym1 < ' for all m. Then there is ), € {z,,} so that z,, € (2’ —1/k,z’).
Since

EN(zp,2")=EN (zp,2, + (' —z,)) € P

it follows that EN(z'—1/k,x’) € P, which contradicts the fact that ' € Ty (E).
Thus, each set T),(E) is countable and hence T is a countable set. O

Lemma 2. Let P be a grill in R and E C R be arbitrary. Then the set T' of all
points x € R, such that EN(z,z+7r) ¢ P for somer >0 but EN(x—r,x) € P
for all v > 0, is countable.

The proof is similar to that of Lemma 1.

Theorem 1. Let f: R — W be an one or multi-valued function, where W is
a second countable topological space, and let P be a grill in R. Then, except
at most a countable set of points x € R,

Cp(f,2) =Cp(f,2).

PROOF. Let L be the exceptional set of the theorem. Let B = {B,} be a
countable basis for the topology of W and let f~1(B,,) = E,, for B,, € B. Let
x € L. Then CH(f,x) # Cy(f,x). If possible, let w € C%(f,z) \ Cp(f, ).
Then there is a By, € B containing w such that E,, N (z,x +r) € P for all
r >0, but EN(x—r,z) ¢ P for some r > 0. Hence x € T,,, where T, is the
set T in Lemma 1 with ¥ = F,,.

Again if there is a w € C5(f,z) \ O} (f,z), it can be shown that there is a
positive integer k such that z € T}, where T}, is the set 7" in Lemma 2 with
FE = E). Thus, it is proved that

L C U(Tm U Tk/) R

where the union is taken for all positive integers m and k.
Since by Lemma 1 and Lemma 2 each T, and T}, is countable, L is a
countable set, which completes the proof. O

Now we discuss some consequences of Theorem 1.
(i) If P is the collection of all non- void sets in R then clearly P is a grill

in R and the P-cluster sets are the ordinary cluster sets, and we get the
following theorem of Young [8].
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Example 1. If f : R — R is a one to one multi-valued function then,
except for at most a countable set of points x in R,

C+(f’$) = C_(fvx)

(ii) If P is the collection of all second category sets in R then P is also a grill
in R and we get the following analogue of Young’s theorem for qualitative
cluster sets Cf (f,z) and C; (f, ).

Example 2. If f : R — R is an one or multi-valued function then except
for at most a countable set in R,

C(f,0) = Cy ().

(iii) If P is the collection of all sets of positive outer measure (in the Lebesgue
sense) of R then P is also a grill in R. If the cluster sets relative to this
grill are called quantitative cluster sets and are denoted by Cf (f,z) and
C-(f,x) (see [9], set M(f,x)), then we get a similar symmetry relation
between these cluster sets too.

Similar results can also be obtained if we consider P to be the collection of
all uncountable sets of R. Let the cluster sets relative to this grill be denoted
by CF (f,z) and C; (f, ), and let them be called attributive cluster sets. Set
Col(f,x) = CH(f,2)UC; (f,z). Now, we prove a result which will improve the
result of Collingwood proved in the paper Cluster set theorems for arbitrary
functions with applications to function theory, Ann. Acad. Sci. Fenn. Ser.
AL No. 336/8 (1963), 83-146.

Theorem 2. If f: H — W is an one or multi-valued function, where W is a
compact and second countable topological space, then except at a countable set
of points x in R, every value of f(x) € Co(f,x).

PROOF. Let B = {B,} be a countable basis for the topology of W. Let
E,=f"'By)={z:2€R, flx)NB, #0}.

Let K be the exceptional set of Theorem 2. Let z € K. Then there isw € f(x)
but w ¢ C,(f,z). Since w ¢ Cy(f,x) so there are B, € B containing w and
a positive integer p such that Ejy N (x — 1/p,x + 1/p) is countable. Further,
since z € Ej so E N (z —1/p,x+1/p) = K, is a countable set containing x
and thus

KcuyZ,Uyr_; Knpm .

Since each set K,,, is countable so K is a countable set, and the proof is
complete. O
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Remark. Since C(f,z) contains the set C,(f,z) so Collingwood’s result fol-
lows from Theorem 2.

Theorem 2'. If f : R — W 1is an one or multi-valued function, where W is a
compact and second countable topological space, then except at a first category
set of points x in R, every value of f(x) € Cy(f, ).

The proof is similar to that of Theorem 2.

3 Auxiliary Results

To prove the auxiliary lemmas and the corresponding theorem we require the
following definitions.

Definition 3. Let P be a grill in E,. If f : H — W is arbitrary, where
W is a topological space, then the P-cluster set Cp(f,z) of f at x € R is
the set of all w in W such that for every open set U of W containing w,
f~Y(U)N K(z,r) € P for all r > 0. Considering the sector S(z,r) instead
of K(x,r) in the definition of Cp(f,x), we get the definition of sectorial P-
cluster set Cp(f,x,S) of f at x in the sector S.

Definition 4. A set F' C R is said to be porous at a point x € R if

Y4 F
lim sup 7(35’ r, F)
r—0 r

>0,

where £(x,r, F) is the length of the largest open interval in the complement of
F, which is entirely contained in (z —r,x 4+ r). A set F is said to be porous
if it is porous at all its points. A set is said to be o-porous if it is a countable
union of porous sets. It is clear that a o-porous set is a first category set of
measure zero, but Zajicek [10] constructed a perfect set of measure zero which
is not a o-porous set.

We shall prove the auxiliary lemmas and the the theorem in the sequel.

Lemma 3. Let P be a o-grill in Eo. If F' € P then there is at least one point
z € F which is a p-point of F.

PROOF. Suppose the contrary. Then for each point z € F there is a r = r,
such that the neighborhood N,(z) of z satisfies FF N N,.(z) ¢ P. Since E, is
second countable with respect to the usual topology for Es and

F=U{FNN,(z) : z€ F},
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so there is a countable set of points z1, z9, .. ., such that
F=U2{FNNy(2,) : 2n €F}.

Since F' € P is a o-grill, there is at least one member, say F' N N,.(z,,), such
that F'N N, (z,,) € P. This is a contradiction, thus the proof is complete. [

Lemma 4. Let P be a o-grill in Eo and let G C H be arbitrary. Then the
set T of all points x € R at which there are two sectors S*(z) and S*(z) such
that SY(x,r) NG € P for all 7 > 0, but S*(z,r) NG ¢ P for some r >0, is a
o-porous set.

ProoF. If S' € S? then T is empty and the proof is complete. So we suppose
that S' ¢ S2%. For rationals 4, j, k, [ in (0,7) with [i,5] N [k,{] = 0, and a
positive integer n, set

Thijet = {z :  €R, Sij(xz,r)NG € P for all r >0, and Ski(z,1/n) NG ¢ P}.

Then it can be shown that
T C UThijk (1)
where the union is taken for all positive integers n and rationals i, j, k, [
in (0,7) with [¢,5] N [k,I] = 0. If possible, let T;;x be non-porous. So by
definition there is 2/ € T' = Thijr1 such that
L, r,T)

fiy === =0, @

where £(z’, , T) is the length of the largest open interval in the complement of
T and is entirely contained in (2’ —r, &’ +r). Since 2’ € T, S;j(2’,r)NG € P
for all » > 0. For definiteness, suppose that 0 < ¢ < j < k < < 7, and set

_sin(i)sin(l — k)
~ sin(k)sin(l —14)

Then from (2), for an arbitrary €, 0 < e < K/2, there exists 1 > 0 such that
', r,T)<e-r (3)

for all » < 7. Since T'is non-porous at 2’ therefore for all z > ', (z', z)NT # 0.
Let y € (2, 2'4+n)NT be such that S;;(x')NSk(y,1/n) is a quadrilateral. Since
GNS;j(z’,r) € P for all r > 0, so by Lemma 3, there is zy € S;;(2’,7)NG and
axg € R, 2’ < xp <y such that 2 is a p-point of G and z¢ lies on L;(zq, 1/n),
where

Lo(z,r)={z€H, arg(z—x)=fand [z —z| <7}, 0<6O<m.
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Let J,, be the open segment on L;(z’) intercepted by Si;(zg,1/n) and let I,
be the open interval on R with the right end-point at x¢ and

sin(k — 1)

‘I10| = |JIO| : s1n(k;) 9

where | - | denotes the length. Then clearly

| Lz, |
— =K. 4
From (3),
Uz zg— 2", T) < e (xg— ')

and 0 < e < K/2, therefore (4) ensures that there is a point 2/ € I,, N'T
such that zy € Sg(a”,1/n). Since zp is a p-point of G, this implies that
Ski(2”,1/n) NG € P, which contradicts the fact that z”/ € T = Thijr- If we
suppose that 0 < k <[ < i < j < 7 then we can arrive at a contradiction by
proceeding from the left of 2. Thus each set T,z is porous, and the proof
is complete by (1). O

Lemma 5. Let P be a o-grill in Eo and F C H be arbitrary. Then the set K
of all points x € R at which there is a sector S(x) so that K(x,r)NF € P for
allr >0, but S(x,r)NF ¢ P for some r >0, is a first category set in R.

Proor. For fixed positive integer n and rationals ¢, j in (0, 7) with i < j, let
Knij={xz : 2 €R, K(z,r)NF € P for all v >0, but Si;(x,1/n)NF ¢ P}.

Then clearly K C UK,;; , where the union is taken for all positive integers n
and rationals 4, j in (0, 7) with 7 < j.

If possible, suppose that K,;; = K’ is dense in an open interval I(z'),
where 2/ € K’ is the center of I(z'). Since for x € K', S;;(z,1/n)NF ¢ P and
Kp;j is dense in I(2'), so by Lemma 3, S;;(x,1/n) N F ¢ P for all x € I(z').
Let

B =U{S;j(z,1/n) : z € I(z')}.
Then we can choose a r’ > 0 such that K(z/,7") C B. Since for z € I(2’),
Sij(xz,1/n)NF ¢ P, so by Lemma 3, BNF ¢ P, and hence K (2/,7)NF ¢ P.
This contradicts the fact that ' € K’ = K,,;;. Thus, each set K,;; is nowhere
dense in R, so by (1) the set K is a first category set. This completes the
proof. O

Theorem 3. Let P be a o-grill in Ey and let f: H — W be arbitrary, where
W is a second countable topological space. Then
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(i) except at a first category set of points x € R, for each sector S in H

Cp(f,xz) =Cp(f,z,5) and

(ii) except at a o-porous set of points x € R, for each pair of sectors S* and
S? in H
CP(fwanl) = Cp(f,l‘,SQ) .

PRrROOF. Let B = {B,} be a countable basis for the topology of W and set
f~Y(B,) = E, for B, € B.

(i) Let L be the exceptional set of the first part of the theorem. If z € L
then there is a sector S in H such that Cp(f,z) ¢ Cp(f,z,5). Let w €
Cp(f,x)\Cp(f,x,S). Then there is B,, € B containing w such that K (x,r)N
E,, € P for all r > 0, but S(x,r)N E,, ¢ P for some r > 0. Thus, it is proved
that = € K,,, where K,, is the set K in Lemma 5 with F' = F,,, and hence
we get

LCcUu K,.

By Lemma 5, each set K, is a first category set and therefore L is a first
category set. This completes the proof of the first part.

(ii) Let L’ be the exceptional set of the second part of the theorem. Let
x € L'. Then there is a pair of sectors S and Sy in H such that Cp(f,z, S1) #
Cp(f,z,5). Let w € Cp(f,z,51) A Cp(f,z,52). Then there is B, € B
containing w such that either

Si(z,r) N Ey € P for all » > 0 and Sa(x,r) N Ey, ¢ P for some r > 0,
or

Si(z,r) N Ey ¢ P for some r > 0 and Sa(x,r) N Ey € P for all r > 0,
Hence in either case x € T}, where T}, is the set T' in Lemma 4 with E = G,
and so we have proved that

L' cue,T,.

By Lemma 4, each set T}, is a o-porous set and therefore L’ is a o-porous set.
This completes the proof of the theorem. O

The above theorem includes several known results of ordinary cluster sets
and it also generates the corresponding analogue for qualitative cluster sets.
For example, let P be the collection of all non-void subsets of E;. Then P
is a o-grill and the P-cluster sets are the ordinary cluster sets C(f,z) and
C(f,z,S). Applying Theorem 3, we get the following results.
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Example 3. ([2]). If f : H — W is arbitrary, where W is a second countable
topological space, then except for a first category set of points x in R,

for each sector S in H.

Example 4. ([1)). If f : H— W is arbitrary, where W is a second countable
topological space, then except for a o-porous set of points x in R,

C(f7 Z, Sl) = C(f7 z, 52)
for each pair of sectors S1 and Sy in H.

If P is the collection of all second category subsets of Eo, then P is also
a o-grill in Ey and the P-cluster sets are qualitative cluster sets Cy(f,z) and
Cy(f,z,S5). We get the following results from Theorem 3.

Example 5. If f : HH — W is arbitrary, where W is a second countable
topological space, then except for a first category set of points x in R,

Cq(fax) = Cq(f,$75)
for every sector S in H.

Example 6. If f : H — W s arbitrary, where W is a second countable
topological space, then except for a o-porous set of points x in R,

Cq(fwxa Sl) = Cq(f7$7 ‘92)
for each pair of sectors Sy and Sy in H.

Many other results can also be deduced from Theorem 3. For taking P to
be the o-grill of all subsets of positive Lebesgue outer measure in Eq, Cp(f,x)
and Cp(f,z,S) become the quantitative cluster sets Cy, (f, z) and C,(f, z,.S)
[9]. We can deduce analogous results relating to these cluster sets too.

4 The Main Results

Here we shall prove a result which together with the results in the above
examples will imply the results in [3] and [4].

For 6 € (0,7) and z € R, set

Lo(x)={z : z€ H, arg(z —z) =0}
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and
Lo(z,r)={z : z€ Ly(x), |z —a| <r}.

In the sequel, for convenience, we have often written f.c. and s.c. for the
terms first category and second category respectively. We have taken W to
be a second countable topological space whenever nothing is mentioned about
W. Whenever other restrictions are needed for W, only those additional re-
strictions are mentioned.

Now we recollect some definitions which will be used in the lemma and the
corresponding theorem.

Definition 5. A set K C E; is said to have the Baire property if K =
G A @, where G is an open set and @ is a first category set in E,. A function
f :H — W is said to have the Baire property if for every open set V in W,
f~Y(V) has the Baire property.

Definition 6. Let f : H — W. The directional cluster set C(f,x,0) of f at
z € R and in the direction 6 € (0,7) is the set of all w € W such that for
every open set U of W containing w, f~1(U) N Ly(x,7) # () for all r > 0. The
definition of the directional qualitative cluster set Cy(f,z,0) is the same as
that of C(f,z,0) but the condition “f~1(U) N Ly(x,r) # 0" is to be replaced
by “f~Y(U) N Ly(x,7) is a s.c. set”.

In the sequel {S} will denote the collection of all sectors .S in H.
Lemma 6. If E C H has the Baire property then at each x € R the set

O(FE,z) = {9 :0<f<m, ENLy(x,7) is a f.c. set in Lo(x) for some r > 0,

but EN S(x,r) is a s.c. set for all r >0, and each S € {S}}

is a f.c. setin (0,7).

PROOF. Let E = G A Q, where G is an open set and @ is a f.c. set in H. For
a positive integer n, set

O,(E,x) = {9 :0<f<m, ENLy(z,1/n)is a f.c. set,

but for each S € {S}, GN S(z,r) is a s.c. set for all r > O} .

Then clearly O(F,z) C U2 ,0,(E,z). Suppose that ©,(F,z) is a second
category set in (0, 7). Let

V(Q,z)={60:0<60<m, Lo(z,r) N Q is a s.c. set in Lg(z) for r > 0}.
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Then by the Kuratowski-Ulam Theorem [5, p. 56] the set V(Q, z) is of first
category in (0, 7). Thus © = ©,(F,2)\V(Q, ) is a s.c. set in (0, ). Therefore
for each 6 € © each set Lg(xz,1/n)NQ and Ly(x,1/n)NE is of first category in
Lg(x). Thus, each set Lg(x,1/n)N(G\Q) and Ly(z,1/n)N(GNQ) is a f.c. set
in Ly(z) for & € ©. This implies that Ly(z,1/n)NG = for § € ©. Since O is
a s.c. set, we can suppose that © is dense in some interval (4, j) C (0, 7). The
facts that G is open and © is dense in (7, j) ensure that Lg(z,1/n)NG = @ for
0 € (i,7). Thus, we get S;;(z,1/n) NG = (. This is a contradiction because
S;; € {S}. This proves that each set ©,(F,z) is a f.c. set in (0, 7), and hence
O(FE,z) is a f.c. set in (0,7), which completes the proof. O

Theorem 4. If f : H — W has the Baire property then at each x € R the
set O(x) = {0 : 0< 0 <m, Ngegsy Colfr2,8) C Co(f,x,0)} is residual in
(0,7).

Proor. Let B = {B,} be a countable basis for the topology of W. Set
E, = f~Y(B,) for B, € B. Let § € (0,7) \ ©(x). Then there is a w €
NsefsyCq(f,2,5)\ Cy(f,x,0). So there is a B,, € B containing w such that
E,, N S(z,r) is a s.c. set for all r > 0 and each S € {S}, but E,, N Ly(x,r) is
a f.c. set for some r > 0. These prove that § € O(FE,,, x), where O(F,,,x) is
the set ©(F, x) of Lemma 6 with F = E,,. Thus, it is proved that

(0,m)\ O(z) C Us,O(E,, ).

By Lemma 6, each set O(FE,,x) is a f.c. set, hence ©(x) is residual in (0, 7),
and the proof is complete. O

Corollary 1. Let f : H — W have the Baire property. Then, except for an
at most first category set of points x in R, the set V(z) = {0 00 <
m, Cy(f,x) C Cy(f,z,0)} is residual in (0, ).

PROOF. The proof follows from the results in Theorem 4 and Example 5. U

Corollary 2. Let f : H — W have the Baire property. Then, except for at
most a o-porous set of points in R, the set

O(z) = {9 :0< 0 <7, Ugersy Cylf,2,8) C Cq(f,x,O)}
is residual in (0,7).
PROOF. The proof follows from the results in Theorem 4 and Example 6. [

Corollary 3. Let f : H — W have the Baire property, where W is also
compact. Then, except for at most a o-porous set of points x in R, there exists
a residual set ®(x) in (0,7) at x € R such that Ngca@)C(f,z,0) # 0.
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PROOF. The proof follows from the result of Corollary 2 together with the
fact that Cy(f,z,0) C C(f,,0), and C,(f,x,S) # 0 for a compact W. O

Remarks.

(i) The set inequalities contained in the relations in Corollary 1 and in Corol-

lary 2 can be strengthened to equality if we use the fact that for rationals
i <jin (0,m), Cy(f,2,0) C UpcicjcnCqy(f,x,S;;) for a residual set of
directions 6 in (0, 7).

(ii) Since for a continuous f, Cy(f,z,0) = C(f,z,0), Cy(f,z) = C(f,z) and

Cy(f,z,8) = C(f,x,5), the results in Corollary 1 and in Corollary 2
become results for ordinary cluster sets in this case.
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