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MONOTONE AND DISCRETE LIMITS OF
CONTINUOUS FUNCTIONS

Abstract

In this note we prove that for a quite large class of topological spa-
ces every upper semi-continuous function, which is a discrete limit of
continuous functions, it is also a pointwise decreasing discrete limit of
continuous functions. This question was motivated by a paper of Zbig-
niew Grande. He asked that whether it be true for the topology of right
hand continuity on the real line. He gave a partial answer showing that
under some additional condition imposed on the function the answer is
affirmative.

Throughout the paper we will use the following notation, for any function
f : X → R, we denote the level set A(f < c) = {x ∈ A : f(x) < c}, and
similarly for other relations. Recall that a sequence of function fn converges
discretely to f provided that ∪n(∩k>nfk) = f , see [2]. We will use the trick due
to Urysohn, which makes it possible to define a continuous function through
its level sets.

Theorem 1. Let (X, τ) be topological space, with the property that every open
topological subspace is normal. Also, let f : X → [0, 1] upper semi-continuous,
A ⊂ X closed subset. If f |A is continuous then there is a continuous function
g : X → [0, 1] such that g ≥ f and f |A ⊂ g.

Proof. First we prove the statement for function f : X → [0, 1).
To do this let {rk : k ∈ N} be an enumeration of rational numbers in [0, 1],

such that r0 = 0 and r1 = 1. We define a sequence (Ak) such that

(1) Ak is open,

(2) Ak ⊂ X(f < rk),

(3) Ak ∩A = A(f < rk),
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(4) if l < k and rl < rk then Al ⊂ Ak,

(5) if l < k and rl > rk then Ak ⊂ Al,

(6) Ak ∩A ⊂ Ak ∩A ⊂ A(f ≤ rk),

(7) and Ak \A ⊂ X(f < rk).

Assume that we have already defined (Ak) for all k, and let

g(p) = inf {rk : p ∈ Ak} .

Property (2) ensures that f ≤ g. From property (1), (4) and (5) g is continuous
and finally from property (3) f |A = g|A.

Now let A0 = ∅ and A1 = X. It is obvious that for k = 0, 1 all the above
properties are fulfilled.

Assume that Al is defined for l < k satisfying (1)–(7). Then X̃ = X\A(f =
rk) is an open subset, so (X̃, τ |X̃) is normal. The closed subsets of X̃

Bk = X̃ ∩

(
A(f ≤ rk) ∪

⋃
l<k:rl<rk

Al

)

and

Ck = X̃ ∩

(
X(f ≥ rk) ∪

⋃
l<k:rl>rk

(X \Al)
)

are disjoint by (3), (4), (5), (6) and (7). X̃ is normal so they can be separated
by disjoint open sets in X̃, in other words: there is an open set Gk ⊂ X̃
such that it is larger then Bk and its closure (in X̃) is disjoint from Ck. Put
Ak = X(f < rk) ∩Gk.

Then property (1) and (2) are clear for Ak. Since

Gk ⊃ X̃ ∩A(f ≤ rk) = A(f < rk)

property (3) also holds.
Ak ∩ X̃ ⊂ Gk therefore Ak ∩ X̃ is disjoint from Ck. This fact implies

property (7). To see (6) observe that Ak ∩A ⊃ Ak ∩A and

Ak ∩A ⊂ Gk ∩A ⊂ (A \ Ck) ∪ (A \ X̃) ⊂ A(f < rk) ∪A(f = rk).

We have to show that (4) and (5) also hold. Since Al \A ⊂ X(f < rl) for
l < k we have that if rl < rk then
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Al = (Al \A) ∪ (Al ∩A) ⊂ X(f < rl) ∪A(f ≤ rl) ⊂ X(f ≤ rl) ⊂ X(f < rk).

On the other hand,

Al ⊂ Al \A ∪A(f ≤ rl) ⊂ X̃,

so by the choice of Gk, Al ⊂ Gk. It follows that Al ⊂ Gk ∩X(f < rk) = Ak
and (4) is shown.

Finally, to see (5) let l < k such that rl > rk and observe that

Ak \A ⊂ Gk ∩ X̃

which is disjoint from Ck so Ak \A does not meet X̃ \Al. So

Ak = (Ak \A) ∪ (Ak ∩A) ⊂ Al ∪A(f ≤ rk) ⊂ Al ∪A(f < rl) ⊂ Al.

So the sequence (An) can be defined and the theorem is proved for the
special case when f does not take the value 1.

For the general case let f ′ = (1/2)f and g′ be a continuous function such
that f ′|A ⊂ g′ and f ′ ≤ g′. Then g = min(2g′, 1) is continuous, g extends f |A
and f ≤ g. This completes the proof.

Of course not all topological space satisfies the condition of the previous
theorem, e.g let X = 2ℵ1 be the topological power of the compact discrete
space {0, 1} = 2, where ℵ1 is the first uncountable cardinal. X is compact
and Hausdorff, so normal. However, it is also a folklore among topologists
that for any point e ∈ X the subspace X \ {e} is not normal. This shows
that the condition we have found in Theorem 1 is not necessary, since in the
paper of Grande [1], Theorem 1 —proposed by the referee— states the same
implication for σ-compact spaces.

When someone deals with limits of continuous functions, perfectly normal
spaces behave nicely. The next lemma states that for perfectly normal spaces
the previous theorem applies.

Lemma 2. Let (X, τ), be a perfectly normal topological space, if G ∈ τ then
(G, τ |G) is normal.

Proof. Let F1 and F2 closed subsets of X such that F1 ∩ F2 ∩ G = ∅. We
have to prove that there are open sets S1, S2 ⊂ G such that S1 ∩ S2 = ∅,
Fi ∩G ⊂ Si for i = 1, 2.

S1 and S2 will be level sets of a continuous function f : G→ [0, 2]. So first
we define this function. Let A = F1 ∪ F2. Since the space is perfectly normal
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there are continuous functions fi : Fi → [0, 1] such that Fi(fi = 1) = Fi \ G.
Put f = f1 ∪ (2 − f2). f is a function on A since both f1 and f2 takes 1 on
A \G. It is continuous because it is bounded and its graph is closed in X ×R.
f can be extended to X to a continuous function, we denote this extension
also f.

Now S1 = G(f < 1) and S2 = G(f > 1) are open subsets of G and separate
F1 ∩G and F2 ∩G.

We can state somewhat more.

Lemma 3. Let (X, τ) be a topological space such that for any upper semi-con-
tinuous function f : X → [0, 1] and closed set A there is a continuous function
g : X → [0, 1] such that f |A ⊂ g and f ≤ g, provided that f |A is continuous.
Then X is normal.

Proof. Let F1 and F2 be disjoint closed sets. Put f = χF1 the characteristic
function of F1. f is upper semi-continuous, f |F1∪F2 is continuous, so by the
hypothesis there is a continuous function g such that f |F1∪F2 ⊂ g. Clearly, g
separates F1 and F2.

The two lemmas and the theorem have the following

Corollary 4. Let (X, τ) be a perfect topological space (i.e. every open set is
Fσ in X). Then the following three statements are equivalent

(i) for any upper semi-continuous function f : X → [0, 1] and closed set
A there is a continuous function g : X → [0, 1] such that f |A ⊂ g and
f ≤ g, provided that f |A is continuous,

(ii) (X, τ) is normal,

(iii) for any open set G ⊂ X, (G, τ |G) is normal.

The following statement is almost obvious from the definitions and it was
also used in [1].

Lemma 5. Let X be a normal topological space and f : X → R be a function.
f is a discrete limit of continuous functions if and only if there is a sequence
(Ak) of closed subset of X such that f |Ak is continuous and ∪kAk = X

Theorem 6. Let (X, τ) be topological space, with the property that every
open topological subspace is normal. Also, let f : X → R be an upper
semi–continuous function which is discrete limit of a sequence of continuous
functions. Then there is a sequence (fn) of continuous functions such that
fn+1 ≤ fn and fn tends to f discretely.
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Proof. By usual trick we trace back the general case to the one when actually
f : X → (0, 1). Composing every functions with a continuous increasing
bijection of (0, 1) to R it is clear that it is enough to show that fn can be
chosen in such a way that beside the listed properties in the statement we
have fn : X → (0, 1).

By lemma 5 there are closed sets An such that f |An continuous and ∪nAn =
X. Forming finite unions we can also assume that An ⊂ An+1. Then by
theorem 1 there are continuous functions g′n : X → (0, 1] such that f |An ⊂ g′n
and g′n ≥ f . Put

gn =
∞∑
k=n

1
2k+1−n g

′
k.

Then gn : X → (0, 1), gn ≥ f and it extends f |An , So fn = mink≤n gk is
pointwise decreasing and tends to f discretely.

The topology examined by Zbigniew Grande in [1] is the topology of the
continuity from the right, i.e. for which the sets [a, b), a < b constitutes a
base. In what follows this topology will be denoted by τ .

Although, the topology τ is not second countable, it is hereditary Lindelöf
therefore every topological subspace is normal. Sometimes such space is called
completely or hereditary normal. It is also well known that τ is perfect.

In [1] Grande defined three properties, (1), (1)’ and (2) of upper from the
right semicontinuous functions such that if f is a discrete limit of continuous
functions from the right then it satisfies (1). He proved that (1) implies (1)’
which is equivalent to (2), and that (1)’ does not imply (1). Eventually he
proved that any upper from the right semi continuous function fulfilling prop-
erty (1)’ is a pointwise decreasing discrete limit of a sequence of from the
right continuous functions. He asked whether condition (1)’ can be replaced
with condition (1). The answer follows from the above theorem. To see this,
we repeat first property (1) from [1]. All the topological notions without the
prefix τ refer to the natural topology of the real line.

A function f : [0, 1) → R satisfies property (1) if every non-empty perfect
set A has a non-empty portion I ∩ A such that f |B∩I is τ -continuous, where
B is the set of not τ -isolated points of A.

Lemma 7. Let f : [0, 1) → R be a function satisfying property (1). Then
there is a sequence An of τ -closed sets such that f |An is τ -continuous and
∪nAn = [0, 1).

Proof. We will use the following simple facts.

1. for a closed set A the set of the accumulation points of A, denoted by
A′ is a perfect subset of A and A \A′ is at most countable.
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2. If A is any set then the set of τ -isolated points of A is at most countable.

By transfinite recursion we define a sequence {Iα : α < ξ} of open inter-
vals (in [0, 1)) with rational endpoints, beside this we will define a sequence
Cα of the same type such that each Cα is at most countable.

Let H0 = [0, 1). H0 is perfect in the natural topology of [0, 1). So by
property (1) there is a non-empty open interval I0 with rational endpoint such
that f |I0 is τ -continuous.

Assume that we have already defined Iβ for β < α. Let Sα = [0, 1) \⋃
{Iβ : β < α} and Hα = S′α be the set accumulation points of Sα.
Hα ⊂ Sα, since this later is closed, and Hα is perfect. If Hα is empty then

we do not continue the sequence. Otherwise, property (1) provides an interval
Iα that meets Hα. Put

Cα = (Sα \Hα) ∪ {x ∈ Hα : x is τ -isolated} .

Then Cα is countable and f |Iα∩(Hα\Cα) is τ -continuous.
So the sequence {Iα, Cα : α < ξ} is defined. Observe that the map α 7→ Iα

is injective, since Iα meets a set (Hα) which is disjoint from all Iβ , β < α.
This means that ξ is a countable ordinal.

Note, also, that Hα \ Cα is τ -closed. Therefore Iα ∩ (Hα \ Cα) is τ -Fσ, as
well as

⋃
{Cα : α < ξ}. To finish the proof let us choose τ -closed sets Aα,n

such that

Iα ∩ (Hα \ Cα) =
∞⋃
n=1

Aα,n.

And finally let us enumerate the countable family

{Aα,n : α < ξ, n ∈ N} ∪ {{p} : p ∈ ∪αCα}

into a sequence (An).
It is clear from the construction that ∪nAn = [0, 1) and f |An is τ -conti-

nuous for each n.

Corollary 8. Let f : [0, 1) → R be a function. f is a discrete limit of τ -
continuous functions if and only if f satisfies property (1).

Proof. It was proved in [1] that if f is a discrete limit of τ -continuous
functions then it satisfies property (1).

To prove the opposite implication, let An be a sequence of τ -closed sets
such that f |An τ -continuous and ∪nAn = [0, 1). The topology τ is normal so
there are τ -continuous functions fn such that f |∪nk=1Ak

⊂ fn. It is clear that
fn tends to f discretely.

Now we can answer in the affirmative the problem posed by Grande.
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Corollary 9. Assume f : [0, 1)→ R satisfies property (1) and τ -upper semi-
continuous. Then there is a sequence of τ -continuous functions fn ≥ fn+1

tending to f discretely.

Proof. By lemma 7 there are τ -closed sets An such that f |An τ -continuous
and ∪nAn = [0, 1). By lemma 5 we can apply theorem 6 and the proof is
complete.
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