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ON A.C. LIMITS AND MONOTONE LIMITS
OF SEQUENCES OF JUMP FUNCTIONS

Abstract
The a.c. limits (introduced by Csészar and Laczkovich) and the
monotone limits of sequences of functions having everywhere finite uni-
lateral limits are investigated.

Let R be the set of all reals and let A be a family of functions from R to
R. A function f : R — R belongs to the class By (A) if there is a sequence of
functions f, € A with f = a.c.lim,, . f,, i.e. for each point z € R there is
a positive integer k such that f,(x) = f(z) for every n > k.
It is evident that f € Bf(A) if and only if there is a sequence of sets A,,,
n =1,2,..., such that for each positive integer n there is a function g, € A
such that
gn/An=f/An, A1 CAxC...CA,...

and -
R= ] A
n=1

In [2, 3] it is proved that in the case of the class C of all continuous functions
the sets A,, n = 1,2,..., can be closed and that f € Bf(C) if and only if
for every nonempty closed set A C R there is an open interval I such that
I'Nn A # () and the reduced function f/(ANI) is continuous.

In this article we will investigate the family B (A), where A is the class P
of all functions f : R — R such that for each point z € R there are the both
finite unilateral limits lim;_,_ f(¢) and lim;— . f(t). The pointwise limits of
sequences of such functions from P were investigated in [4] . Moreover it is
well known ([5], p. 45) that if f € P then the set D(f) of all discontinuity
points of f is countable.
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1 The A.C. Convergence

Theorem 1. If f € Bf(P) then f satisfies the following condition

(T) there is a countable set A C R such that the reduced function f/(R\ A) €
B (C(R\A)), where C(R\ A) denotes the class of all continuous functions
g:R\A—-R.

PROOF. Since f € Bf(P), there is a sequence of functions f,, € P,n=1,2...,
such that f = a.c.lim,, . f,. Put

n=1

and observe that the set A is countable. Since the functions g, = f,/(R\ 4)
are continuous for n = 1,2,... and f/(R\ 4) = a.c.lim,,_, gn, the proof is
completed. O

The following Example shows that the condition (T) is not sufficient for
the relation f € By (P).

Example 1. Let
.1
g(xz) =sin— for #0, g(0)=1
x

and

flay =3 2,

where (wy, ), is an enumeration of all rationals such that w,, # w, for n # m,
nm=12,....

As the sum of an uniformly converging series of functions which are contin-
uous at each irrational point, the function f is continuous at every irrational
point. Denote by A the set of all rationals and observe that the reduced
function f/(R\ A) is continuous. So the function f satisfies the condition (T).

Now we will prove that f is not in the class Bf(P). Assume, by way of
contradiction, that there is a sequence of functions f, € P, n=1,2,..., such
that a.c.lim,_, fn, = f. Then there is a positive integer k and a set, B, of
the second category such that f,,(z) = f(z) for each point x € B and m > k.
Consequently, the set

E ={z; fn(z) = f(x) for m>k} DB
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is Borelian and of the second category. There is an open interval I = (a,b)
such that the set I\ E is of the first category. Let u € I be a rational point
such that u = w; for some positive integer i > k. Since all functions

x—glr—wy), n#i, n=1,2,...,
are continuous at the point u, the function
o~ gz —wn)
)= 3, T
i#n=1
is also continuous at u. Let J C I be an open interval containing u such that
1
|h(t) — h(u)| < 3 for t € J.
There are sequences of points
u<uj,v; € JNE, j=1,2,...,
such that
u= lim u; = lim vy,
j—o0 j—oo
1 1 .
lg(u; —u)| < 5 and [g(v; —u)] >1— 5 for j=1,2,....

Observe that

g(u; —w;) 1 1 20 +1
and
g(v; —w;) 1 1 1
filvy) = flvg) = hlvy) + = 57— > hlu) - G+ 55 = 5757 =
1 2t41 8 — 2t —1 (20 +2)

a contradiction with the assumption that f; has the finite limit from the right
hand side. So f is not in B} (P).

Theorem 2. Let f be a function such that there is a countable set A and a
Gs-set B C A for which the reduced function f/(R\ A) is continuous and for
each point x € A\ B there are the finite unilateral limits

li li .
g f(0) and | lim o f(2)

Then the function f € Bf(P).
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PRrROOF. Let (Uy,), be a sequence of open sets such that

B= ﬂUn and Uy D...0U,D....

n=1

Since every function f with the finite set of all discontinuity points belongs to
Bi(P), without loss of the generality we can assume that the set A is infinite.
Enumerate all points of the set A in a sequence (a, ), such that a,, # a,, for
nZm,n,m=12...

Next fix a positive integer n and put

fu(x) = f(z) for x € (R\Up,) \ A.

For i < n we define also
fn(az) = f(ai)7

and for other z € A\ U,, (i.e. = a;, where i > n) let either

folz) = lm  f(t)

R\A>t—z+

if « is the left endpoint of a component of the set U,, or

P =, im0

otherwise.
Finishing we define f,, as the linear function on the closures of all compo-
nents of the set Uy, \ {a;;i <n}. Then

fn€P for n=1,2,... and f=a.c. lim f,,

so f € BY(P) and the proof is completed. O
For the formulation of the generalization of the last theorem we introduce
the following notion:

A set A is said to be an interval set if there is a sequence of nondegenerate
intervals I,, n =1,2,..., such that

A= [j I,;
n=1
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Theorem 3. Let f be a function such that there is a countable set A such that
the reduced function f/(R\ A) is continuous. Moreover, suppose that there is
a sequence of interval sets A,, n=1,2,..., such that

B=()4,CAand A;D...A4,D ...

n=1

and every reduced function f/(R\ A,), n = 1,2,..., has the finite limit at
every point x such that x is an endpoint of a component of the set A, but x
does not belong to A,,. Then f € Bf(P).

PROOF. The proof is similar as the proof of Theorem 2. O
The following example shows that the assumption of Theorem 3 is essen-
tially more general than that in Theorem 2.

Example 2. Let g be the same function as that from Example 1 and let
C C [0,1] be the ternary Cantor set. Put

0,1]\ C = | (an,bn),

n=1

where (an,b,), n =1,2,..., are components of the open set [0, 1]\ C. For each
positive integer n we find a point

¢n € (an, by) such that g(c, —a,) =0.
Let

f(i)zm for xe[an’an n=12,...
n

and
f(z) =0 otherwise on R.

Observe that for every countable set A the reduced function f/(R\ A) does
not have the limit from the right hand side for any point a,, n = 1,2,....
Evidently, there is not a countable Gs-set containing the set B = {a,;n =
1,2,...}. Butif A= B and for n =1,2,,... we define

A, = Iyl[ak,mm(ak + e ck))

then the hypothesis of Theorem 3 is satisfied and the function f € Bj(P).
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Next example shows that the assumption of Theorem 3 is not a necessary
condition for the relation f € B} (P).

Example 3. Let C and (ay, b,), n = 1,2,..., be the same as those in Example
2. Find a countable set B C C'\ {an,bn;n = 1,2,...} which is dense in C.
Enumerate all points of the set B in a sequence (z,), such that z, # z,, for
n#m,n,m=1,2.... For every positive integer n find a sequence of closed
intervals I, = [Cn,m; dn,m] C (0,1), m =1,2,..., such that:

if (n,m) # (k,1) then Iy, NIy =0, k,l,m,n=1,2,..;
InmNC=0fornm=12,..;
limy, o0 Cpym = iMoo . = 25 forn =1,2,.. ..

For all positive integers n, m define a continuous function

1
fn,m : In,m - [07 7]
n
such that
1
fn,m(cn,m) = fn,m(dn,m) =0 and fn,m(In,m) = [Ov ﬁ}
Let
Frm (@) if 2 € L, mom=1,2,...
f(z) = n~! if T=1z,, n=12..

0 otherwise on R.

Observe that for any countable set A there is a point in B where the unilateral
limit of the reduced function f/(R\ A) does not exist. Since every interval
set containing B is residual in the set C, the function f does not satisfy the
assumption of Theorem 3.

But we will prove that f € Bf(P). For this for every positive integer n
define

ik () for veliy i,k<n
fn(z) = it for r=2z, i<n
0 otherwiseon R

and observe that
fn€P, and a.c. lim f, = f.

Theorem 4. A function f is the a.c. limit of a sequence of functions f, € P
if and only if it satisfies the following condition:
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(P) there is a countable set A, a sequence of closed sets A, and a sequence
of functions g, € P, n=1,2,..., such that

R= UA" and A, C Apyq1 for n=1,2,...

n=1
and

Proor. Sufficiency. For the proof of the sufficiency of condition (P) we
enumerate the set A in a sequence (a,), and for n =1,2,... we define

{ f(a;) for 1 <n

gn(z) otherwise on R.

fulz) =
Then
a.c. lim f,=f and f, €P for n=1,2,....
Necessity. Let

A= D(fn)a

(@

n=1

where D(f,) denotes the set of all discontinuity points of the function f,,
n=12...

Now, we will apply the transfinite induction.

Since f = a.c.lim,_, fn, there is a positive integer ko such that the set

By, = {x : Visk, fi(w) = f(z)}

is of the second category. Consequently, there is an open interval I, with
rational endpoints such that

IoN By, #0 and fi(z) = f(z) forall z € [\ A and i > k.

Fix an ordinal number o« > 0 and suppose that for every ordinal number § < «
there are a positive integer k3 and an open interval I3 with rational endpoints

such that
Es = (Is\A)\ |J I, #0,
v<B
fi(z) = f(z) for z € Eg and i > kg.
and

Do =R\ Ufﬁé(z).

B<a
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For each point 2 € D, there is a positive integer k(z) such that
filz) = f(z) for i > k(x).

By Baire’s category theorem there is a positive integer k, such that the set
F, ={x € Dy;k(z) = ku}

is of the second category in D,. So, there is an open interval I, with rational
endpoints such that

Do NIy #0
and

filz) = f(z) for x € E, and i > k,.

Let ag be the first ordinal number o with E, = @. Since the family of all in-
tervals with rational endpoints is countable, aq is a countable ordinal number.
Every set I, N Dy, a < ap, is an F,, set, so

I,N D, = G Fras
n=1

where all sets F}, o, n =1,2,..., @ < ag, are closed. Enumerate the set A in a
sequence (a, ), and all sets F}, o, n =1,2,..., a < ag, in a sequence (Fi, o, )i-
Forn=1,2,... let

n
A’I’L = U Fki,aw
i=1

and

g = { flay) for i<n

fmax(kal,_4.7kan) otherwise on  R.

Then

and the functions g, € P for n =1,2,... and
f=a.c. lim f,.
n—oo

So the proof is completed. O
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2 Monotone Convergence

Remark 1. [t is obvious that a function f is the limit of a pointwise converg-
ing sequence of functions f, € P if and only if there is a Baire 1 function g
and a countable set A such that

{z: f(x) # g(x)} C A}.
PrOOF. Necessity. If

fmeP, n=12,... and lim f,=f

then the set -
A= D(fn),
n=1

where D(f,,) denotes the set of all discontinuity points of f,, n =1,2,..., is
countable and the reduced function f/(R\ A) is of Baire 1 class. Consequently,
there is a Baire 1 function g : R — R such that f(z) = g(x) for all x € R\ A.

Sufficiency. Since g is of Baire 1 class, there is a sequence of continuous
functions g,, n = 1,2,..., such that g = lim,, o gn. Let A ={a1,...,an,...}
and forn =1,2,... let

(@) = { f(ak) for E<n

gn(x) otherwise on R.

Then
fn€P for n=1,2,... and lim f, = f.

This completes the proof. O
For the monotone convergence we will prove the following theorem:

Theorem 5. A function f is the limit of a decreasing sequence of functions
fn € P if and only if there are an upper semicontinuous function g and a
countable set A such that f < g and f(x) = g(z) for all points x € R\ A.

PrOOF. Necessity. For n =1,2,... and € R we define
9n() = max(fu(e), Jim_fu(t), Tim_fa(1).
From the inequalities f < fo41 < f, it follows that f < g,41 < g, for

n=1,2,.... So there is a function g such that g, \, g with n — co. From the
definition of g, and from the inclusion f,, € P it follows that every function
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gn, n = 1,2,..., is upper semicontinuous. So, the function ¢ is also upper
semicontinuous and f < g.
Let
oo
A= D(fn).
n=1
The set A is countable. Since all functions f,, n =1,2,..., are continuous at

all points z € R\ A, we obtain
gn(x) = fo(z) for z e R\ A, n=1,2,....

Consequently,
{z:g(x) # fla)}C A

and the proof of the necessity is completed.
Sufficiency. Since g is upper semicontinuous, there is a decreasing se-

quence of continuous functions ¢g,, n = 1,2, ..., such that
g= lim g,.
n—oo
Let

A={ai,a2,...,an,...}

and forn =1,2,... let

Fal(z) = f(=) for r=ag, k<n
n\®) = gn(x) otherwise on R.
Then the functions f, € P forn =1,2,... and

fn [ with n — oco.

This completes the proof. O
Applying the last theorem to the functions f and f,, n = 1,2,..., we
obtain the dual version of Theorem 4.

Theorem 6. A function f is the limit of an increasing sequence of functions
fn € P if and only if there are a lower semicontinuous function g and a
countable set A such that f > g and

{z: f(z) # g(x)} C A.

For the monotone a.c. convergence we have the following theorems:
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Theorem 7. There are functions f and f, € P, n = 1,2,..., such that
f=a.clim, . f, and f, / f withn — oo and such that for each decreasing
sequence of functions h, € P, n=1,2,..., the relation f = a.c.lim,,_ h,, is
false.

PrOOF. We conserve all notations from Example 3. Let f be the function
from Example 3. Then f is the a.c. limit of the sequence of the functions
fn, m = 1,2, ..., defined in Example 3 and belonging to P. As an upper
semicontinuous function f is the limit of a decreasing sequence of continuous
functions (so, belonging to P).

Suppose, to the contrary that there is a decreasing sequence of functions
hp,n=1,2,..., with a.c.lim,_, h,, = f. Since h,, > f for n =1,2,..., for
all n,m = 1,2,... the inequality h,, > f,, is true. There are an open interval
K, a countable set F, and a positive integer k such that

KNnC#0 and hi(z) =0 for z€ (KNC)\ E and i > k.

Let m > k be a positive integer with z,, € K N C. In every interval I, j,
Jj=1,2,..., there is a point wy,, ; € I, ; at which f(un, ;) = % Consequently,

Since

and 2z, is a bilateral accumulation point of the set K N(C'\ E), the function hy
has not at least one unilateral limit at z,,. So it is not in P and the obtained
contradiction proves our theorem:. O

Theorem 8. Let f be a function. Suppose that there are a countable set A,
a sequence of closed sets A, and a sequence of functions g, € P with g, > f
(gn < f), n=1,2,..., such that

R = UAn and A, C Apyq for n=1,2,...

n=1

and

gn/(An\ A) = f/(A,\A) for n=1,2,....

Then there is a decreasing (increasing) sequence of functions h, € P, n =
1,2,..., such that f = a.c.lim,,_ o hy,.
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ProoOF. We will consider only the first case where g, > f, since the case
where g, < f is analogous.
Let A ={a1,az2,...,an,...} and forn =1,2,... let

ho(z) = f(ai) for 1<n
" min(gi(x),...,gn(x)) otherwiseon R.
Then the sequence of functions h,, € P satisfies all requirements and the proof
is completed. O
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