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THE HAUSDORFF DIMENSION AND
MEASURE OF SOME CANTOR SETS

Abstract

It will be shown that the density formula of [3] is proved by new
method. As an application, the Hausdorff dimensions of and the Haus-
dorff measures of some Cantor-type sets will be evaluated.

1 Basic concepts

In this paper we denote by M a compact interval on the real line, and we
always assume the sets involved to be in M .

The following concepts and their related properties in this section can be
found in [1] [2] [3].

Definition 1.1. (a) A non-negative function of sets µ is called a measure
on M if (i) µ(φ) = 0, and (ii) µ(E) ≤

∑∞
k=1 µ(Ek), whenever E ⊆ ∪∞k=1Ek.

Here we don’t draw a clear distinction between measure and outer measure as
in [2] and [3].

(b) A set A is µ-measurable if for each set E,µ(E) = µ(E∩A)+µ(E\A).
(c) A measure µ is regular if for each set E there exists a µ-measurable

set A such that E ⊆ A and µ(E) = µ(A).
(d) A measure µ is Borel regular if every Borel set is µ-measurable and

for each set E there exists a Borel set A such that E ⊆ A and µ(E) = µ(A).
(e) A measure µ is a Radon measure if µ is Borel regular and µ(P ) <∞

for each compact set P .

Definition 1.2. Let E be a set. A sequence of closed intervals {Ii} is called
a δ-cover of E if E ⊂ ∪iIi and 0 < |Ii| ≤ δ for each i, where |I| is the length
of interval I. The s-dimensional Hausdorff measure of E is defined by

Hs(E) = lim
δ→0
Hs(E) = lim

δ→0
inf

∑
i
|Ii|s,
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where the infimum is taken over all δ-covers {Ii} of E.
The Hausdorff dimension of E is defined by

dimH E = sup{s > 0 : Hs(E) =∞}(= inf{s > 0 : Hs(E) = 0}).

It is not difficult to verify that Hs is a regular metric measure, so is a
regular Borel measure.

Definition 1.3. A collection of sets M is called a V itali class of E if for
each x ∈ E and δ > 0 there exists U ∈ M with x ∈ U and 0 < |U |≤ δ where
|U | is the diameter of U .

Theorem 1.4 (Vitali covering theorem). Let M = {I} be a Vitali class
of closed intervals of E. Then we may select a (finite or countable) non-
overlapping sequence {Ii} from M such that either

∑
i |Ii|

s =∞ or Hs(E\∪i
Ii) = 0.

2 The Density Formula

In this section the symbol µ is always assumed to be a finite Radon measure
and E a Borel subset of M . The lower inverse s-density of µ at x is defined
by

DµHs(x) = lim
δ→0

inf
|I|s

µ(I)
,

where the infimum is taken over all closed intervals I with x ∈ I and |I| < δ.
When µ(I) = 0, define DµHs(x) =∞. We can show that the function DµHs
is a Borel function.

Lemma 2.1. If DµHs(x) ≥ c > 0 for each x ∈ E, then Hs(E) ≥ c µ (E).
Thus dimHE ≥ s.

Proof. Let c∗ > 0 with c∗ < c. Since DµHs(x) > c∗ for each x ∈ E, there
exists a positive function δ(x) on E such that |I|

s

µ(I) > c∗ for any I satisfying
x ∈ I and |I| ≤ δ(x). Define, for n = 1, 2, . . . , En = {x ∈ E : δ(x) ≥ 1

n}, we
have En ⊆ En+1, n = 1, 2, . . . , and E = ∪nEn. Let ε > 0 and fix n. Take a
1
n -cover {Ii} of En such that Hs(En) ≥

∑
i |Ii|

s + ε, so

Hs(En)− ε ≥
∑
i

|Ii|s > c∗
∑
i

µ(Ii) ≥ c∗µ(En).

Making ε→ 0, we have

Hs(E) ≥ Hs(En) ≥ c∗µ(En)
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for all n. Since µ is a regular measure, we have

Hs(E) ≥ c∗ lim
n→∞

µ(En) = c∗µ(E).

Let c∗ → c, then the Lemma follows.

Lemma 2.2. If DµHs(x) ≤ c with c > 0 for each x ∈ E, then Hs(E) ≤
c µ(E). Thus, dimHE ≤ s.

Proof. Let ε > 0 and c∗ > c be given. Since µ is a Radon measure, there
exists an open set G such that E ⊆ G and µ(G) < µ(E) + ε. Let n be a
positive integer and let

Mn = {I : I ⊆ G, |I| ≤ 1
n
and |I|s < c µ(I)}.

Since DµHs(x) < c∗ for each x ∈ E, Mn is a Vitali class of E. By the Vitali
covering theorem, there is a non-overlapping subsequence {Ini } of Mn such
that

Hs(E\ ∪i Ini ) = 0

because of
∑
i |Ini |s <

∑
i c
∗ µ(Ini ) < c∗ µ(M) <∞. Let

Z = ∪n(E\ ∪i Ini ).

Then Hs(Z) = 0 and Hs(E\Z) = Hs(E). By the fact that

E\Z = ∩n(E\(E\ ∪i Ini )) ⊂ ∩n(∪iIni ),

we have

Hs(E) = Hs(E\Z) ≤ lim
n→∞

Hs1
n

(∪iIni )

≤ lim
n→∞

∑
i

|Ini |s ≤ lim
n→∞

c∗
∑
i

µ(Ini )

≤ c∗ µ(G) ≤ c∗ (µ(E) + ε).

Let ε→ 0 and c∗ → c,it follows that

Hs(E) ≤ c µ(E).

Corollary. Let Z = {x ∈ E : DµHs(x) = 0}, then Hs(Z) = 0.
Proof. Write Ei = {x ∈ E : DµHs(x) < i−1}. Then Z ⊆ ∩∞i=1Ei. For each i,
by Lemma 2.2, we have

Hs(Ei) ≤ i−1µ(Ei) ≤ i−1µ(M),

and this gives Hs(Z) = 0.
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Theorem 2.3. If DµHs(x) <∞ for each x ∈ E, then

Hs(E) =
∫
E

DµHs dµ.

Proof. Let Z = {x ∈ E : DµHs(x) = 0}. Then Hs(Z) = 0 by the Corollary
of Lemma 2.2, and Hs(E) = Hs(E+), where E+ = {x ∈ E : DµHs(x) > 0}.
Fix 1 < t < ∞. Let Em = {x ∈ E : tm ≤ DµHs(x) < tm+1}, then E+ =
∪∞m=−∞Em. Since

Hs(E+) =
∑
m

Hs(Em) ≤
∑
m

tm+1µ(Em) (by Lemma 2.2)

= t
∑
m

tmµ(Em) ≤ t
∑
m

∫
Em

DµHs dµ = t

∫
E+

DµHs dµ

and

Hs(E+) =
∑
m

Hs(Em) ≥
∑
m

tmµ(Em) (by Lemma 2.1)

=
1
t

∑
m

tm+1µ(Em) ≥ 1
t

∑
m

∫
Em

DµHs dµ =
1
t

∫
E+

DµHs dµ,

then by sending t→ 1+, we have

Hs(E) = Hs(E+) =
∫
E+

DµHs dµ =
∫
E

DµHs dµ.

3 Some Cantor Type Sets

(1) A Simple Cantor set. Let 0 < s ≤ 1, nk be a sequence of positive integers
with nk ≥ 2 for each k, {ck} be a sequence of positive real numbers with
nkc

s
k = 1 for each k. Let E0 = I(0) be the real interval [0,1]. Suppose Ek

has been defined and consists of ik equal closed intervals I(k)
i , i = 1, 2, . . . , ik.

Then Ek+1 is obtained from Ek by removing, from each I(k)
i , (nk+1− 1) equal

open intervals G(k+1)
i leaving nk+1 closed intervals each of which with length

ck+1|I(k)
i |. Let

E =
∞⋂
k=0

Ek =
∞⋂
k=0

ik⋃
i=1

I
(k)
i ,
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it is called a simple Cantor set. We shall show that dimH E = s and Hs(E) =
1.

These intervals I(k)
i , i = 1, 2, . . . , ik, are called basic intervals of k′th

stage which are generally written by I(k) since their length are equal, and we
have ik = n1n2 . . . nk by the construction. Similarly, all G(k)

i , i = 1, 2, . . . , ik−
ik−1, are called the gap of k′th stage which are generally written by G(k)

since their length are equal. Now define a function µ of sets on [0,1] by
µ(I(k)) = |I(k)|s. Then we extend µ to a mass distribution on [0,1] whose
support is E since µ(I(k)) = | I

(k+1)

ck+1
|s = c−sk+1|I(k+1)|s = nk+1µ(I(k+1)) (cf.

Proposition 1.7 of [2]). Clearly µ is a Radon measure and µ(E) = |[0, 1]|s = 1.
In the following we shall show DµHs(x) = 1 for each x ∈ E, then by the
Theorem 2.3 we have

Hs(E) =
∫

[0,1]

DµHsdµ = µ([0, 1]) = 1

and dimH E = s.
Firstly, for each x ∈ E there is a sequence {I(k)

jk
} of basic intervals such

that x ∈
⋂∞
k=1I

(k)
jk

. Since |I(k)
jk
| → 0(k → ∞) and |I(k)

jk
|s = µ(I(k)

jk
) we have

DµHs(x) ≤ 1 for x ∈ E.
Secondly, in order to prove DµHs(x) ≥ 1, we have to show that |I|s ≥ µ(I)

for any interval I which contains x ∈ E. We draw up two steps to this end.
(i) A closed interval I is called a near basic interval if its lift end point

coincides with the lift end points of some basic intervals and its right end point
coincides with the right end points of some basic intervals. For a near basic
interval, we always combine the basic intervals into bigger (of lower stage)
basic intervals if possible, so the basic intervals which contained in a near
basic interval are finite and possessed of definite type. Now we should prove
that |I|s ≥ µ(I) for any near basic intervals by using the induction for the
number of basic intervals in I. When I contains only one basic interval , I
itself is the basic interval, so |I|s = µ(I). Now suppose that I contains n basic
intervals, and is contained in a basic interval of (k − 1)’th stage rather than
in a basic interval of k’th stage. Then I is in one of the three cases: (a) I
contains exactly n basic intervals of k’th stage, so |I| = n|I(k)|+ (n− 1)|G(k)|,
n ≤ nk; (b) I = I1∪ I2, where |I2| = m|I(k)|+m|G(k)|, m < nk, and I1, which
is contained in a basic interval of k’th stage, is a near basic interval on one
of the side of I2 ; (c) I = I1 ∪ I2 ∪ I3, where |I2| = m|I(k)| + (m + 1)|G(k)|,
m < nk − 1, and I1 and I3,which are contained in some basic intervals of k’th
stage, are the near basic intervals on two sides of I2 respectively . For the
case (a), we consider the function f(x) = (x|I(k)|+ (x− 1)|G(k)|)s − x|I(k)|s.
Since f ′′(x) < 0, x ∈ [1, nk], f(x) is convex. Again since f(1) = f(nk) = 0, we
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have f(x) ≥ 0, x ∈ [1, nk], that is |I|s ≥ n|I(k)|s = µ(I). For the case (b), we
consider the function g(x) = (m|I(k)|+m|G(k)|+x|I(k)|)s−m|I(k)|s−(x|I(k)|)s.
By (a), we have g(0) > 0, g(1) ≥ 0. And since g′(x) < 0, x ∈ (0, 1], g(x) ≥ 0,
x ∈ [0, 1], we have |I|s ≥ m|I(k)|s+ |I1|s. We have inductively |I1|s ≥ µ(I1), so
|I|s ≥ µ(I1)+µ(I2) = µ(I). For the case (c), we consider the function h(x, y) =
(m|I(k)|+ (m+ 1)|G(k)|+x|I(k)|+ y|I(k)|)s−m|I(k)|s− (x|I(k)|)s− (y|I(k)|)s.
By (b), we have h(x, 0) > 0, h(x, 1) ≥ 0, x ∈ [0, 1]. And since h′y(x, y) < 0, 0 ≤
x, y ≤ 1, h(x, y) ≥ 0, 0 ≤ x, y ≤ 1, we have |I|s ≥ m|I(k)|s + |I1|s + |I3|s. We
have inductively |I1|s ≥ µ(I1), |I3|s ≥ µ(I3), so |I|s ≥ µ(I1) + µ(I2) + µ(I3) =
µ(I).

(ii) Now for any x ∈ E and any interval I with x ∈ I, we can assume
that the two end points of I belong to E, otherwise we will contract I without
decrease |I|

s

µ(I) . For this I, we take a sequence {Ik} of near basic intervals such
that Ik ⊂ I and limk→∞ Ik = I. By the continuity of the power function xs

and the measure µ, we have |I|
s

µ(I) = limk→∞
|Ik|s
µ(Ik)

. Since |Ik|s ≥ µ(Ik) for each
k, |I|s ≥ µ(I). Thus DµHs(x) ≥ 1.

Now we have proved DµHs(x) = 1 for any x ∈ E and the conclusion
follows.

(2) A homogeneous Cantor set. Let {nk} be a sequence of positive integers
with nk ≥ 2 for each k, {ck} be a sequence of positive numbers with nkck ≤ 1
for each k. Let E0 = I(0) be the real interval [0,1]. Suppose that Ek has
been defined and consists of ik equal closed intervals I(k)

i , i = 1, 2, . . . , ik.
We can obtain Ek+1 from Ek by removing, from each I

(k)
i , (nk+1 − 1) equal

open intervals G(k+1)
j leaving nk+1 closed intervals each of which with length

ck+1|I(k)
i |. Let

E =
∞⋂
k=0

Ek =
∞⋂
k=0

ik⋃
i=1

I
(k)
i ,

it is called a homogeneous Cantor set.
As same as in the simple Cantor set, for each positive integer k, ik =

n1n2 . . . nk; all basic intervals I
(k)
i of k’th stage, i = 1, 2, . . . , ik, each of

which has equal length, are written by I(k); all gap G
(k)
i of k’th stage, i =

1, 2, . . . , ik − ik−1, each of which has equal length, are written by G(k). Let
sk = log(n1n2...nk)

− log(c1c2...ck)
, s = limk→∞ inf sk, we shall show that dimH E = s.

We define a function µ of sets on [0,1] by µ(I(0)) = 1, µ(I(k)) =
(n1n2 . . . nk)−1, k = 1, 2, . . ., and then extend µ to a mass distribution on
[0,1] whose support is E since µ(I(k)) = nk+1µ(I(k+1)). By taking notice
of |I(k)| = c1c2 . . . ck and n1n2 . . . nk(c1c2 . . . ck)sk = 1, we have µ(I(k)) =
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|I(k)|sk .
Let t > s. Then there is a sequence {jk} of natural numbers such that

sjk < t for each k. For any x ∈ E there is a sequence {I(jk)
n(jk)
} of basic

intervals such that x ∈ ∩∞k=1I
(jk)
n(jk)

, where n(jk) ∈ {1, 2, . . . , ijk}. By

DµHt(x) ≤ lim
k→∞

|I(jk)|t

µ(I(jk))
≤ lim
k→∞

|I(jk)|sjk
µ(I(jk))

= 1

and Lemma 2.2, we have dimH E ≤ t. Making t→ s, we have dimH E ≤ s.
In order to prove dimH E ≥ s, we only need to prove dimH E ≥ s for any

s ≤ s. We define the near basic interval as in (1), and by Lemma 2.2 we
need only to prove |I|s ≥ dµ(I) for any sufficiently small near basic intervals
I, where d is a constant. Since s < s, there is a natural number N such
that sk > s for any k ≥ N . Let I be a sufficiently small near basic interval
which is contained in a basic interval of (k − 1)′th stage rather than in a
basic interval of k’th stage, where k > N . Then I = I1 ∪ G(k) ∪ I2, where
I1 and I2 are near basic intervals on two sides of G(k). Let the lowest stage
of the basic intervals contained in I1 be of p’th stage. Then p ≥ k, so we
can suppose that I1 contains m p’th stage basic intervals and a near basic
interval contained in some I(p). Write I∗, the near basic interval which is
contained in I1 and has m basic intervals of p’th stage. Considering function
f(x) = (x|I(p)| + (x − 1)|G(p)|)s − x|I(p)|sp and noticing s < min{sp, sp−1},
we can prove f(x) ≥ 0, x ∈ [1, np], by the same method as in (1). Therefore
we have |I∗|s ≥ m|I(p)|sp = mµ(I(p)) = µ(I∗), consequently |I1|s ≥ |I∗|s ≥
1
2 (m + 1)µ(I(p)) ≥ 1

2µ(I1). For the same reason we have |I2|s ≥ 1
2µ(I2), and

then |I|s ≥ 1
2 (|I1|s + |I2|s) ≥ 1

4 (µ(I1) + µ(I2)) = 1
4µ(I).

(3) A perturbed Cantor set. Let {ckj}k (j = 1, 2) be two sequences of
positive numbers, satisfying ck1 + ck2 < 1 for each k and limk→∞ inf ckj > 0
for j = 1, 2. We construct, inductively, a sequence {Ek} of sets : let E0 = Iφ =
[0, 1]; suppose Ek = ∪σ∈{1,2}kIσ has been defined, where Iσ is a closed interval
and σ ∈ {1, 2}k is a mapping σ : {1, 2, . . . , k} → {1, 2}; for each Iσ, which
is called a basic interval of k’th stage, we obtain Iσ,j by removing an open
interval Gσ from Iσ such that |Iσ,j ||Iσ| = ck+1,j , where (σ, j) ∈ {1, 2}k+1 such
that (σ, j)(t) = σ(t) whenever t ∈ {1, 2, . . . , k} and (σ, j)(k + 1) = j, j = 1, 2,
then Ek+1 = ∪σ∈{1,2}k+1Iσ. Let

E =
∞⋂
k=0

Ek,

it is called a perturbed Cautor set. Let sk be a real number satisfying∏k
i=1(cski1 + cski2 ) = 1 and let s = limk→∞ inf sk. We shall prove dimH E = s.
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Let s ∈ (0, 1]. Define a function µ of sets on [0,1] such that µ(Iφ) = 1 and

µ(Iσ) =
|Iσ|s∏k

i=1(csi1 + csi2)
(∗)

for each σ ∈ {1, 2}k, k = 1, 2, . . . , then extend µ to a mass distribution on [0,1]
whose support is E because of

2∑
j=1

µ(Iσ,j) =
2∑
j=1

|Iσ,j |s∏k+1
i=1 (csi1 + csi2)

=
(csk+1,1 + csk+1,2)|Iσ|s∏k+1

i=1 (csi1 + csi2)
=

|Iσ|s∏k
i=1(csi1 + csi2)

= µ(Iσ).

Let s > s, s is presented in (∗). Then there is a sequence {jk} of natural
numbers such that sjk < s for each k. For any x ∈ E there is a sequence
{Iσk : σk ∈ {1, 2}jk} of basic intervals such that x ∈ ∩∞k=1Iσk . Since |Iσk | →
0(k → ∞) and |Iσk |

s

µ(Iσk ) =
∏ik
i=1(csi1 + csi2) <

∏ik
i=1(cski1 + cski2 ) = 1, we have

DµHs(x) ≤ 1. It follows from the lemma 2.2 that dimH E ≤ s, and we have
dimH E ≤ s by making s→ s,.

In order to prove dimH E ≥ s, we only need to prove dimH E ≥ s for
any s ≤ s. As in (2), we need only to prove |I|s ≥ dµ(I) for any sufficiently
small near basic intervals (it is defined as in (1)), where d is a constant. Since
limk→∞ inf ckj > 0, j = 1, 2, there are a positive number c and a natural
number N∗ such that ckj ≥ c for each k ≥ N∗ and j = 1, 2. Let s < s, s
is presented in (∗). Then there is a natural number N such that sk > s for
any k ≥ N , so we have |Iσ|s

µ(Iσ) =
∏k
i=1(csi1 + csi2) >

∏k
i=1(c

sik
i1 + c

sik
i2 ) = 1 for

any basic intervals of k’th stage Iσ, we may require N ≥ N∗ if necessary. Let
I, a near basic interval, be contained in a basic interval of (k − 1)’th stage,
rather than in a basic interval of k’th stage. Then I = I1 ∪ Gσ ∪ I2, where
σ ∈ {1, 2}k−1, I1 and I2 are near basic intervals contained in Iσ,1 and Iσ,2
respectively. Let the lowest stage of the basic intervals contained in I2 be p′th
stage. Then p ≥ k, and I2 = Iσ∗,1, or Iσ∗,1 ∪ Gσ∗ ∪ I∗, where σ∗ ∈ {1, 2}p−1

and I∗ is a near basic interval contained in Iσ∗,2. By |I2|s ≥ |Iσ∗,1|s ≥ ds|Iσ∗ |s

and µ(I2) ≤ µ(Iσ∗), we have |I2|s
µ(I2)

≥ ds|Iσ∗ |s
µ(Iσ∗ ) ≥ ds. Similarly, we can prove

|I1|s
µ(I1)

≥ ds, therefore |I|
s

µ(I) ≥
1
2d
s, and the conclusion follows.

Remark 3.1. The papers [7] and [6] have discussed the homogeneous Cantor
set and the perturbed Cantor set respectively, but the methods we handle here
are more simple and direct.



The Hausdorff Dimension and Measure of Some Cantor Sets 807

References

[1] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985.

[2] K. J. Falconer, Fractal geometry, John Wiley and Sons, 1990.

[3] L. C. Evens and R. F. Gariepy, Measure theory and fine properties of
function, CRC Press. Inc., 1992.

[4] B. S. Thomson, Derivates of interval function, Memoirs of the Amer. Math.
Soc. 452, 1991.

[5] G. A. Edgar, Fine variation and fractal measures, Real Analysis Exchange
20, 1994/1995.

[6] I. S. Baek, Dimensions of the perturbed Cantor set, Real Analysis Ex-
change, 19, No.1, 1993/1994.

[7] D. J. Feng . . . [et al], On the net-measure properties and applications of
homogeneous Cantor set, Advances in Natural Science, Vol.6, No.6, 1996(in
Chinese).



808 Shipan Lu


