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Ck,1 FUNCTIONS AND RIEMANN
DERIVATIVES

Abstract

In this work we provide a characterization of Ck,1 functions of one
real variable (that is, k times differentiable with locally Lipschitz k-
th derivative) by means of (k + 1)-th divided differences and Riemann
derivatives. In particular we prove that the class of Ck,1 functions is
equivalent to the class of functions with bounded (k + 1)-th divided
difference. From this result we deduce a Taylor’s formula for this class
of functions and a characterization through Riemann derivatives.

1 Introduction

In this paper we give necessary and sufficient conditions for a real function
of one real variable to be of class Ck,1; that is, k times differentiable with
locally Lipschitz k-th derivative. The conditions are on the boundedness of
the (k + 1)-th divided differences and of the (k + 1)-th Riemann derivatives.

The study of the class of Ck,1 functions has been renewed since the work
of Hiriart-Urruty, Strodiot and Hien Nguyen [7] who introduced the concept
of generalized Hessian matrix for C1,1 functions proving also second order
optimality conditions for nonlinear constrained problems. Later, Luc [10],
considering the class of Ck,1 functions, extended Taylor’s formula, proved
higher order optimality conditions when derivatives of order greater than k do
not exist and provided characterizations of generalized convex functions.

In this section we recall some concepts which are fundamental for under-
standing the proofs of the results.
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1.1 Peano and Riemann Derivatives

In the following we will consider a function f : (a, b)→ R. For such a function
we let

∆kf(x;h) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ ih− 1

2
kh).

Definition 1.1. The k-th Riemann derivative of f at a point x ∈ (a, b) is
defined as Dkf(x) = limh→0 ∆kf(x;h)/hk, if this limit exists.

Similarly we can define differences

δkf(x;h) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ ih).

The corresponding k-th Riemann-type derivative is denoted by dkf(x) and is
defined as dkf(x) = limh→0 δkf(x;h)/hk.

We will also consider differences ∆̃kf(x;h) defined recursively by

∆̃1f(x;h) = f(x+ h)− f(x), ∆̃kf(x;h) = ∆̃k−1f(x; 2h)− 2k−1∆̃k−1f(x;h).

As observed in [11], we have

∆̃kf(x;h) = akf(x+ 2k−1h) + ak−1f(x+ 2k−2h) + · · ·+ a1f(x+ h) + a0f(x),

where, for any fixed k, aj depends only on j (j = 0, 1, . . . k − 1) and ak = 1.

Lemma 1.1. [11] There are constants C0, C1, . . . , C2k−1−k such that

∆̃kf(x;h) =
2k−1−k∑
i=0

Ci∆kf(x+
1
2
kh+ ih;h).

The proof of the following lemma is straightforward from the previous
result.

Lemma 1.2. If there exist neighborhoods U of the point x0 and V of the origin
such that ∆kf(x;h)

hk is bounded on U × V \{0}, then there exist neighborhoods

U ′ of x0 and V ′ of the origin such that ∆̃kf(x;h)
hk is bounded on U ′ × V ′\{0}.

The proof of the following lemma is similar to that of Lemma 6 in [11].

Lemma 1.3. Assume that f is bounded in a neighborhood of the point x0.
If there exist neighborhoods U of the point x0 and V of the origin such that
∆̃kf(x;h)

hk
is bounded on U × V \{0}, then also

∆̃k−1f(x;h)
hk−1

is bounded on

U × V \{0}.
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Proof. From the hypotheses we obtain that there exists a number δ > 0 such
that ∀x ∈ U and ∀h with |h| ≤ δ, h 6= 0, the following inequalities hold.∣∣∣∆̃k−1f(x;h)− 2k−1∆̃k−1f(x;h/2)

∣∣∣ ≤M |h/2|k,∣∣∣∆̃k−1f(x;h/2)− 2k−1∆̃k−1f(x;h/4)
∣∣∣ ≤M |h/4|k, . . .∣∣∣∆̃k−1f(x;h/2n−1)− 2k−1∆̃k−1f(x;h/2n)
∣∣∣ ≤M |h/2n|k.

Multiplying these inequalities by 1, 2k−1, 22(k−1), . . . , 2(n−1)(k−1) respectively,
we obtain by addition∣∣∣∆̃k−1f(x;h)− 2n(k−1)∆̃k−1f(x;h/2n)

∣∣∣ ≤ 2M |h/2|k,

and hence ∣∣∣∣∣2n(k−1)∆̃k−1f(x;h/2n)
hk−1

∣∣∣∣∣ ≤M ′
for 1

2δ ≤ |h| ≤ δ, by using the boundedness of f . Hence, writing ξ = h/2n, we
have ∣∣∣∣∣∆̃k−1f(x; ξ)

ξk−1

∣∣∣∣∣ ≤M ′ for δ/2n+1 ≤ |ξ| ≤ δ/2n, n = 0, 1, . . . ,

and the lemma is established, since n can be chosen arbitrarily.

Definition 1.2. If there exist numbers f1(x), . . . , fk(x) such that

f(x+ h) = f(x) + f1(x)h+
1
2
f2(x)h2 + · · ·+ 1

k!
fk(x)hk + o(hk),

where o(hk)/hk → 0 as h→ 0, then f is said to have a k-th Peano derivative
at x. The number fk(x) is called the k-th Peano derivative of f at x.

We say that f admits k-th Peano derivative on an interval when it admits
k-th Peano derivative at any point of this interval.

It is well known that the existence of the ordinary k-th derivative of f at
x, f (k)(x), implies the existence of fk(x) and this in turn implies the existence
of Dkf(x).

Lemma 1.4. [11] If fk(x) exists, then so does limh→0
∆̃kf(x;h)

hk
and there

exists a number λk, depending only on k, such that λk limh→0
∆̃kf(x;h)

hk
=

fk(x).
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For a survey on Riemann and Peano derivatives one can see for instance
[2], [6] and [12]. Further properties of Peano and Riemann derivatives are
given in [3], [4] and [5]. In this paper we will need the following result.

Theorem 1.1. [12] If fk is bounded (upper or lower) on an interval, then
f (k) exists on this interval and f (k) = fk.

1.2 Standard Mollifiers

The function φ, defined by

φ(x) =


C exp( 1

x2−1 ), if |x| < 1

0, if |x| ≥ 1

is C∞(R) and we can choose the constant C ∈ R such that
∫

R φ(x) dx = 1.

Definition 1.3. Let ε > 0. The functions φε(x) =
φ(xε )
ε

are called standard
mollifiers.

Definition 1.4. Let f : (a, b) → R. We say that f ∈ Ck0 ((a, b)) if f ∈
Ck((a, b)) and

sptf = {x ∈ (a, b) : f(x) 6= 0} ⊂ (a, b).

Theorem 1.2. [1] The functions φε are C∞(R) and satisfy

i)
∫

R φε(x )dx = 1

ii) sptφε
⊂ B(0, ε).

For a bounded function f : (a, b) → R, and ε > 0 we define functions
fε by the formula fε(x) =

∫ b
a
φε(y − x)f(y) dy. Observe that fε(x) = 0 if

x ∈ R\[a− ε, b+ ε] and that fε ∈ C∞(R).

Theorem 1.3. [1] Suppose that f ∈ L1
loc(a, b). Then for a.e. x ∈ (a, b) we

have fε(x)→ f(x) as ε→ 0. If f ∈ C((a, b)), then the convergence is uniform
on compact subsets of (a, b).

Theorem 1.4. [9] Let [c, d] ⊂ (a, b). Then ∃ ε0 > 0 such that ∀ε ≤ ε0 and
∀x ∈ [c, d] the function y → φε(x− y) is C∞0 ((a, b)).
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2 The Main Results

Definition 2.1. A function f : (a, b)→ R is locally Lipschitz at x0 when there
exists a constant K and a neighborhood U of x0 such that |f(x)− f(y)| ≤
K |x− y|, whenever x, y ∈ U.
Definition 2.2. A function f : (a, b) → R is of class Ck,1 at x0 when f (k)

exists in a neighborhood of x0 and f (k) is locally Lipschitz at x0.

Theorem 2.1. Assume that the function f : (a, b) → R is bounded on a
neighborhood of the point x0 ∈ (a, b). Then f is of class Ck,1 at x0 if and

only if there exist neighborhoods U of x0 and V of 0 such that
∆k+1f(x;h)

hk+1
is

bounded on U × V \{0}.
Proof. i) Sufficiency: From Lemmas 1.2 and 1.3, we have that the bounded-

ness of
∆k+1f(x;h)

hk+1
on U×V \{0} implies the existence of neighborhoods U ′ of

x0 and V ′ of 0 such that
∆̃jf(x;h)

hj
are bounded on U ′×V ′\{0},∀j = 1, . . . , k.

Observe that the boundedness of
∆̃1f(x;h)

h
means that f is locally Lipschitz

at the point x0 and hence continuous in a neighborhood of x0. For every x in
a neighborhood of x0 and for ε “sufficiently small”, recalling Lemma 1.4 and
Theorem 1.4, and using the Lebesgue convergence theorem, for 1 ≤ j ≤ k we
have

f (j)
ε (x) = (−1)j

∫ b

a

φ(j)
ε (y − x)f(y) dy

= (−1)jλj
∫ b

a

lim
h→0

∆̃jφε(y − x;h)
hj

f(y) dy

= (−1)jλj
∫ b

a

lim
h→0

∑j
i=1 aiφε(y − x+ 2i−1h) + a0φε(y − x)

hj
f(y) dy

= (−1)jλj lim
h→0

∫ b

a

∑j
i=1 aiφε(y − x+ 2i−1h) + a0φε(y − x)

hj
f(y) dy.

Now, putting z = y + 2i−1h, we obtain∫ b

a

aiφε(y − x+ 2i−1h)
hj

f(y) dy =
∫ b+2i−1h

a+2i−1h

aif(z − 2i−1h)φε(z − x)
hj

dz.

Thus

(−1)jλj
∫ b

a

∑j
i=1 aiφε(y − x+ 2i−1h) + a0φε(y − x)

hj
f(y) dy
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=(−1)jλj
j∑
i=1

∫ b+2i−1h

a+2i−1h

aif(z − 2i−1h)φε(z − x)
hj

dz

+ (−1)jλj
∫ b

a

a0f(z)φε(z − x)
hj

dz.

For |h| < b− a
2k−1

, from Theorem 1.4 for all “sufficiently small” ε, the previous
equation is equal to

(−1)jλj
j∑
i=1

∫ b

a

aif(z − 2i−1h)φε(z − x)
hj

dz

+ (−1)jλj
∫ b

a

a0f(z)φε(z − x)
hj

dz

=(−1)jλj
∫ b

a

∆̃jf(z,−h)
hj

φε(z − x) dz = λj

∫ b

a

∆̃jf(z,−h)
(−h)j

φε(z − x) dz.

Hence we get f (j)
ε (x) = λj limh→0

∫ b
a

∆̃jf(z,h)
hj φε(z − x) dz. From the bounded-

ness of
∆̃jf(x, h)

hj
we get the existence of a constant M such that

∣∣∣f (j)
ε (x)

∣∣∣ ≤
M , for every ε “sufficiently small” and for every x in a neighborhood of x0. In
this way we established that f (j)

ε (x) is bounded (uniformly with respect to ε)
on a neighborhood of x0, ∀j = 1, . . . , k. Similarly one can prove that f (k+1)

ε (x)
is bounded on a neighborhood of x0. Hence, there exists a neighborhood Ũ of
x0 such that for x ∈ Ũ there is a sequence εn converging to 0 such that for
all j = 1, ..., k, the sequence f (j)

εn (x) converges to a limit which we denote by
αj(x). Notice that the functions αj(x), j = 1, . . . , k are bounded on Ũ .
The functions fεn(x) are of class C∞ and hence ∀x, y ∈ Ũ

fεn
(y) = fεn

(x) +
k∑
i=1

f
(i)
εn (x)
i!

(y − x)i +
f

(k+1)
εn (ξn)
(k + 1)!

(y − x)k+1,

where ξn ∈ (x, y). Recalling Theorem 1.3, taking the limit for n → +∞
it follows that f (k+1)

εn (ξn) converges to a limit which we denote by β(x, y).
Moreover

f(y) = f(x) +
k∑
i=1

αi(x)
i!

(y − x)i +
1

(k + 1)!
β(x, y)(y − x)k+1.

Observing that β(x, y) is bounded for x, y ∈ Ũ , we have that ∀x ∈ Ũ , αk(x)
is the k-th Peano derivative of f at x. From Theorem 1.1 it follows that
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αk(x) = f (k)(x),∀x ∈ Ũ . Furthermore the functions f
(k+1)
ε are bounded

uniformly with respect to ε, for ε “sufficiently small” and thus the functions
f

(k)
εn satisfy the following uniform Lipschitz condition∣∣∣f (k)

εn
(y)− f (k)

εn
(x)
∣∣∣ ≤ B |y − x| ,∀x, y ∈ Ũ .

Since f (k)
εn (x) and f

(k)
εn (y) converge to f (k)(x) and f (k)(y) respectively, we

see that f (k) is Lipschitzian on Ũ .
ii) Necessity: Assume that f is of class Ck,1 at x0. Set

∆1f(x; s1) = f(x+ s1)− f(x),

and recursively define

∆k+1f(x; s1, . . . , sk+1) = ∆kf(x+ sk+1; s1, . . . , sk)−∆kf(x; s1, . . . , sk),

where x ∈ (a, b), si ∈ R, i = 1, . . . , k + 1 and |si| is ”sufficiently small”. Ap-
plying the mean value theorem k times we get

∆k+1f(x; s1, . . . , sk+1)
sk+1sk · · · s1

=
(∆kf)′(x+ θk+1sk+1; s1, . . . , sk)

sk · · · s1

· · · = ∆1f
(k)(x+ θk+1sk+1 + · · ·+ θ2s2; s1)

s1
,

where θi ∈ (0, 1), i = 2, . . . , k + 1. Since f is of class Ck,1 at x0, there exist a
constant M , a neighborhood Ũ of x0 and a number δ > 0 such that∣∣∣∣∆k+1f(x; s1, . . . , sk+1)

sk+1sk · · · s1

∣∣∣∣ ≤M, ∀x ∈ Ũ , |si| < δ, si 6= 0, i = 1, . . . , k + 1.

Now the assertion follows easily observing that if s1 = s2 = · · · = sk+1 = h,
then ∆k+1f(x; s1, . . . , sk+1) = δk+1f(x;h) = ∆k+1f(x+ k+1

2 h;h).

Corollary 2.1. Assume that the function f is bounded on a neighborhood of
x0. Then f is of class Ck,1 at x0 if and only if there exist neighborhoods U of

x0 and V of 0 such that
δk+1f(x;h)

hk+1
is bounded on U × V \{0}.

Proof. The proof is straightforward remembering that

δk+1f(x;h) = ∆k+1f(x+
k + 1

2
h;h).
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Corollary 2.2. (Taylor’s formula). If f is of class Ck,1 at x0, there exist se-
quences εn converging to 0 and ξn ∈ (x0, x0+h) such that f (k+1)

εn (ξn) converges
to a limit β(x0, x0 + h) and

f(x0 + h) = f(x0) +
k∑
i=1

f (i)(x0)
i!

hi +
β(x0, x0 + h)

(k + 1)!
hk+1.

Proof. It is included in the proof of the previous theorem.

Theorem 2.2. Assume that f is continuous and Dk+1f(x) exists on a neigh-
borhood of the point x0. Then f is of class Ck,1 at x0 if and only if Dk+1f(x)
is bounded on a neighborhood U of x0 and there exists a function g ∈ L1(U)

such that
∣∣∣∆k+1f(x;h)

hk+1

∣∣∣ ≤ g(x), for every x ∈ U and h in a neighborhood of

0 (h 6= 0).

Proof. i) Sufficiency. Arguing in a fashion similar to that of the previous
theorem and using Lebesgue’s theorem, we obtain for ε “sufficiently small”
and for every x in a neighborhood of x0

f (k+1)
ε (x) = λk+1 lim

h→0

∫ b

a

∆k+1f(z;h)
hk+1

φε(z − x) dz

= λk+1

∫ b

a

lim
h→0

∆k+1f(z;h)
hk+1

φε(z − x) dz

= λk+1

∫ b

a

Dk+1f(z)φε(z − x) dz.

It follows that f (k+1)
ε (x) is bounded by a constant M on a neighborhood x0

(uniformly with respect to ε). Using the integral representation of divided
differences (see for instance [8], Ch. 6, Theorem 2), we have

∆k+1fε(x;h)
hk+1

=
∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tk

0

f (k+1)
ε (tk+1h+ · · ·+ t1h+ x− k

2
h) dtk+1.

For x and h in suitable neighborhoods respectively of x0 and of 0, the left
member in the previous inequality is bounded by a constant M . Sending ε to
0 and recalling Theorem 1.3, we get the existence of neighborhoods U of x0

and V of 0 such that
∆k+1f(x;h)

hk+1
is bounded on U × V \{0}. The assertion
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now follows recalling Theorem 2.1.
ii) Necessity. The proof is similar to that of the necessary condition in Theorem
2.1.

Remark 2.1. Theorems 2.1 and 2.2 extend the elementary condition which
relates the Lipschitz condition on f (k) and the boundedness of f (k+1). We
generalize this relation without requiring any differentiability hypothesis and
linking the existence and the Lipschitz behavior of f (k) to the boundedness of
∆k+1f(x, h)

hk+1
or of the Riemann derivatives.

Remark 2.2. It is well known [11] that if for every x ∈ (a, b), ∆k+1f(x, h) =
O(hk+1), then fk+1 exists a.e. x ∈ (a, b). In Theorem 2.1, under the stronger

hypothesis that
∆k+1f(x, h)

hk+1
is bounded on a rectangle as a function of x and

h, we prove that f (k) exists on an interval and furthermore is Lipschitz.

Remark 2.3. Conditions similar to those of Theorem 2.2, expressed in terms
of dk+1f(x) can be proved analogously.
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