Davide La Torre and Matteo Rocca, "Bocconi" University of Milan, Institute of Quantitative Methods, viale Isonzo, 25, 20100, Milano, Italy. e-mail: latorre@mat.unimi.it and matteo.rocca@uni-bocconi.it

$C^{k,1}$ FUNCTIONS AND RIEMANN DERIVATIVES

Abstract

In this work we provide a characterization of $C^{k,1}$ functions of one real variable (that is, k times differentiable with locally Lipschitz k-th derivative) by means of (k+1)-th divided differences and Riemann derivatives. In particular we prove that the class of $C^{k,1}$ functions is equivalent to the class of functions with bounded (k+1)-th divided difference. From this result we deduce a Taylor's formula for this class of functions and a characterization through Riemann derivatives.

1 Introduction

In this paper we give necessary and sufficient conditions for a real function of one real variable to be of class $C^{k,1}$; that is, k times differentiable with locally Lipschitz k-th derivative. The conditions are on the boundedness of the (k+1)-th divided differences and of the (k+1)-th Riemann derivatives.

The study of the class of $C^{k,1}$ functions has been renewed since the work of Hiriart-Urruty, Strodiot and Hien Nguyen [7] who introduced the concept of generalized Hessian matrix for $C^{1,1}$ functions proving also second order optimality conditions for nonlinear constrained problems. Later, Luc [10], considering the class of $C^{k,1}$ functions, extended Taylor's formula, proved higher order optimality conditions when derivatives of order greater than k do not exist and provided characterizations of generalized convex functions.

In this section we recall some concepts which are fundamental for understanding the proofs of the results.

Key Words: Riemann derivatives, divided differences, Lipschitz functions Mathematical Reviews subject classification: 26A24, 26A16 Received by the editors October 26, 1999

1.1 Peano and Riemann Derivatives

In the following we will consider a function $f:(a,b)\to\mathbb{R}$. For such a function we let

$$\Delta_k f(x; h) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(x+ih - \frac{1}{2}kh).$$

Definition 1.1. The k-th Riemann derivative of f at a point $x \in (a,b)$ is defined as $D_k f(x) = \lim_{h\to 0} \Delta_k f(x;h)/h^k$, if this limit exists.

Similarly we can define differences

$$\delta_k f(x; h) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(x+ih).$$

The corresponding k-th Riemann-type derivative is denoted by $d_k f(x)$ and is defined as $d_k f(x) = \lim_{h\to 0} \delta_k f(x;h)/h^k$.

We will also consider differences $\Delta_k f(x;h)$ defined recursively by

$$\tilde{\Delta}_1 f(x;h) = f(x+h) - f(x), \ \tilde{\Delta}_k f(x;h) = \tilde{\Delta}_{k-1} f(x;2h) - 2^{k-1} \tilde{\Delta}_{k-1} f(x;h).$$

As observed in [11], we have

$$\tilde{\Delta}_k f(x;h) = a_k f(x+2^{k-1}h) + a_{k-1} f(x+2^{k-2}h) + \dots + a_1 f(x+h) + a_0 f(x),$$

where, for any fixed k, a_i depends only on j (j = 0, 1, ..., k - 1) and $a_k = 1$.

Lemma 1.1. [11] There are constants $C_0, C_1, \ldots, C_{2^{k-1}-k}$ such that

$$\tilde{\Delta}_k f(x;h) = \sum_{i=0}^{2^{k-1}-k} C_i \Delta_k f(x + \frac{1}{2}kh + ih; h).$$

The proof of the following lemma is straightforward from the previous result.

Lemma 1.2. If there exist neighborhoods U of the point x_0 and V of the origin such that $\frac{\Delta_k f(x;h)}{h^k}$ is bounded on $U \times V \setminus \{0\}$, then there exist neighborhoods U' of x_0 and V' of the origin such that $\frac{\tilde{\Delta}_k f(x;h)}{h^k}$ is bounded on $U' \times V' \setminus \{0\}$.

The proof of the following lemma is similar to that of Lemma 6 in [11].

Lemma 1.3. Assume that f is bounded in a neighborhood of the point x_0 . If there exist neighborhoods U of the point x_0 and V of the origin such that $\frac{\tilde{\Delta}_k f(x;h)}{h^k}$ is bounded on $U \times V \setminus \{0\}$, then also $\frac{\tilde{\Delta}_{k-1} f(x;h)}{h^{k-1}}$ is bounded on $U \times V \setminus \{0\}$.

PROOF. From the hypotheses we obtain that there exists a number $\delta > 0$ such that $\forall x \in U$ and $\forall h$ with $|h| \leq \delta, h \neq 0$, the following inequalities hold.

$$\left| \tilde{\Delta}_{k-1} f(x;h) - 2^{k-1} \tilde{\Delta}_{k-1} f(x;h/2) \right| \leq M|h/2|^k,$$

$$\left| \tilde{\Delta}_{k-1} f(x;h/2) - 2^{k-1} \tilde{\Delta}_{k-1} f(x;h/4) \right| \leq M|h/4|^k, \dots$$

$$\left| \tilde{\Delta}_{k-1} f(x;h/2^{n-1}) - 2^{k-1} \tilde{\Delta}_{k-1} f(x;h/2^n) \right| \leq M|h/2^n|^k.$$

Multiplying these inequalities by $1, 2^{k-1}, 2^{2(k-1)}, \dots, 2^{(n-1)(k-1)}$ respectively, we obtain by addition

$$\left| \tilde{\Delta}_{k-1} f(x; h) - 2^{n(k-1)} \tilde{\Delta}_{k-1} f(x; h/2^n) \right| \le 2M |h/2|^k,$$

and hence

$$\left| \frac{2^{n(k-1)} \tilde{\Delta}_{k-1} f(x; h/2^n)}{h^{k-1}} \right| \le M'$$

for $\frac{1}{2}\delta \leq |h| \leq \delta$, by using the boundedness of f. Hence, writing $\xi = h/2^n$, we have

$$\left| \frac{\tilde{\Delta}_{k-1} f(x;\xi)}{\xi^{k-1}} \right| \le M' \text{ for } \delta/2^{n+1} \le |\xi| \le \delta/2^n, \ n = 0, 1, \dots,$$

and the lemma is established, since n can be chosen arbitrarily.

Definition 1.2. If there exist numbers $f_1(x), \ldots, f_k(x)$ such that

$$f(x+h) = f(x) + f_1(x)h + \frac{1}{2}f_2(x)h^2 + \dots + \frac{1}{k!}f_k(x)h^k + o(h^k),$$

where $o(h^k)/h^k \to 0$ as $h \to 0$, then f is said to have a k-th Peano derivative at x. The number $f_k(x)$ is called the k-th Peano derivative of f at x.

We say that f admits k-th Peano derivative on an interval when it admits k-th Peano derivative at any point of this interval.

It is well known that the existence of the ordinary k-th derivative of f at x, $f^{(k)}(x)$, implies the existence of $f_k(x)$ and this in turn implies the existence of $D_k f(x)$.

Lemma 1.4. [11] If $f_k(x)$ exists, then so does $\lim_{h\to 0} \frac{\tilde{\Delta}_k f(x;h)}{h^k}$ and there exists a number λ_k , depending only on k, such that $\lambda_k \lim_{h\to 0} \frac{\tilde{\Delta}_k f(x;h)}{h^k} = f_k(x)$.

For a survey on Riemann and Peano derivatives one can see for instance [2], [6] and [12]. Further properties of Peano and Riemann derivatives are given in [3], [4] and [5]. In this paper we will need the following result.

Theorem 1.1. [12] If f_k is bounded (upper or lower) on an interval, then $f^{(k)}$ exists on this interval and $f^{(k)} = f_k$.

1.2 Standard Mollifiers

The function ϕ , defined by

$$\phi(x) = \begin{cases} C \exp(\frac{1}{x^2 - 1}), & \text{if } |x| < 1 \\ 0, & \text{if } |x| \ge 1 \end{cases}$$

is $C^{\infty}(\mathbb{R})$ and we can choose the constant $C \in \mathbb{R}$ such that $\int_{\mathbb{R}} \phi(x) dx = 1$.

Definition 1.3. Let $\varepsilon > 0$. The functions $\phi_{\varepsilon}(x) = \frac{\phi(\frac{x}{\varepsilon})}{\varepsilon}$ are called standard mollifiers.

Definition 1.4. Let $f:(a,b)\to\mathbb{R}$. We say that $f\in C^k_0((a,b))$ if $f\in C^k((a,b))$ and

$$\operatorname{spt}_f = \overline{\{x \in (a,b) : f(x) \neq 0\}} \subset (a,b).$$

Theorem 1.2. [1] The functions ϕ_{ε} are $C^{\infty}(\mathbb{R})$ and satisfy

- i) $\int_{\mathbb{R}} \phi_{\varepsilon}(x) dx = 1$
- ii) spt_{ϕ} $\subset B(0,\varepsilon)$.

For a bounded function $f:(a,b)\to\mathbb{R}$, and $\varepsilon>0$ we define functions f_{ε} by the formula $f_{\varepsilon}(x)=\int_a^b\phi_{\varepsilon}(y-x)f(y)\,dy$. Observe that $f_{\varepsilon}(x)=0$ if $x\in\mathbb{R}\setminus[a-\varepsilon,b+\varepsilon]$ and that $f_{\varepsilon}\in C^{\infty}(\mathbb{R})$.

Theorem 1.3. [1] Suppose that $f \in L^1_{loc}(a,b)$. Then for a.e. $x \in (a,b)$ we have $f_{\varepsilon}(x) \to f(x)$ as $\varepsilon \to 0$. If $f \in C((a,b))$, then the convergence is uniform on compact subsets of (a,b).

Theorem 1.4. [9] Let $[c,d] \subset (a,b)$. Then $\exists \ \varepsilon_0 > 0 \ such that \ \forall \varepsilon \leq \varepsilon_0 \ and \ \forall x \in [c,d] \ the function <math>y \to \phi_{\varepsilon}(x-y)$ is $C_0^{\infty}((a,b))$.

2 The Main Results

Definition 2.1. A function $f:(a,b)\to\mathbb{R}$ is locally Lipschitz at x_0 when there exists a constant K and a neighborhood U of x_0 such that $|f(x)-f(y)|\le K|x-y|$, whenever $x,y\in U$.

Definition 2.2. A function $f:(a,b)\to\mathbb{R}$ is of class $C^{k,1}$ at x_0 when $f^{(k)}$ exists in a neighborhood of x_0 and $f^{(k)}$ is locally Lipschitz at x_0 .

Theorem 2.1. Assume that the function $f:(a,b) \to \mathbb{R}$ is bounded on a neighborhood of the point $x_0 \in (a,b)$. Then f is of class $C^{k,1}$ at x_0 if and only if there exist neighborhoods U of x_0 and V of 0 such that $\frac{\Delta_{k+1}f(x;h)}{h^{k+1}}$ is bounded on $U \times V \setminus \{0\}$.

PROOF. i) Sufficiency: From Lemmas 1.2 and 1.3, we have that the boundedness of $\frac{\Delta_{k+1}f(x;h)}{h^{k+1}}$ on $U\times V\setminus\{0\}$ implies the existence of neighborhoods U' of

 x_0 and V' of 0 such that $\frac{\tilde{\Delta}_j f(x;h)}{h^j}$ are bounded on $U' \times V' \setminus \{0\}, \forall j = 1, \ldots, k$.

Observe that the boundedness of $\frac{\tilde{\Delta}_1 f(x;h)}{h}$ means that f is locally Lipschitz at the point x_0 and hence continuous in a neighborhood of x_0 . For every x in a neighborhood of x_0 and for ε "sufficiently small", recalling Lemma 1.4 and Theorem 1.4, and using the Lebesgue convergence theorem, for $1 \leq j \leq k$ we have

$$\begin{split} f_{\varepsilon}^{(j)}(x) &= (-1)^{j} \int_{a}^{b} \phi_{\varepsilon}^{(j)}(y-x) f(y) \, dy \\ &= (-1)^{j} \lambda_{j} \int_{a}^{b} \lim_{h \to 0} \frac{\tilde{\Delta}_{j} \phi_{\varepsilon}(y-x;h)}{h^{j}} f(y) \, dy \\ &= (-1)^{j} \lambda_{j} \int_{a}^{b} \lim_{h \to 0} \frac{\sum_{i=1}^{j} a_{i} \phi_{\varepsilon}(y-x+2^{i-1}h) + a_{0} \phi_{\varepsilon}(y-x)}{h^{j}} f(y) \, dy \\ &= (-1)^{j} \lambda_{j} \lim_{h \to 0} \int_{a}^{b} \frac{\sum_{i=1}^{j} a_{i} \phi_{\varepsilon}(y-x+2^{i-1}h) + a_{0} \phi_{\varepsilon}(y-x)}{h^{j}} f(y) \, dy. \end{split}$$

Now, putting $z = y + 2^{i-1}h$, we obtain

$$\int_{a}^{b} \frac{a_{i}\phi_{\varepsilon}(y-x+2^{i-1}h)}{h^{j}} f(y) dy = \int_{a+2^{i-1}h}^{b+2^{i-1}h} \frac{a_{i}f(z-2^{i-1}h)\phi_{\varepsilon}(z-x)}{h^{j}} dz.$$

Thus

$$(-1)^{j} \lambda_{j} \int_{a}^{b} \frac{\sum_{i=1}^{j} a_{i} \phi_{\varepsilon}(y-x+2^{i-1}h) + a_{0} \phi_{\varepsilon}(y-x)}{h^{j}} f(y) dy$$

$$= (-1)^{j} \lambda_{j} \sum_{i=1}^{j} \int_{a+2^{i-1}h}^{b+2^{i-1}h} \frac{a_{i} f(z-2^{i-1}h) \phi_{\varepsilon}(z-x)}{h^{j}} dz + (-1)^{j} \lambda_{j} \int_{a}^{b} \frac{a_{0} f(z) \phi_{\varepsilon}(z-x)}{h^{j}} dz.$$

For $|h| < \frac{b-a}{2^{k-1}}$, from Theorem 1.4 for all "sufficiently small" ε , the previous equation is equal to

$$\begin{split} &(-1)^j \lambda_j \sum_{i=1}^j \int_a^b \frac{a_i f(z-2^{i-1}h) \phi_\varepsilon(z-x)}{h^j} \, dz \\ &+ (-1)^j \lambda_j \int_a^b \frac{a_0 f(z) \phi_\varepsilon(z-x)}{h^j} \, dz \\ &= &(-1)^j \lambda_j \int_a^b \frac{\tilde{\Delta}_j f(z,-h)}{h^j} \phi_\varepsilon(z-x) \, dz = \lambda_j \int_a^b \frac{\tilde{\Delta}_j f(z,-h)}{(-h)^j} \phi_\varepsilon(z-x) \, dz. \end{split}$$

Hence we get $f_{\varepsilon}^{(j)}(x) = \lambda_j \lim_{h \to 0} \int_a^b \frac{\tilde{\Delta}_j f(z,h)}{h^j} \phi_{\varepsilon}(z-x) \, dz$. From the boundedness of $\frac{\tilde{\Delta}_j f(x,h)}{h^j}$ we get the existence of a constant M such that $\left| f_{\varepsilon}^{(j)}(x) \right| \leq M$, for every ε "sufficiently small" and for every x in a neighborhood of x_0 . In this way we established that $f_{\varepsilon}^{(j)}(x)$ is bounded (uniformly with respect to ε) on a neighborhood of $x_0, \forall j=1,\ldots,k$. Similarly one can prove that $f_{\varepsilon}^{(k+1)}(x)$ is bounded on a neighborhood of x_0 . Hence, there exists a neighborhood \tilde{U} of x_0 such that for $x \in \tilde{U}$ there is a sequence ε_n converging to 0 such that for all $j=1,\ldots,k$, the sequence $f_{\varepsilon_n}^{(j)}(x)$ converges to a limit which we denote by $\alpha_j(x)$. Notice that the functions $\alpha_j(x), j=1,\ldots,k$ are bounded on \tilde{U} . The functions $f_{\varepsilon_n}(x)$ are of class C^{∞} and hence $\forall x,y \in \tilde{U}$

$$f_{\varepsilon_n}(y) = f_{\varepsilon_n}(x) + \sum_{i=1}^k \frac{f_{\varepsilon_n}^{(i)}(x)}{i!} (y - x)^i + \frac{f_{\varepsilon_n}^{(k+1)}(\xi_n)}{(k+1)!} (y - x)^{k+1},$$

where $\xi_n \in (x, y)$. Recalling Theorem 1.3, taking the limit for $n \to +\infty$ it follows that $f_{\varepsilon_n}^{(k+1)}(\xi_n)$ converges to a limit which we denote by $\beta(x, y)$.

$$f(y) = f(x) + \sum_{i=1}^{k} \frac{\alpha_i(x)}{i!} (y - x)^i + \frac{1}{(k+1)!} \beta(x, y) (y - x)^{k+1}.$$

Observing that $\beta(x,y)$ is bounded for $x,y\in \tilde{U}$, we have that $\forall x\in \tilde{U}, \alpha_k(x)$ is the k-th Peano derivative of f at x. From Theorem 1.1 it follows that

 $\alpha_k(x)=f^{(k)}(x), \forall x\in \tilde{U}$. Furthermore the functions $f_{\varepsilon}^{(k+1)}$ are bounded uniformly with respect to ε , for ε "sufficiently small" and thus the functions $f_{\varepsilon_n}^{(k)}$ satisfy the following uniform Lipschitz condition

$$\left| f_{\varepsilon_n}^{(k)}(y) - f_{\varepsilon_n}^{(k)}(x) \right| \le B |y - x|, \forall x, y \in \tilde{U}.$$

Since $f_{\varepsilon_n}^{(k)}(x)$ and $f_{\varepsilon_n}^{(k)}(y)$ converge to $f^{(k)}(x)$ and $f^{(k)}(y)$ respectively, we see that $f^{(k)}$ is Lipschitzian on \tilde{U} .

ii) Necessity: Assume that f is of class $C^{k,1}$ at x_0 . Set

$$\overline{\Delta}_1 f(x; s_1) = f(x + s_1) - f(x),$$

and recursively define

$$\overline{\Delta}_{k+1}f(x;s_1,\ldots,s_{k+1}) = \overline{\Delta}_kf(x+s_{k+1};s_1,\ldots,s_k) - \overline{\Delta}_kf(x;s_1,\ldots,s_k),$$

where $x \in (a, b), s_i \in \mathbb{R}, i = 1, ..., k + 1$ and $|s_i|$ is "sufficiently small". Applying the mean value theorem k times we get

$$\frac{\overline{\Delta}_{k+1} f(x; s_1, \dots, s_{k+1})}{s_{k+1} s_k \cdots s_1} = \frac{(\overline{\Delta}_k f)'(x + \theta_{k+1} s_{k+1}; s_1, \dots, s_k)}{s_k \cdots s_1}$$

$$\cdots = \frac{\overline{\Delta}_1 f^{(k)}(x + \theta_{k+1} s_{k+1} + \dots + \theta_2 s_2; s_1)}{s_1}$$

where $\theta_i \in (0,1), i=2,\ldots,k+1$. Since f is of class $C^{k,1}$ at x_0 , there exist a constant M, a neighborhood \tilde{U} of x_0 and a number $\delta > 0$ such that

$$\left| \frac{\overline{\Delta}_{k+1} f(x; s_1, \dots, s_{k+1})}{s_{k+1} s_k \dots s_1} \right| \le M, \forall x \in \tilde{U}, \ |s_i| < \delta, \ s_i \ne 0, \ i = 1, \dots, k+1.$$

Now the assertion follows easily observing that if $s_1 = s_2 = \cdots = s_{k+1} = h$, then $\overline{\Delta}_{k+1} f(x; s_1, \dots, s_{k+1}) = \delta_{k+1} f(x; h) = \Delta_{k+1} f(x + \frac{k+1}{2}h; h)$.

Corollary 2.1. Assume that the function f is bounded on a neighborhood of x_0 . Then f is of class $C^{k,1}$ at x_0 if and only if there exist neighborhoods U of x_0 and V of θ such that $\frac{\delta_{k+1}f(x;h)}{h^{k+1}}$ is bounded on $U \times V \setminus \{0\}$.

PROOF. The proof is straightforward remembering that

$$\delta_{k+1}f(x;h) = \Delta_{k+1}f(x + \frac{k+1}{2}h;h).$$

Corollary 2.2. (Taylor's formula). If f is of class $C^{k,1}$ at x_0 , there exist sequences ε_n converging to 0 and $\xi_n \in (x_0, x_0 + h)$ such that $f_{\varepsilon_n}^{(k+1)}(\xi_n)$ converges to a limit $\beta(x_0, x_0 + h)$ and

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^{k} \frac{f^{(i)}(x_0)}{i!} h^i + \frac{\beta(x_0, x_0 + h)}{(k+1)!} h^{k+1}.$$

Proof. It is included in the proof of the previous theorem.

Theorem 2.2. Assume that f is continuous and $D_{k+1}f(x)$ exists on a neighborhood of the point x_0 . Then f is of class $C^{k,1}$ at x_0 if and only if $D_{k+1}f(x)$ is bounded on a neighborhood U of x_0 and there exists a function $g \in L^1(U)$ such that $\left|\frac{\Delta_{k+1}f(x;h)}{h^{k+1}}\right| \leq g(x)$, for every $x \in U$ and h in a neighborhood of 0 $(h \neq 0)$.

PROOF. i) Sufficiency. Arguing in a fashion similar to that of the previous theorem and using Lebesgue's theorem, we obtain for ε "sufficiently small" and for every x in a neighborhood of x_0

$$f_{\varepsilon}^{(k+1)}(x) = \lambda_{k+1} \lim_{h \to 0} \int_{a}^{b} \frac{\Delta_{k+1} f(z; h)}{h^{k+1}} \phi_{\varepsilon}(z - x) dz$$
$$= \lambda_{k+1} \int_{a}^{b} \lim_{h \to 0} \frac{\Delta_{k+1} f(z; h)}{h^{k+1}} \phi_{\varepsilon}(z - x) dz$$
$$= \lambda_{k+1} \int_{a}^{b} D_{k+1} f(z) \phi_{\varepsilon}(z - x) dz.$$

It follows that $f_{\varepsilon}^{(k+1)}(x)$ is bounded by a constant M on a neighborhood x_0 (uniformly with respect to ε). Using the integral representation of divided differences (see for instance [8], Ch. 6, Theorem 2), we have

$$\frac{\Delta_{k+1} f_{\varepsilon}(x; h)}{h^{k+1}} = \int_{0}^{1} dt_{1} \int_{0}^{t_{1}} dt_{2} \cdots \int_{0}^{t_{k}} f_{\varepsilon}^{(k+1)}(t_{k+1}h + \cdots + t_{1}h + x - \frac{k}{2}h) dt_{k+1}.$$

For x and h in suitable neighborhoods respectively of x_0 and of 0, the left member in the previous inequality is bounded by a constant M. Sending ε to 0 and recalling Theorem 1.3, we get the existence of neighborhoods U of x_0 and V of 0 such that $\frac{\Delta_{k+1}f(x;h)}{h^{k+1}}$ is bounded on $U \times V \setminus \{0\}$. The assertion

now follows recalling Theorem 2.1.

ii) Necessity. The proof is similar to that of the necessary condition in Theorem 2.1. $\hfill\Box$

Remark 2.1. Theorems 2.1 and 2.2 extend the elementary condition which relates the Lipschitz condition on $f^{(k)}$ and the boundedness of $f^{(k+1)}$. We generalize this relation without requiring any differentiability hypothesis and linking the existence and the Lipschitz behavior of $f^{(k)}$ to the boundedness of $\frac{\Delta_{k+1}f(x,h)}{h^{k+1}}$ or of the Riemann derivatives.

Remark 2.2. It is well known [11] that if for every $x \in (a,b)$, $\Delta_{k+1}f(x,h) = O(h^{k+1})$, then f_{k+1} exists a.e. $x \in (a,b)$. In Theorem 2.1, under the stronger hypothesis that $\frac{\Delta_{k+1}f(x,h)}{h^{k+1}}$ is bounded on a rectangle as a function of x and h, we prove that $f^{(k)}$ exists on an interval and furthermore is Lipschitz.

Remark 2.3. Conditions similar to those of Theorem 2.2, expressed in terms of $d_{k+1}f(x)$ can be proved analogously.

References

- [1] H. Brezis, Analyse fonctionelle- Theorie et applications. Masson Editeur, Paris, 1963.
- [2] M. J. Evans, C. E. Weil, *Peano derivatives: a survey*. Real Analysis Exchange, **7**, 1981-82, 5–23.
- [3] I. Ginchev, A. Guerraggio, M. Rocca, Equivalence of Peano and Riemann derivatives. Proceedings of the Workshop on Optimization and Generalized Convexity for economic applications, Verona, may 1998, (G. Giorgi, F. A. Rossi eds.)
- [4] I. Ginchev, M. Rocca M, On Peano and Riemann derivatives, Rendiconti del Circolo Matematico di Palermo, to appear.
- [5] I. Ginchev, A. Guerraggio, M. Rocca, Equivalence of (n+1)-th order Peano and usual derivatives for n-convex functions., Real Analysis Exchange, this issue.
- [6] A. Guerraggio, M, Rocca, Derivate dirette di Riemann e di Peano. Convessitá e Calcolo Parallelo, Verona 1997.

- [7] J. B. Hiriart-Urruty, J. J. Strodiot, V. Hien Nguyen, Generalized Hessian matrix and second order optimality conditions for problems with C^{1,1} data. Appl. Math. Optim., **11**, 1984, 43–56.
- [8] E. Isaacson, B. H. Keller, Analysis of numerical methods. Wiley, New York, 1966.
- [9] D. La Torre, M. Rocca, Weak derivatives, optimization and convex function theory. Internal Report, 47, Institute of Quantitative Methods, "Bocconi" University of Milan, 1999.
- [10] D. T. Luc, Taylor's formula for $C^{k,1}$ functions. SIAM J. Optimization, 5, 1995, 659–669.
- [11] J. Marcinkiewicz, A. Zygmund, On the differentiability of functions and summability of trigonometric series. Fund. Math., 26, 1936, 1–43.
- [12] H. W. Oliver, The exact Peano derivative. Trans. Amer. Math. Soc., 76, 1954, 444–456.
- [13] G. Peano, Sulla formula di Taylor. Atti Accad. Sci. Torino, 27, 1891-92, 40–46.