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C*k! FUNCTIONS AND RIEMANN
DERIVATIVES

Abstract

In this work we provide a characterization of C*' functions of one
real variable (that is, k times differentiable with locally Lipschitz k-
th derivative) by means of (k + 1)-th divided differences and Riemann
derivatives. In particular we prove that the class of C*! functions is
equivalent to the class of functions with bounded (k + 1)-th divided
difference. From this result we deduce a Taylor’s formula for this class
of functions and a characterization through Riemann derivatives.

1 Introduction

In this paper we give necessary and sufficient conditions for a real function
of one real variable to be of class C*'; that is, k times differentiable with
locally Lipschitz k-th derivative. The conditions are on the boundedness of
the (k + 1)-th divided differences and of the (k + 1)-th Riemann derivatives.

The study of the class of C*! functions has been renewed since the work
of Hiriart-Urruty, Strodiot and Hien Nguyen [7] who introduced the concept
of generalized Hessian matrix for C':! functions proving also second order
optimality conditions for nonlinear constrained problems. Later, Luc [10],
considering the class of C*! functions, extended Taylor’s formula, proved
higher order optimality conditions when derivatives of order greater than k do
not exist and provided characterizations of generalized convex functions.

In this section we recall some concepts which are fundamental for under-
standing the proofs of the results.
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1.1 Peano and Riemann Derivatives

In the following we will consider a function f : (a,b) — R. For such a function

we let
k

Auflah) = 3 (—1)F (’Z‘?)f(:c +ih— %kh).

=0
Definition 1.1. The k-th Riemann derivative of f at a point x € (a,b) is
defined as Dy f(z) = limy, o Ay f(x; h)/R¥, if this limit exists.

Similarly we can define differences

k
gusait) = S (¥) v )

=0

The corresponding k-th Riemann-type derivative is denoted by dj f(z) and is
defined as dy. f(x) = limp_o 0 f (25 h) /h¥.
We will also consider differences Ay f(x; h) defined recursively by

Aif(x;h) = f(z+h) = f(x), Apf(w;h) = Mg f(w;2h) — 25T Ayy f(ws h).
As observed in [11], we have
Apflaih) = apf(x+2"7'h) +apr f(+2"72h) + -+ ar f(a + h) +ao f (),
where, for any fixed k, a; depends only on j (j =0,1,...k—1) and a; = 1.
Lemma 1.1. [11] There are constants Cy, Cy, ..., Cor-1_;, such that

2k =1k

Aeflash)y= C’iAk.f(:n+%kh+ih;h).

i=0
The proof of the following lemma is straightforward from the previous
result.

Lemma 1.2. If there exist neighborhoods U of the point xo and V' of the origin

such that w is bounded on U x V\{0}, then there exist neighborhoods

U’ of xzg and V' of the origin such that Aulwh) o poynded on U’ x V\{0}.

hk

The proof of the following lemma is similar to that of Lemma 6 in [11].

Lemma 1.3. Assume that [ is bounded in a neighborhood of the point xq.
If there exist neighborhoods U of the point o and V' of the origin such that
A ih Aj— ih
% is bounded on U x V\{0}, then also khlk%(lx’)
U x V\{0}.

18 bounded on
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PRrROOF. From the hypotheses we obtain that there exists a number § > 0 such
that Va € U and Vh with |h| < §, h # 0, the following inequalities hold.

‘Ak_lf(a:; h) — 2L A, . f(x; h/2)‘ < MIh/2|F,
(Ak,lf(x;h/z) LA f(x h/4)‘ < M|h/Al, ...

|Biaf(oshf27Y) = 2 A (i hf2)| < MIn/2""

Multiplying these inequalities by 1,2F~1,22(k=1) 9(n=1(k=1) regpectively,
we obtain by addition

‘Ak,lf(x; h) — 20=VA, . f(ash/2)| < 2M|h 2k,

and hence ~
2n=DAL_ f(2;h/27)
pk—1

<M

for 30 < |h| < 4, by using the boundedness of f. Hence, writing £ = h/2", we
have

Apoi f(a3€
gk(l) <M for §/2"TE < €] <5/2", n=0,1,...,
and the lemma is established, since n can be chosen arbitrarily. O

Definition 1.2. If there exist numbers fi(z),..., fi(x) such that
1 1
flx+h)=f(z)+ fi(x)h + §f2(m)h2 +e Efk(x)hk + o(h¥),

where o(h¥)/h¥ — 0 as h — 0, then f is said to have a k-th Peano derivative
at . The number fi(z) is called the k-th Peano derivative of f at z.

We say that f admits k-th Peano derivative on an interval when it admits
k-th Peano derivative at any point of this interval.

It is well known that the existence of the ordinary k-th derivative of f at
z, f%) (), implies the existence of fj(2) and this in turn implies the existence
of Dkf(l‘)

Ay f(z;h
Lemma 1.4. [11] If fr(x) exists, then so does limp_q % and there
Ay f(x;h
exrists a number \g, depending only on k, such that \ilimp_g % =

fr(z).
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For a survey on Riemann and Peano derivatives one can see for instance
[2], [6] and [12]. Further properties of Peano and Riemann derivatives are
given in [3], [4] and [5]. In this paper we will need the following result.

Theorem 1.1. [12] If fi is bounded (upper or lower) on an interval, then
f(k) exists on this interval and f(k) = f.

1.2 Standard Mollifiers
The function ¢, defined by

Cexp(=—7), iflz[ <1
0, if |[z] > 1
is C*°(R) and we can choose the constant C' € R such that [, ¢(z)dz = 1.

Definition 1.3. Let € > 0. The functions ¢.(z) = ¢(C) are called standard
€

mollifiers.

Definition 1.4. Let f : (a,b) — R. We say that f € CF((a,b)) if f €
C*((a,b)) and

spty = {z € (a,b) : f(x) # 0} C (a,b).

Theorem 1.2. [1] The functions ¢. are C*(R) and satisfy

i) Jp be(x)de =1
ii) spt,,, C B(0,¢).

For a bounded function f : (a,b) — R, and € > 0 we define functions

fe by the formula f.(x) = f: de(y — x) f(y) dy. Observe that f.(z) = 0 if
x € R\[a — €,b+ €] and that f. € C*(R).

Theorem 1.3. [1] Suppose that f € L}, (a,b). Then for a.e. = € (a,b) we
have f.(x) — f(x) ase — 0. If f € C((a,b)), then the convergence is uniform
on compact subsets of (a,b).

Theorem 1.4. [9] Let [c,d] C (a,b). Then 3 g9 > 0 such that Ve < gy and
YV € [e,d] the function y — ¢e(z —y) is C§°((a,b)).
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2 The Main Results

Definition 2.1. A function f : (a,b) — R is locally Lipschitz at ¢ when there
exists a constant K and a neighborhood U of zy such that |f(z) — f(y)] <
K |x — y|, whenever z,y € U.

Definition 2.2. A function f : (a,b) — R is of class C*! at xop when f(*)
exists in a neighborhood of o and f*) is locally Lipschitz at .

Theorem 2.1. Assume that the function f : (a,b) — R is bounded on a
neighborhood of the point xo € (a,b). Then f is of class C*1 at o if and
M i

only if there exist neighborhoods U of x¢g and V' of 0 such that il

bounded on U x V\{0}.

PRrOOF. i) Sufficiency: From Lemmas 1.2 and 1.3, we have that the bounded-
A ih

Ak f(z:h) n U x V\{0} implies the existence of neighborhoods U’ of

ness of A=
A, f(x;h)
hi

") are bounded on U’ x V'\{0},Vj =1,... k.

A .
Observe that the boundedness of M

at the point zg and hence continuous in a neighborhood of xy. For every x in
a neighborhood of zy and for £ “sufficiently small”, recalling Lemma 1.4 and
Theorem 1.4, and using the Lebesgue convergence theorem, for 1 < j < k we
have

2o and V' of 0 such that

means that f is locally Lipschitz

F9 () /¢<a> —2)f(y) dy
= [ i %ﬂy) day
_ L1y, /ab Ji I am(y—m;*h) +aodely =) 00
1)), ;133% P aige(y —x+2;_1h)+ao¢>e(y—ﬂf)f(y)dy

Now, putting z =y + 2’*1h, we obtain
b - i—1 b+2i7th _ 9i—1 o
[t 2T [T 2 e,

hJ at2i-1h hJ

Thus

JA/Z Laide(y =2+ 27 ) bavdely —a)

hi
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J b+2""1h i—
a3 [ el tpelod),

i—1 Ja+2i-1h hi
b
ViYL aOf(z)¢s(Z - x)
+(-1) )\]/ — dz.
a
For |h| < Qk T, from Theorem 1.4 for all “sufficiently small” ¢, the previous

equation is equal to
J b i—1
: if(z=2""h)pe(z — )
_1)J/\jZ/ a; f(z - 22T)
J)\ / ao f(z ¢e Z_x)
)9\ Ajf z,—h dz = \ bAjf(Z7_h) d
g [ B i, [(LE oy

Hence we get £ (z) = Aj limp, g fb A f(z ") $.(z — x) dz. From the bounded-
A, f(a,h)
j

M, for every e “sufficiently small” and for every x in a neighborhood of xy. In

ness of we get the existence of a constant M such that ‘ fe (v )( )‘ <
this way we established that fz (@ )( ) is bounded (uniformly with respect to €)

on a neighborhood of zy, Vj = 1,..., k. Similarly one can prove that f(kH)( )
is bounded on a neighborhood of zy. Hence, there exists a neighborhood U of
o such that for z € U there is a sequence &, converging to 0 such that for
all j = 1,..., k, the sequence fg(fl) () converges to a limit which we denote by
(). Notice that the functions a;(z), j = 1, ..., k are bounded on U.

The functions f., () are of class C* and hence Y,y € U

k)
forl) = for @ Zfe —a)f e Sy o

where &, € (z,y). Recalling Theorem 1.3, taking the limit for n — +oo

it follows that f(kJrl (&) converges to a limit which we denote by [(z,y).
Moreover

+ mﬁ(%y)(y - x)kﬂ'

Observing that (x,y) is bounded for z,y € U, we have that V& € U,ak(x)
is the k-th Peano derivative of f at . From Theorem 1.1 it follows that
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ar(z) = f®)(x),Vz € U. Furthermore the functions F¥ are bounded
uniformly with respect to e, for € “sufficiently small” and thus the functions

E(k) satisfy the following uniform Lipschitz condition

F(y) — ) (2)| < Bly —z|,Vz,y € U.

n

see that f(*) is Lipschitzian on U.
ii) Necessity: Assume that f is of class C¥1 at xq. Set

Ay f(z;s1) = flz+s1) — fx),

Since fg(k)(x) and fe(k) (y) converge to f® () and f*)(y) respectively, we

and recursively define

Zk—i—lf(x;sh . -,sk+1) = Zkf(x + Sk4+1551,- - '78k) 7Zkf($;81, .- 'ask)a

where z € (a,b),s; € Ryi =1,...,k+ 1 and |s;| is 7sufficiently small”. Ap-
plying the mean value theorem k times we get

Dii1f(@5s1, - s611) (D) (@ + Oks18k413 81, - -, k)
Sk+1Sk """ S1 Skt 81
. A1 f® (@4 Opp1Sk41 + - + 02523 51)
- )
s1

where 0; € (0,1),4 = 2,...,k + 1. Since f is of class C*1 at xg, there exist a
constant M, a neighborhood U of xy and a number § > 0 such that

A 181, -
e (@551, 5k41) <MNVxeU, |s;| <96, s, #20,i=1,...,k+1.
Sk4+1Sk " S1

Now glc assertion follows easily observing that if s1 = so = -++ = sp41 = h,
then Agy1f(x;81,...,8841) = Opr1f(z;h) = Apgr f(z + %h; h). O

Corollary 2.1. Assume that the function f is bounded on a meighborhood of
xo. Then f is of class C*1 at xq if and only if there exist neighborhoods U of

xo and V of 0 such that %&c,h) is bounded on U x V\{0}.

PROOF. The proof is straightforward remembering that

k41
Ok+1f(w;h) = Apyr f(2 + —5—hi h).
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Corollary 2.2. (Taylor’s formula). If f is of class C*' at zg, there exist se-

quences e, converging to 0 and &, € (xg, xo+h) such that f(kH)(fn) converges
to a limit B(xo, o + h) and

5(%7560 +h) Bt
k+ 1)

f(.l?o-i-h a?o +Zf .1‘0

PRrOOF. It is included in the proof of the previous theorem. O

Theorem 2.2. Assume that f is continuous and Dyy1 f(z) exists on a neigh-
borhood of the point xo. Then f is of class C*' at xq if and only if Diy1f(x)
is bounded on a meighborhood U of xo and there exists a function g € L*(U)

Apy1f(x;h)

pyes) < g(x), for every x € U and h in a neighborhood of

such that ‘
0 (h#0).

PROOF. i) Sufficiency. Arguing in a fashion similar to that of the previous
theorem and using Lebesgue’s theorem, we obtain for ¢ “sufficiently small”
and for every z in a neighborhood of zq

A z; h)
fe(k-&-l)( = Apt1 hm / k+hllf+1 ¢(z —x)dz

b
Ak f(zh)
= )\k+1L }{li)r%) Tqﬁg(z — .'L') dz

b
— e / Disr f(2): (= — z) d=.

It follows that fe (k+1) (z) is bounded by a constant M on a neighborhood z¢
(uniformly with respect to ¢). Using the integral representation of divided
differences (see for instance [8], Ch. 6, Theorem 2), we have

Apyife (JC; h)
Rk

1 1 tr
=/ dt1/ dtz"'/ fg(k+1)(tk+1h+-~-+t1h+w— gh) dtpt1.
0 0 0

For x and h in suitable neighborhoods respectively of zy and of 0, the left
member in the previous inequality is bounded by a constant M. Sending ¢ to
0 and recalling Theorem 1.3, we get the existence of neighborhoods U of xg

A ih
and V of 0 such that %(f’) is bounded on U x V\{0}. The assertion
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now follows recalling Theorem 2.1.
ii) Necessity. The proof is similar to that of the necessary condition in Theorem
2.1. O

Remark 2.1. Theorems 2.1 and 2.2 extend the elementary condition which
relates the Lipschitz condition on f*) and the boundedness of f*+1 . We
generalize this relation without requiring any differentiability hypothesis and
linking the existence and the Lipschitz behavior of f*) to the boundedness of
Ak+1f(l‘, h)

) or of the Riemann derivatives.

Remark 2.2. Tt is well known [11] that if for every = € (a,b), Agt1f(z, h) =

O(R*T1), then fi 41 exists a.e. * € (a,b). In Theorem 2.1, under the stronger

Apir f(z, h)
pR+1

h, we prove that f*) exists on an interval and furthermore is Lipschitz.

hypothesis that is bounded on a rectangle as a function of  and

Remark 2.3. Conditions similar to those of Theorem 2.2, expressed in terms
of diy1f(x) can be proved analogously.
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