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COMPARISON OF -DENSITY
TOPOLOGIES

Abstract

The paper includes a necessary and sufficient condition under which
two 1-density topologies generated by two functions 11 and 12 are equal.
The condition is formulated in terms of the behavior of two sequences
of sets: Af = {z € Ry : ¢1(2z) < $¢2(22)} and B = {z € Ry :
P2(22) < 41(27)}.

The Lebesgue Density Theorem (LDT) plays a central role in real analysis.
It constitutes a basis for the construction of the density topology. The proof
of the expression Int A = AN ®(B), where B is any measurable kernel of A
and ®(B) is the set of all density points of B, depends essentially on LDT.

The interesting phenomenon that the density topology is included in a
o-algebra of Lebesgue measurable sets is also due to LDT together with the
countable chain condition for the Lebesgue measure. The interest concerning
the density topology has grown up after the appearance of the papers of C.
Goffman, C. Neugebauer and T. Nishiura [GNN] and C. Goffman and D. Wa-
terman [GW] explaining the strict connection between approximate continuity
and the density topology. The class of approximate continuous functions was
introduced by Denjoy in his work on derivatives [D] and was studied, among
others, by I. Maximoff [M1], [M2] and Z. Zahorski [Z].

S. J. Taylor in [T] considered the possibility of the improvement of the
Lebesgue Density Theorem. His idea was applied by M. Terepeta and E. Wag-
ner-Bojakowska, which introduced in [TW-B] the notions of 1-density point
and -density topology 7, analogously to the classical density topology (see
[O]). In the second section in [TW-B] there were studied relationships between
topologies generated by different functions. The purpose of this paper is to find
some necessary and sufficient condition under which two 1-density topologies
generated by two functions v and 1, are equal.
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Recall the basic notions and denotations from [T] and [TW-B]. Throughout
the paper N will denote the set of positive integers, R (R;) — the set of real
(positive real) numbers, S — the o-algebra of Lebesgue measurable sets and
m — the Lebesgue measure on the real line. Let A’ stand for R\ A, A — the
closure of A in the Euclidean topology and —A = {—a :a € A}.

Denote by C the family of all continuous non-decreasing functions ¢ : R, —
R, such that lim,_,q+ ¥ (z) = 0.

Let ¢ € C.

Definition 1. [see [TW-B]]. We say that € R is a 1-dispersion point of a
set A € S if and only if

lim m(AN [z —h, z+ h)) _0
h—0+ 2hi)(2h)
We say that x € R is a 1)-density point of a measurable set A if and only
if it is a 1-dispersion point of a set A’.

Let ®,(A) = {x € R: x is a ¢-density point of A} for A € S. The family
Tw:{AESAcq)w(A)}

is a topology on the real line, essentially stronger than the Euclidean topology
and essentially weaker than the density topology ([TW-B|, Th. 1.4).

Let ¥1,99 € C.

It is easy to see that if for arbitrary set A € S from the fact that x is a
11-dispersion point of A it follows that x is a wo-dispersion point of A, then
Ty, C Ty,. So the last inclusion holds, for example, if 11 (x) < 12(x) or, more
generally, if 11 (x) < kya(z) for some k € Ry and for each = € Ry.

Clearly, if 91,92 € C and limsup,_,y+ i;—g‘;g < o0, then 7y, C Ty, ([TW-
B], Th. 2.2). There also is a proof that if 41,12 € C, liminf,_ g+ i;ég >0
and limsup,_, o+ Zﬁ;gi; < o0, then 7y, = 7y, ([TW-B], Th. 2.4). It appears
that these two inequalities form a sufficient, but not necessary, condition for
the equality 7y, = 7y,. There exist two functions 1,12 € C such that

liminf, g+ i;gg = 0 and 0 < limsup,_,q+ i;g; < 00, for which 7y, = Ty,

([TW-B], Th. 2.5). But if lim, o+ ﬁ—gg = 0, then there exists a measurable
set A C Ry such that 0 is a to-dispersion point of A, but it is not a ;-
dispersion point of A ([TW-B], Th. 2.6). It is easy to see that the complement
A’ of the set A constructed in the proof of Th. 2.6 is open in the topology

Ty,, but it is not Ty, -open, so Ty, C Ty,.
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Let 1,19 € C. In the whole paper we shall use the following notation:
Af ={z e Ry 1 ¢(22) < %1&2(2;10)},
Bf ={z e Ry 1 ¢(22) < %1#1(2:10)}7
A = Af U(=A]), B, = B U(=By;) for k € N.

Lemma 1. Let E € S and k € N. If lim,_ o+ % =0, then

lim su M — limsu m(EN A, N[—z, z])
S T orn(20)  aoiP 2o (2]

PRrROOF. It suffices to prove that

lim su m(EN [z, 2]) < limsu m(EN A, N[—z, x])
a:—>0+p 2$¢)1(2$) - w—>0+p 2$¢1(2x)

We have E = (EN Ag) U (E\ Ag), so

. m(E N [—zx, z])

T v (20)

. m(ENAN[—z, z]) . m((E\ Ax) N[z, z])
o ) B S o7 7 B

We shall prove that the second term is equal to zero. Let > 0. Consider two
cases:

10 ze Ay
Put t(z) = max([0, 2] N A},). Obviously, t(z) ¢ Ay, lim, ¢+ t(z) = 0 and

(BN Ap) N [=z, 2] = (E\ A) 0 [=t(2), t(2)],

m((E\Ag) N [=z, ]) _m ((E\Ak) [—t(2), t(2)])
2w (2) - 2t(x)y1 (2t(2)
m((E\Ap) 0 [=t(z), t(x)])
= 2t () (2t

x))
2)])

(
<km(Eﬂ[ t(x), #(
2t(x)a(2t(2))
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because t(z) ¢ Ay, and consequently, ¢ (2t(x)) > 12(2t(x)) / k.
20 x ¢ Ag. Then

m((E\ Ax) N [—z, z]) < Em((E\ Ag) N[—z, z]) < Em(EN[—xz, x])
2z (22) - 2z (22) T 2app(27)

Consequently, from our assumption we have

o B\ A 1[0, 7))
z—0t 2x (2.13)

=0. O

Corollary 2. Under the assumptions of Lemma 1 we have

. m(EN[—z, z]) .. m(Ag N [z, z])
1 — = <1 _—
lfi?ip 2e1(22) lfi,solip 2x1)1 (2x)

Theorem 3. Let 11,12 € C and €, = limsup,_, o+ % for k € N.

If im0 € = 0 and 0 is a y-dispersion point of a set E € S, then 0 is a
1 -dispersion point of E.
PRroOOF. By Corollary 2 for each k € N we have

m(E N [—z, x])

0 < limsup <ep.
z—0t 2391#1(21)
Consequently, 0 is a 1;-dispersion point of E. O

Corollary 4. Under the assumptions of Theorem 3 Ty, C Ty, .
Corollary 5. Let 11,1992 € C,

€, = limsu —m<Ak N[z, 2)) and n, = limsu —m(Bk N[, 2])
B T o (22) e e T e (22)

If limk_,oo Ek = limk_)oo Nk = 0, then %1 = Twz.
The proof follows immediately from Corollary 4. O

Obviously, AZ_H - A: and Agi11 C Ag, so epp1 < gk for k € N. Conse-
quently, the sequence {ex}, <N decreasingly tends to zero or to some positive
number.

Theorem 6. Let 1,192 € C and €, = limsup,_,o+ (;130"7;1729;)9”]) for k € N.
If limg_. € > 0, then there exists a measurable set E C R such that 0 is a
o -dispersion point of E, but it is not a ¥ -dispersion point of E.
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ProOOF. If lim, g+ 91(x) / 12(x) = 0, then the existence of a measurable set
E C R fulfilling our theorem follows from Theorem 2.6 in [TW-B]. So, we can

assume now that limsup,_,¢+ z;g; > 0. Hence there exists ky € N such that

for each § > 0 there exists a point « € (0,6) such that i;gg > 1710 Clearly,
z € (0,6) \ Ak,. The sequence {A}, y is decreasing, so there exists kg € N

such that for each k > kg and each d > 0 there exists a point x such that

z € (0,6)\ Ag. (1)

Put a = lim; ., €; /2. Then a > 0 and ¢; > 2a for ¢ € N; i.e.

A.Nl—
limsup—m( i0[=2, z])

> 2a
z—0+ 201 (22)

for ¢ € N. Hence for each i € N there exists a sequence of points {xg)}neN

such that :v,(f) N\in—oo 0 and
m(Aperi N [, 2])

22, (23355))

>a (2)

for i € N.
Consider the interval [0, xgl)]. From (1) it follows that Ay 41 does not

contain any right-hand neighborhood of 0. Let y; € (0, x:(ll)) be the left

m(Ary 10y, 2§V
21 (20())

a. Put f(t) = %&gﬂm for t € [y, xgl)]. Clearly, f is continuous on

i, V), Flr) = 0 and f(21") > a. Let ty = inf(fys, #{”) N 7 ({a}).
Obviously, f(t) < a for t € [y1,t1) and f(t1) = a.

Put By = Ag,+1 N [y1, t1]. Suppose now that the sets By, Ea, ..., E;_; are
defined. Let z;—; € R4 be a number such that

end-point of some component interval of Ay 41 such that >

zi—1 <min(y;—1,ayi—191(2yi-1))- (3)
Consider the sequence {zg)}neN. There exists n; € N such that ng) < Zi_1.
m(Ak0+im[7w§ji)v wi:l)])

2T @) > a. From (1) it follows that

Apy+i does not contain any right-hand neighborhood of 0. Let y; € (0, argf))

be the left end-point of some component interval of A, 4; such that

m(Akg4i N [Yis JCS)])

w1 (21

Obviously, by (2) we have

> a.
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Analogously as earlier there exists a point ¢; € (y;, x&) ) such that

m(Akg+i N [Yi, t])
th1(2t)

<a

for t € [y, t;) and
m (Ao 0 [Yi, ti])
ti1(2t;)
Put E; = Ago+i N [¥i, ti]. In such a way we have defined the sequence of
measurable sets {E;}, . Now let E = (J;Z,(E; U (—E;)). Observe that 0 is
not a 1 -dispersion point of E since from (4) we obtain

(4)

m(E N [—ti, ti]) _ 2m(Aggri O [yi, t]) _
2tip1(2t;) 2t1(2t:) a

for s € N.
Now we shall prove that 0 is a 1-dispersion point of E. For this purpose

we shall show that
m(EN[—z, x])

220y (22) < 2a (5)

for x € (0, y1).
Let z € (0, y1). Then there exists ¢ € Nsuch that x € [y;, y;—1). Obviously,
(i+1)

tiv1 < Tn,y, < Z;, so by virtue of (3) and (4) we obtain

m(E N [—.%', x]) _ m( U;O:iJrl(Ep U (_Ep)) U (Ei ) (_Ei)) N [—.Z', l’])

21y (22) 2z (22)
2m(0, ti+1]) = 2m(E; N [—z, z])
2x¢1(22) 2x91 (22)
22; 2m(Agoti N i, L] N i, x])
= 2y (20,) 2001 (22) =

Let x € [y;, yi—1). Consider two cases:

10 T € Ak0+i.

Then i;gg < kol-s-i’ so by virtue of (5) we obtain

m(EN[—z, x]) _ m(E N[z, z]) ¢1(22) - 2a
2x12(22) 2x91 (22) P2(27) ko +i

20z ¢ Zko +i-
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Put t(x) = sup(Ax,+i N [¥i, z]). Then t(z) € Ay, 44, so by 1° we have

m(EN|[—z, z])
2292 (22)

m(E N [~t(z), t(x)]) _ _2a
2t(2) 02 (24 (x)) ko +i

<

m(EN[—z,z]) _ 0. 0

If z — 0T, then ¢ — oco. Consequently, lim,_, o+ S (2

Corollary 7. Under the assumptions of the last theorem Ty, \ Ty, # 0.

PROOF. It is clear that if we put F; = A 44 N [yi, t;] for i € N (where Ak, i
and [y;, t;] are the same as in the proof of Theorem 6), then the sets F;, i € N,
are closed in the Euclidean topology and m(E; N I) = m(F; N I) for each

interval I. Consequently R\ (Uzoil(FZ U (—FZ)) € Ty, \ Ty, . O
Theorem 8. Let 91,15 € C,

e = limsu —m(Ak Nl-z, 2]) and n = limsu —m(Bk Ni—a, z))
k= m‘}0+p 2.’171&1(2.73) Mk = m*,0+p 231"[#2(21‘) ’

The topologies Ty, and Ty, are equal if and only if limy_.oo € = limp—oo Mt =
0.

The proof follows immediately from Corollary 5 and Corollary 7. O

It is easy to see that we can consider the arbitrary increasing sequence
{ak}keN of positive numbers tending to infinity instead of the sequence of
positive integers in the definitions of AkJ,r, B;, A and By.

In the family A = {7, : ¥ € C} of all 1-density topologies generated by
functions from C we can introduce the partial order using the inclusion rela-
tion. From the proof of Theorem 2.12 in [TW-B] it follows that for arbitrary
sequence {¢,}, N of functions from C there exists a function ¢ € C such that

lim, o+ ’f;((;)) = 0 for n € N. Consequently, 7y, C 7y for n € N by Theorem

2.6 in [TW-B]. So for each countable subset of A there exists the upper bound
of this set in A.
We shall prove that this partial order in A is dense.

Theorem 9. For arbitrary ¢, 2 € C such that ¥1(x) < pa(x) for x € Ry
and Ty, C Ty, there exits a function 13 € C such that Ty, C Ty, < Ty,.

=

PROOF. Let 91,19 € C, ¥1(x) < tho(x) for z € Ry and

€, = limsu —m(Ak N[z, 2))
b :r~>0+p 293%(2@
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for k € N. From Corollary 4 it follows that lim,_.. € > 0, because 7y, Z Ty, .
Let € € (0, limg— o0 £). Then for arbitrary n > 0 and each k € N there exists
a point T € (0,7) such that

m(Ay N [-7, 7))
W > €. (6)

If lim, o+ ¥1(x) / ¢2(x) = 0, then put Y3(x) = \/¢P1(x)2(z) for z € Ry.
Clearly, ¥1(x) < 93(z) < ¥a(x) and lim, o+ & Ezg = hmmﬂ(yr Emg =0, so
from Theorem 2.6 in [TW-B] we have 7y, & %3 S Ty, Suppose now that

lim SUP, 0+ Zlgg > 0. Then there exists kg € N such that limsup,_, o+ i;—gxg >

= . Consequently, if & > kg, then the open set Aj does not contain any right-
hand neighborhood of 0.
Now put to = n =1 and k = ko. By (6) there exists a point a; € (0, n)

m(Ag,N[—a1,a1])
such that —2[1‘;%(2(“)

that there exists a point as € (0, a1) such that

> e. It is easy to see (analogously as in Theorem 6)

m(Ag, N ([—a1, —az] U [az, a1]))
2a111(2a1)

Since lim,_,g+ ¥2(x) = 0 and ¥1(2a2) < ¥2(2a2), so there exists a point

z1 € (0, ag) such that 99(2z1) = ©1(2a2). Now let n = 2z, and k = ko.
m(Akoﬂ[fbl,bl])

> €. (7)

From (6) there exists a point by € (0, z1) such that oo > € and
by € (0, by) such that
Agy N ([=b1, —b2] U [b2, b
mM(Aky O ([=b1, —b2] U b, ba])) (8)

20141 (2b7)

Since 1 (x) < o(x) for © € Ry, let t; be an arbitrary point from the inter-
val (0,b2). Obviously, 1 (2t1) < 12(2b2). Now we are proceeding by induction.
Suppose that the pOiIltS to, ay,ag, 21, bl, bg, tl, e, Q21,024 24, bgi_l, bgi, t; are
defined in such a way that

m(Ago+j N ([—agjr1, —azj2] Ulazjy2, azji1]))

> €, 9

2a2;41¢1(2a2541) ©)

m(Ago+j N ([=b2jt1, —bajt2] U [b2j12, bajt1])) o - (10)
2094191 (2b2541)

and ¥2(2zj41) = ¥1(2ag542) for j = 0,1,...,i — 1. Then we also have
V1(2t41) < Y2(2bgj42) for j =0,1,...,0i— 1.
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Now put n = t; and k = kg + 4. Using (6), analogously as earlier, we find
the points agi11, aziy2, Zit1, b2i41,b2i42, 41 such that

0 <tipr <boiyo <boiy1 < zig1 < agiya < agiyr <t

M(Ako4i N ([—a2i41, —a2i+2] U [a2it2, a2i41]))

> g, 11

2a2i4+191(2a2i4+1) (11)

M(Akgti N ([—b2it1, —b2iya] U [boita, bait1])) . (12)
2024191 (2b2i41) ’

¥2(22i11) = ¥1(2a2i42) and ¥y (2ti11) < P2(2b2i42).

Now we define a function 3 as follows:

U1 (22) i 22 > 2ty = 2
Y1(22)  if 2z € [2a9449,2t;], fori=0,1,2,...
P3(2x) = < o (2x) if 22 € [2bg;12,2211], for i =0,1,2,...
linear  on the intervals [2z;11,2a2;42]
and on [2t;41,2bg;42], for i =0,1,2,....

Obviously, ¥3 € C.

Put
1
Clyi = {7 € Ry + 05(20) < 7420},
1
Dy = {w € Ry 1 91 (20) < 1= (20)},
Croti = Cf L U(=C} ), Diori =Dji ,U(=DE ), i=0,1,2,....
Clearly,
Cit o U (45N (20219, 202:11])
j=ko+1
[ee]
Do | (45N (2242, 2b2i11))
j=ko+1
fori=0,1,2,....

So, from (11) for k > ko we have

Cr N[ A N [—agiy1, a2
1imsupw > lim sup m(Ag N [—agi+1, a2i1])
z—07F 2581/)3(21:) i—00 2(12@4,1#)1 (2a2i+1)

> e,
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since 93(2a2i11) = ¥1(2a2i41)-
Analogously, from (12) for k > kg

m(Dy N [—z, x]) m( A N [=b2it1,b2i41])

lim su > limsu >e
w_>o+p 2z (22) T i 2b2; 1111 (2b2i41)
Put &, = limsup,_, o+ m@inl=ze)) o) ke N. Since limp_.o0 & > €, S0 from

2z¢3(2z)
Corollary 7 7Ty, \ Ty, # 0. Analogously, 7y, \ 7y, # 0. Simultaneously, ¢4 (z) <

1/J3($) < ’(/}2(55) for z € Ry, so T’le - 7—1113 - 7:#2' 0
Corollary 10. If Ty, € 7y,, then there exits a function 3 € C such that

Td’l - 7:1)3 - Twz'

PROOF. Put ¢y = min(ey,12). Obviously, g € C. We shall prove that
Tyo = Ty, Clearly, ¥o(x) < ¢1(x) for z € Ry, so Ty, C Ty,. Now, let

Cf = {2 € Ry : Yo(20) < 1 (2)}, G = CF U(~CF)

. (€N [, o]
. m(Cg N |—x, T
=limsup ———————=
T o 20)
for k € N, where the sets By were defined before Lemma 1. For our purpose
it is sufficient to prove that limg_. ., & = 0 (by virtue of Corollary 4).
Obviously, C,:' = B,:' and Cy = By, for k € N.
Let x > 704 Consider two cases:
1° 2 € C) . Then 1(2x) = 12(22) and
m(Cy N [—x, z])  m(By N[z, z])
2zipo(2x)  2x9(22)

20z ¢ 6:. Put t(z) = max([0, 2] N C;"). Clearly, t(z) € C}f and t(z) < =,
$0

m(C N [—z, z])
2zt (22)

m(By N [=t(z), t(x)])
2t(x)1p2(2t(x))

<

Therefore

) m(Cy N [—z, x]) _ . m(By N [—z, z])
= S, B et el VA APk )
S T @) S T 20 @)

for k € N. Since 7y, C Ty,, so limy_.c ni = 0 by Corollary 7. Consequently,
limy o0 & = 0 and by Corollary 4 7y, C Ty, .

Simultaneously, ¥o(z) < ¥a(z) for z € Ry and Ty, = Ty, & Ty,; SO
from Theorem 9 it follows that there exists a function 13 € C such that
/Two:’];bl gTwngw2' 0

=Nk
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Theorem 11. There exists subfamily Cy C C such that card(Cy) = ¢ and for
each 1,12 € Cy, Y1 # a2, the topologies Ty, and Ty, are not comparable by
inclusion.

PRrROOF. First we construct two auxiliary sequences of intervals {(ax, bx)}72,
and {(cg, dr) 525 Put by = 1. For k > 2 let

1 1 1 1 1
dr = =b = —dy = —b =——7b db = —
A T 2k+1kan ML ok 42

Obviously, (ck,di) C (ag,br) and bgy1 < ax for k € N. Now for k € N let

by.

b ifx € [Ck, bk},
ox(2z) =<z if x € (0, ax] U [bg, 00),
linear on the interval [ag, cg].

Let {N; }ter be the family of subsets of N such that
1. card(T) = ¢;

2. card(N) =, for t € T}

3. card(Ny, N Ny,) < x, if t1,t2 €T, t1 # to.

Such a family does exist (see for example [L], prop. 5.26, p. 193). Usually it
is called a family of almost disjoint sets.
For each t € T' we define a function 1, as follows:

or(x) if ke Ny and z € [ag, bi],
l/Jt(fU) = .
x if v € Ry \ Upen, [ak, br].

Obviously, v is continuous, nondecreasing and lim, g+ ¥ (z) = 0, so ¥ €
C fort € T. Let t1,to € T, t; # to. We shall prove that the topologies
Ty, and 7y, are not comparable by inclusion. From the third property of
{Ni}ter we have card(Ny, N Ny,) < x,. Simultaneously, card(Ng, \ Ny,) =
Card(Nt’z \Ntl) = Xo-

Let k € Ny, \ Ni,. Then 9y, (z) = pr(x) = by for x € [k, di] and ¢y, (z) =
x < dj = by, for z € (cy,di). Put Py ={n>k:n € Ny, \N,}. Then

]- n dn
{z Ry 9y, (22) < E?/ftl(%)} ) g (%’ 7)

Let 1
Cr={z eRy :¢y,(22) < E¢t1(2$)}
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and (Cx N [, 2))
T m k —T, T
Sk = M sup = i (20)

for k € N. Let {np},en be the increasing sequence of all numbers of Py. Then

Cm((U (5 ) N [ 5 )
gk Z h?isogp dm ¢t2 (d'ru)

. dn — Cp . 1dn
> hm su Ll = hm Su #
= 2 iy () e 2y try (dy)

since dy, =z 0 and lim, o+ ¢1,(z) = 0. From Corollary 7 Ty, ¢ 7Ty, .
Analogously, we can prove that 7y, ¢ Ty, .

= 00,
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