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QUOTIENTS OF DARBOUX FUNCTIONS

Abstract

We prove theorems concerning common divisor for the families of
the quotients of Darboux functions with respect to Darboux property.

1 Introduction

The letter R denotes the real line. The family of all functions from a set X into
Y is denoted by YX. The word function denotes a mapping from R to R unless
otherwise explicitly stated. We consider cardinals as ordinals not in one-to-
one correspondence with the smaller ordinals. The symbol card X stands for
the cardinality of a set X. We write ¢ = card R. For a cardinal number s we
write cf(k) for the cofinality of k, and we say that x is regular, if kK = cf(k).
The projection of a set U C R? onto the z-axis is denoted by dom U. We say
that a set A C R is bilaterally c-dense in itself if card(ANI) = ¢ for every
nondegenerate interval T with AN T # (.

Let f: R — R. For each y € R let [f < y] = {z € R: f(x) <y}. Similarly
we define the symbols [f > y], [f = y], etc.

The symbol D denotes the class of all Darboux functions; i.e., f € D iff it
has the intermediate value property.

There are several papers concerning theorems on a common summand
[2], [1], or factor [6]. In this paper we are concerned with a common divisor
for the families of the quotients of Darboux functions with respect to the
Darboux property. (We were concerned with a similar problem in [3].) More
precisely, we examine the cardinal

a(D) £ minfeard F : F ¢ Dhp & ~(3,¥yer f/g € D)},

where
D/Dg{f/g:f,geD&g(x) # 0 for each = € R}.
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In the above definition it is quite natural to restrict ourselves to subfamilies
of D/py only. Indeed, if there is a function g such that both f/g and 1/g are
Darboux, then f € Dfp.

2 Main Results

Before we start our examination, recall the following theorem proved by Natkaniec
and Orwat [7, Theorem 7].

Theorem 2.1. Let f be a function. Then f € D/D iff f satisfies the following
conditions:

D1. ifa < b and f(a)f(b) <0, then [f = 0] N (a,b) # 0;
D2. each of the sets [f > 0] and [f < 0] is bilaterally c-dense in itself.
Theorem 2.2. (D) > ¢.

PROOF. Let {fy:a < ¢} C PJp. For a < ¢ and i < 2 define
Qai = {[a,b] N[(=1)" fa > 0] : a,b € R} \ {0},

and observe that by D2, card A = ¢ whenever A € Q,;. By [4, Lemma 5], there
is a family, {Thia : a < c¢,i < 2, A € Q4;}, composed of pairwise disjoint sets
of cardinality ¢, such that each T,;4 is a subset of A. For each «, i, and A,
let gaia: Taia — (0,00) be an arbitrary surjection. Define the function g by

(=1 (fa/gain)(x) ifx € Thin,a <c,i <2,A€ Qui,
g(z) = .
1 otherwise.

Evidently g is positive. We will show that each function f,/g is Darboux.

Let oo < ¢, a < b, and assume that (f,/g)(a) < (fo/g9)(b). (The other case
is analogous.) Fix a y € ((fa/9)(a), (fa/9(b))). We consider three cases.

If y = 0, then f,(a) < 0 < fo(b). So by D1, (fa/9)(x) = falz) = 0 for
some x € (a,b).

If y > 0, then fo(b) > 0,80 A = [a,b] N [fa > 0] # 0. Thus A € Quo.
Consequently, there is an x € Tphoa C [a,b] such that (fo/g)(2) = gaoa(z) = y.

We proceed similarly if y < 0. O

To prove the next theorem we need the following definition.

a(D) df min{cardf cFCRR& _‘(Elgvfe]-' f+ge D)}
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This cardinal was defined by Natkaniec [5] and was thoroughly examined by
Ciesielski and Miller [1]. It is well-known that ¢ < a(D) < 2°¢ [2]. Ciesielski and
Miller generalized this result by showing that cf(a(D)) > ¢. They also proved
that it is pretty much all that can be said about a(D) in ZFC, by showing that
a(D) can be equal to any regular cardinal between ¢t and 2°, and that it can
be equal to 2° independently of the cofinality of 2¢ [1]. (Actually, Ciesielski
and Miller showed these results for the family of functions almost continuous
in the sense of Stallings [8].)

Theorem 2.3. a(D) = min{card F : F C (0,00)* & =(3,Vser f/9 € D) }.

PRrooF. First we will prove that a(D) is not smaller than the right-hand side
of the above equality. Pick a family F C R® such that card F = a(D) and

Voerr Irer f+9 ¢ D. (1)
Let F* = {expof : f € F}. Then F* C (0,00)% and card F* = card F. We

will show that for each g: R — R\ {0} there is an f* € F* such that f*/g ¢ D.
Let g: R — R\ {0}. By (1), f —Ino|g| ¢ D for some f € F. Hence

expo(f —Inolgl) = (expof)/|g| ¢ D,

and consequently, (expof)/g ¢ D.
The proof of the opposite inequality is analogous. O

By Theorem 2.1, we have (0,00)F ¢ P/p. So, we obtain the following
corollary.

Corollary 2.4. (D) < a(D).

For a partially ordered set (P, <), we say that G C P is a P-filter, if

e for all p,q € G, there exists r € G with r < p and r < ¢, and

e forall p,g e P, if p € G and p < g, then g € G.

Define D C P to be dense, if for every p € P there exists ¢ € D with ¢ < p.
For a cardinal k and a poset P, define the following statements (Martin’s
Aziom for P and Lusin’s Aziom for P):

MA, (P): for any family ® of dense subsets of PP with card ® < k, there exists
a P-filter G such that D NG # @ for every D € D.
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Lus,(P): there exists a sequence (G, : a < k) of P-filters, called a k-Lusin
sequence, such that for every dense set D C P

card{a<m:GaﬂD:®}<n.

From now on, let
P={pe(0,00)*: X CR& card X < c}.

Define p < q if ¢ C p, i.e., if p extends ¢ as a partial function.

The proof of the next theorem is actually a repetition of argument used by
Ciesielski and Miller [1, Lemma 3.1].

Theorem 2.5. MA,(P) implies q(D) > .

PROOF. Assume MA, (P). By Theorem 2.2, we may assume that x > c.

First observe that for every z € R, the set D, = {p € P : z € domp}
is dense in P. Indeed, let x € R and p € P. If z € domp, then put ¢ = p;
otherwise let ¢ = p U {(x,1)}. Clearly ¢ € D, and ¢ < p.

Now we will show that for any f € D/D, y # 0, and a < b, if the set
[a,b] N [f/y > 0] is nonempty, then the set

nyab = {p elP: E|ac€[a,b]ﬁdomp p(x) = f(x)/y}

isdense in P. Let p e P, f € D/D, y > 0, a < b, and assume that [a,b] N
[f/y > 0] # 0. Since [ satisfies D2, card([a,b] N [f/y > 0]) = ¢. We have
carddom p < ¢; so there is an = € (a,b)N[f/y > 0]\ domp. Then the function
q=pU{(z, f(z)/y)} satisfies ¢ € Dyyap and g < p.

To show that q(D) > & pick a family of functions F C D/D with card F < k.
Define

D={D,: 2R} U{Dypyar: f € F,y#0,a <b,[a,b]N[f/y > 0] #0}.

Then D is a family of dense subsets of P and card® < k. Applying MA, (P)
we can find a P-filter G which meets every D € ®.

Let g = |JG. Evidently g is a function and g is positive. For every x € R,
we have D, NG # (; so dom g = R. We will show that each f/g is Darboux.
Let f € F, a < b, and assume that (f/g)(a) < (f/g)(b). (The other case is
analogous.) Fix a y € ((f/g)(a), (f/g)(b)). We consider three cases. If y = 0,
then f(a) < 0 < f(b). So by D1, (f/g)(z) = f(z) = 0 for some x € (a,b).
If y > 0, then f(b) > 0, so [a,b] N [f/y > 0] # 0. Since Dyyap NG # 0,
there are a p € G and an z € [a,b] N dom p such that p(x) = f(z)/y. Then
(f/9)(x) = (£/p)() = y.

We proceed similarly if y < 0. O
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To prove the next theorem we will use two other posets. Let
PP={pecR¥: X CR& card X < c},
and p < ¢ iff ¢ C p. Moreover let
P*={(p,E):peP, ECRE & card€ < ¢},

and define (p,€&) < (¢, F) ift

qCp, &EDF,and p(x) # f(z) for all x € domp \ domg and f € F.

Theorem 2.6. Suppose that k > ¢, k is reqular, and Lus,(P*) holds. Then
a(D) = a(D) = r.

PROOF. The inequality q(D) < a(D) follows by Corollary 2.4. The inequality
a(D) < k follows by [1, Lemma 3.2 and Theorem 2.1]. By [1, Lemma 3.3],
Lus,; (P*) implies MA,(P’). But the posets P and P’ are order isomorphic; so
MA,(P) holds. Now the inequality q(D) > & follows by Theorem 2.5. O

Ciesielski and Miller proved that the assumptions of Theorem 2.6 are in-
dependent of ZFC [1]. So, we have the following problem.

Problem. Can the equality q(D) = a(D) be proved in ZFC?
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