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AN INTERESTING NEW METRIC AND ITS
APPLICATIONS TO ALTERNATING

SERIES

Abstract

This paper presents one interesting metric discovered while studying
convergence of series with alternating signs. In previous papers [D1]
and [D2] we presented a study of ‘typical’ series with alternating signs.
Namely, given a sequence of real nonnegative numbers whose sum is
infinity we consider all different ways the signs plus or minus could be
put in front of each of these numbers. With a given metric we ask what
is the ‘size’ of the set of those choices of + or − for which the resulting
series with alternating signs converges. The term ‘size’ here means either
the Baire category or porosity of this set. While metrics studied before
as Frèchet, Baire or Euclidean allowed us to get interesting results, they
all share one undesirable property - insensitiveness to the change of a
‘tail’ of a sequence. The D-metric, introduced here, does not have this
undesirable property.

1 Introduction

The problem of relatively convergent series is studied in many monographs
and articles. We study the convergence of the series

∞∑
n=1

(−1)anbn, (1)

where (an)n∈N is a sequence of zeros and ones and (bn)n∈N is a sequence of
nonnegative real numbers. For fixed sequence (bn)n∈N we want to consider the
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sets

C = {(an)n∈N ∈ {0, 1}N; the series (1) converges},

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k |
k∑

n=1

(−1)anbn| ≤M}.

The set C contains all sequences (an)n∈N for which the series above converges,
whereas the set B contains sequences (an)n∈N for which the series (1) has
bounded partial sums. Clearly, C ⊂ B. The question what these sets are is
definitely nontrivial only if the series

∞∑
n=1

bn diverges, (2)

i.e., has sum infinity, because otherwise the series (1) is convergent for any
choice of (an)n∈N. Therefore (2) will be our standard assumption in the entire
paper.

Since we are working in the space {0, 1}N there are several choices of metrics
we can consider. In the paper [D1] we defined the function ϕ : {0, 1}N → [0, 1]
by

ϕ((an)n∈N) =
∞∑
n=1

an
2n
, for (an)n∈N ∈ {0, 1}N.

Then we put dE(a, b) = |ϕ(a)−ϕ(b)|. The function dE is a pseudometric on the
space {0, 1}N. By dropping all sequences of the form (a1, a2, .., an, 0, 1, 1, 1, . . . )
we get a set

M = {0, 1}N \ {(a1, a2, .., an, 0, 1, 1, 1, . . . ); ai ∈ {0, 1}, i = 1, 2, . . . , n}

on which dE is a metric. Moreover, (M, dE) is a complete metric space. We
will refer to dE as the Euclidean metric. The results in [D1] show that provided
(2) holds both sets C and B are of first Baire category on (M, dE). Moreover,
we also have result on the Lebesgue measure of the sets ϕ(C) and ϕ(B). The
measure of these set is either 0 or 1 (depending on the given sequence (bn)n∈N).
These results there are actually valid for any sequence (bn)n∈N from a Hilbert
space H.

In the paper [D2] we conducted a similar study for Frèchet (dF ) and Baire
(dB) metric. Here

dF (a, b) =
∞∑
n=1

1
2n

|an − bn|
1 + |an − bn|

, Frèchet metric,

dB(a, b) =

{
1

min{n∈N;an 6=bn} for a 6= b,

0 for a = b,
Baire metric.
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The major fault of the previous metrics comes from the fact that they
do not control the ‘tail’ of a sequence (an)n∈N. This means that given any
sequence (an)n∈N we can alter its tail completely arbitrarily. The new sequence
we get can be arbitrarily close the original one. It is however the ‘tail’ of the
sequence (an)n∈N that decides whether the corresponding series (1) converges
or not. This means that the metrics mentioned are not optimal for studying
convergence of (1).

It would be therefore desirable to find a metric on the space {0, 1}N which
does not possess this fault. We have managed to find such a metric. The pre-
cise definition is given bellow. This metric turns out to have some advantages
over the previous ones and gives us better tool for study the problem outlined
above.

2 The Definition of the D-metric

Here we give the definition of the D-metric. Although we mainly want to
study the space {0, 1}N, the definition is valid in any Banach space. Let X be
a Banach space and M ⊂ X be a closed bounded subset. M with the metric
inherited from X is a complete metric space. For the sequences

a = (a1, a2, a3, . . . ), and b = (b1, b2, b3, . . . ),

where all an and bn are from M , (i.e. a, b ∈ MN) we define the D-metric
dD(a, b) by

dD(a, b) = sup
{∣∣∣a1 − b1

1

∣∣∣, ∣∣∣a1 + a2 − b1 − b2
2

∣∣∣,∣∣∣a1 + a2 + a3 − b1 − b2 − b3
3

∣∣∣, . . .}. (3)

Here |.| means the norm in the space X. Clearly, the boundedness of the
set M guarantees that the number dD(a, b) is always well defined and finite.
We can also lift the condition of boundedness of M if we allow dD to take
infinite values. Or if we want to have finiteness of the metric we simply put
d̃D(a, b) = min{dD(a, b), 1}. The next theorem justifies our definition.

Theorem 2.1. Let X is a Banach space, M ⊂ X a closed bounded set. For
any a, b ∈MN if we define the function dD(a, b) by (3), then dD is a metric on
MN and (MN, dD) is a complete metric space. The same is true of the metric
d̃D = min{dD, 1} even if we drop the condition of boundedness of the set M .

Proof. The proof that dD is a metric is trivial. Let us for example check the
triangle inequality for dD. Take a, b, c ∈MN, we want to demonstrate that

dD(a, c) ≤ dD(a, b) + dD(b, c). (4)
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By the definition of dD for any k ∈ N we have∣∣∣∣a1 + a2 + · · ·+ ak − b1 − b2 − · · · − bk
k

∣∣∣∣ ≤ dD(a, b) and∣∣∣∣b1 + b2 + · · ·+ bk − c1 − c2 − · · · − ck
k

∣∣∣∣ ≤ dD(b, c).

Hence by the triangle inequality∣∣∣∣a1 + a2 + · · ·+ ak − c1 − c2 − · · · − ck
k

∣∣∣∣
≤
∣∣∣∣a1 + a2 + · · ·+ ak − b1 − b2 − · · · − bk

k

∣∣∣∣
+
∣∣∣∣b1 + b2 + · · ·+ bk − c1 − c2 − · · · − ck

k

∣∣∣∣ ≤ dD(a, b) + dD(b, c).

Taking supremum over all integers k yields (4).
Now we show that dD is a complete metric space. Assume that (An)n∈N

is a Cauchy sequence in MN. We will write An as An = (an1, an2, an3, . . . )
where ani belongs to M . From the definition of dD metric it follows that
|an1 − am1| ≤ dD(An, Am) which means that (an1)n∈N is a Cauchy sequence
in M . Similarly for an2 we get

|an2 − am2|
2

− |an1 − am1|
2

≤ |an1 + an2 − am1 − am2|
2

≤ dD(An, Am)

|an2 − am2| ≤ |an1 − am1|+ 2dD(An, Am).

By using induction and similar arguments we obtain that for all i ∈ N,
(ani)n∈N is a Cauchy sequence. Therefore we can put ai = limn→∞ ani. Since
M is a closed set, ai ∈M and hence the sequence A = (a1, a2, a3, . . . ) belongs
to MN. We want to show A = lim

n→∞
An. Let ε > 0. Then there is a k ∈ N

such that for all m,n ≥ k dD(An, Am) < ε. Then∣∣∣∣a1 + a2 + · · ·+ ai − an1 − an2 − · · · − ani
i

∣∣∣∣
= lim
m→∞

∣∣∣∣am1 + am2 + · · ·+ ami − an1 − an2 − · · · − ani
i

∣∣∣∣ ≤ ε.
Hence we have that d(A,An) ≤ ε for any n ≥ k giving us the desired result.
The case of the metric d̃D is analogous.

The next lemma gives us partial insight into the topology of the space
(MN, dD).
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Lemma 2.2. Consider the complete metric space (MN, dD). Let k be a pos-
itive integer, c a real number and (α1, α2, . . . αk) a finite sequence of real
numbers. Let

So = {(an)n∈N ∈MN; |α1a1 + α2a2 + · · ·+ αkak| > c},
Si = {(an)n∈N ∈MN; |α1a1 + α2a2 + · · ·+ αkak| < c}.

Then both sets So and Si are open subsets of the metric space (MN, dD).

Proof. First consider one special case: α1 = α2 = · · · = αk = 0. Clearly, for
c ≥ 0 we have So = ∅ and Si = MN and for c < 0 So = MN and Si = ∅. So
the lemma holds.

Now consider all remaining cases. We will prove this lemma only for the
set So since the proof for the other set is similar. Take any (an)n∈N ∈ So. We
need to show that there is an ε > 0 such that each sequence (bn)n∈N whose
distance from (an)n∈N is less than ε is also in So. Let

α = max{|α1|, |α2|, . . . |αk|} > 0,
δ = |α1a1 + α2a2 + · · ·+ αkak| − c.

Pick ε > 0 so small that dD(a, b) < ε =⇒ |ai − bi| < δ
kα for i = 1, 2, . . . , k.

Such ε always exists. Now we have

|α1b1 + α2b2 + · · ·+ αkbk|
=|α1a1 + α2a2 + · · ·+ αkak + α1(b1 − a1) + α2(b2 − a2) + · · ·+ αk(bk − ak)|
≥|α1a1 + α2a2 + · · ·+ αkak| − |α1||b1 − a1| − |α2||b2 − a2| − · · · − |αk||bk − ak|

>c+ δ − kα δ

kα
= c.

Hence the sequence (bn)n∈N is in So.
If we take M = {0, 1} ⊂ R, we can state the previous lemma for this space.

Corollary 2.3. Consider the complete metric space ({0, 1}N, dD). Let k be a
positive integer, c a real number and (α1, α2, . . . αk) a finite sequence of real
numbers. Let S+ and S− be the sets

S+ = {(an)n∈N ∈ {0, 1}N;α1a1 + α2a2 + · · ·+ αkak > c},
S− = {(an)n∈N ∈ {0, 1}N;α1a1 + α2a2 + · · ·+ αkak < c}.

Then both sets S+ and S− are open subsets of the metric space ({0, 1}N, dD).

It might also be interesting to compare all of these metrics on the space
{0, 1}N. We get dD ≥ dB ≥ dF ≥ 1

2dE . Since none of these inequalities
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can be reversed, these metrics are not equivalent. It is known however that
the Baire and Frèchet metrics generate the same topology on {0, 1}N. The
same is not true about the D-metric whose topology is different. This fol-
lows for example from the fact that the sequence (An)n∈N defined by An =
(1, 1, . . . , 1︸ ︷︷ ︸

n times

, 0, 0, . . . ), n = 1, 2, 3, . . . is Cauchy in dF , dB and dE but not in

dD.
The above inequalities also means that the space ({0, 1}N, dD) is the richest

one; i.e., it has more open sets than the other metric spaces considered.

3 Study of Interesting Properties of the D-Metric

In this section we extend the simple results about the D-metric from the
previous section. In the entire section we assume that

M ⊂ X is closed and bounded and contains a nonzero element. (5)

We want to define one very important notion.

Definition 3.1. Let M ⊂ X be a bounded set of a Banach space X. Let
(xn)∈N be a given sequence of elements of M . let

A = {a ∈ X; there is an increasing sequence (nk)k∈N of integers

such that
∗

lim
k→∞

x1 + x2 + · · ·+ xnk
nk

= a}.

We will call A ‘the set of limit averages in the sequence (xn)n∈N’. (Here
∗

lim denotes the limit in the weak topology of the space X.) If for a certain
sequence (xn)n∈N the set A has exactly one element for which we have

A((xn)n∈N) =
∗

lim
n→∞

x1 + x2 + · · ·+ xn
n

,

we call such an element A((xn)n∈N) the limit average of the sequence (xn)n∈N.

Remark. Of course if X is finite dimensional, the weak limit in the definition
of A can be replaced by the limit in the norm of X. If the space X is reflexive,
the set A must be nonempty, since any bounded convex set is compact in the
weak topology. Note that we used the calligraphic letter A to denote the set
and ordinary letter A to denote the unique weak limit of the Caesaro averages
of the sequence (xn)n∈N if such limit exists.
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Another way to write the set A is

A =
∞⋂
n=1

∞⋃
k=n

{
x1 + x2 + · · ·+ xk

k

}w
,

where the closure is taken in the weak topology.
In case when M = {0, 1} ⊂ R; i.e., (an)n∈N ∈ {0, 1}N we can also define

the following notion

Definition 3.2. Let (an)n∈N ∈ {0, 1}N. The lower (upper) density of ones in
the sequence (an)n∈N are

hL = lim n→∞
a1 + a2 + · · ·+ an

n
,

hU = lim n→∞
a1 + a2 + · · ·+ an

n
,

respectively. If those numbers are equal, we talk about the density of ones in
the sequence (an)n∈N and denote it by h or more precisely by h((an)n∈N).

The number h((an)n∈N) gives the ‘ratio’ between zeros and ones in the
sequence (an)n∈N. See [D3] for a more detailed treatment. The connection
between the notion of the density of ones in the sequence (an)∈N ∈ {0, 1}N
and the set A defined above is the following.

Take the set M to be M = {0, 1} and let xn = an. If A is defined
for (xn)n∈N as in Definition 3.1, then we have hU ((an)n∈N) = supA, and
hL((an)n∈N) = inf A. In particular h((an)n∈N) = 1

2 is equivalent to the fact
that the set A contains only one element and A((xn)n∈N) = 1

2 .
Now we return to the general case where X is a Banach space. In order to

be able to get results in this general setting we use continuous projections of
X onto its one dimensional subspaces. This considerably reduces the difficulty
of our analysis. It is a simple exercise about Banach spaces to prove following.

Proposition 3.3. Let L ⊂ X be any 1-dimensional subspace of X. Then
there is a continuous projection P : X → L for which P (L) = L. Moreover,
this projection can be chosen so that its norm is one.

Proof. Since L is a one dimensional subspace, it is spanned by a certain
element z ∈ X of a unit norm; i.e., L = {tz; t ∈ R}. If we define a mapping
S : L→ R by S(tz) = t, for all t ∈ R, then the map S is a linear isomorphism
between the subspace L and the real line R. Therefore the norm of this map
is one. Since L ⊂ X by the Hahn-Banach theorem there is a continuous linear
extension S̃ : X → R of S : L → R with norm one. Then P = S−1 ◦ S̃ is the
desired projection.
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For convenience in everything that follows we identify the one dimensional
subspace L defined above with the real line R; i.e., we do not distinguish
between the maps P and S̃ since via this identification their range space is
same. For this reason we can consider P as a map in X ′ the dual of X.

So for any linear and bounded map P : X → R we can consider the set
A from Definition 3.1 for the sequence (xn)n∈N ∈ MN and also AP - the set
from Definition 3.1 for the corresponding sequence (P (xn))n∈N ∈ RN. What
we see is that

P (A) ⊂ AP . (6)

We cannot guarantee equality here (at least not for spaces X which are not
reflexive) but (6) will suffice for our purposes. This indicates our next steps.
We concentrate on the setting when M ⊂ R, which is not so difficult, and then
generalize our results using (6).

For (xn)n∈N ∈ RN consider two numbers

AL((xn)n∈N) = inf A, and AU ((xn)n∈N) = supA.

If AL = AU their common value is exactly the number A((xn)n∈N) from
Definition 3.1. Now we are ready to prove this important lemma.

Lemma 3.4. Assume that (5) holds. Let (xn)n∈N ∈ MN be a given sequence
for which there is a P ∈ X ′ such that ε = AU ((P (xn))n∈N)−AL((P (xn))n∈N)
is positive. Then for any sequence (yn)n∈N in an open ball (in the D-metric)
of radius

ε

2|P |
(|P | is the norm of P in X ′) centered at (xn)n∈N we have

AU ((P (yn))n∈N)−AL((P (yn))n∈N) > 0.

Proof. Take any sequence (yn)n∈N for which dD(x, y) <
ε

2|P |
. There is a

δ > 0 such that dD(x, y) <
ε

2|P |
− δ

|P |
.

For any n ∈ N we have

P

(
y1 + y2 + · · ·+ yn

n

)
≤P

(
x1 + x2 + · · ·+ xn

n

)
+
∣∣∣∣P (y1 + y2 + · · ·+ yn − x1 − x2 − · · · − xn

n

)∣∣∣∣
≤P

(
x1 + x2 + · · ·+ xn

n

)
+
ε

2
− δ.
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Therefore

AL((P (yn))n∈N) = lim n→∞P

(
y1 + y2 + · · ·+ yn

n

)
≤ AL((P (xn))n∈N)+

ε

2
−δ.

Also

AU ((P (yn))n∈N) = lim n→∞P

(
b1 + b2 + · · ·+ bn

n

)
≥ AU ((P (xn))n∈N)−ε

2
+δ.

Together we get

AU ((P (yn))n∈N)−AL((P (yn))n∈N) ≥
≥AU ((P (xn))n∈N)−AL((P (xn))n∈N)− ε+ 2δ = 2δ > 0.

Now we can establish one quite interesting result:

Theorem 3.5. Let X be a Banach space. Assume that for M ⊂ X (5) holds
and M contains at least two distinct elements. Let F ⊂ X be a closed subset
of the space X. Then the set

TF = {(xn)n∈N ∈MN; A(xn)n∈N exists and A((xn)n∈N) ∈ F} (7)

is closed and nowhere dense in the complete metric space (MN, dD). (The
definition of A(xn)n∈N is given in 3.1.)

Proof. First we establish that the set TF is closed. We look at the comple-
ment of this set.

G = MN \ TF = {(xn)n∈N; the weak limit A((xn)n∈N)
does not exist or exists but is not in F }.

We want to show that this set G is an open set in our metric space. Pick
any (xn)n∈N ∈ G. We want to find a ε > 0 such that all sequences in a ball of
radius ε centered at (xn)n∈N are also in G. There are two possibilities for our
sequence. Either A = A(xn)n∈N does not exist or A /∈ F .

First consider the case A does not exist. Then there is a P ∈ X ′ such that

the sequence P
(
x1 + x2 + · · ·+ xn

n

)
for n = 1, 2, . . . does not converge and

therefore AU ((P (xn))n∈N) − AL((P (xn))n∈N) > 0. Lemma 3.4 takes care of
the rest.

Consider now the other case; i.e., let A((xn)n∈N) exists for (xn)n∈N ∈ G,
but A /∈ F . Since the set F is closed in X, there is a ε > 0 such that for
all Ã we have |Ã − A| < 2ε =⇒ Ã /∈ F. Take any sequence (yn)n∈N for
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which d(x, y) < ε. If Ã = A((yn)n∈N) does not exist, we are done since then
necessarily (yn)n∈N ∈ G. On the other hand, if Ã exists then we will show
that |Ã−A| < 2ε, and thus (yn)n∈N ∈ G. To see this, we assume the contrary;
i.e., |Ã− A| ≥ 2ε. Let z = Ã− A. Consider the line L = {tz; t ∈ R} spanned
by z. By Proposition 3.3 there is a projection O of X onto L with norm one.
If we identify L with R via the map T : L → R also of the norm one, for
P = T ◦O ∈ X ′ we get

|P (Ã)− P (A)| = |P (z)| = |O(z)| = |z| = |Ã−A| ≥ 2ε. (8)

Clearly, the norm of the map P is also one. Then

|P (Ã)− P (A)| = lim
n→∞

∣∣∣∣P (y1 + y2 + · · ·+ yn − x1 − x2 − · · · − xn
n

)∣∣∣∣
≤ |P |ε = ε.

This contradicts (8) and therefore |Ã− A| ≥ 2ε cannot hold. This completes
the proof of the first part of the theorem.

Now we want to establish that the set, TF , defined in (7) is nowhere dense.
Let (xn)n∈N be any sequence that belongs to TF and ε > 0 be a positive
number. We want to show that in a ball of radius ε centered at (xn)n∈N there
is a sequence (yn)n∈N 6∈ TF . We do this by showing that for certain P ∈ X ′

AL((P (yn))n∈N) < AU ((P (yn))n∈N). (9)

Constructing the sequence (yn)n∈N is very simple. It will be defined by slightly
modifying (xn)n∈N. For given ε > 0 we find a positive integer k such that
1
2k

<
ε

2K
, where K = diam(M) is the diameter of the set M . Since the set M

contains at least two elements we can find P ∈ X ′ of norm 1 such that for some
m0,m1 ∈ M P (m1) > 0 and P (m0) < P (m1). Let c = 1

2 (P (m0) + P (m1)).
For each j ≥ k + 1 there are at least 2j−k numbers bigger or equal to c or at
least 2j−k numbers less than c among

P (x2j+1), P (x2j+2), P (x2j+3), . . . , P (x2j+2j ).

Hence we can sort out all integers j ≥ k + 1 into two increasing sequences of
integers u1 < u2 < u3 < . . . and v1 < v2 < v3 < . . . such that an integer
j ≥ k+ 1 is in the sequence (un)n∈I1 if there are at least 2j−k numbers bigger
or equal to c among P (x2j+1), P (x2j+2), . . . , P (x2j+2j ), and in the sequence
(vn)n∈I2 otherwise. Of course it is possible that one of these two sequences is
finite but at least one of them must be infinite. Without loss of generality we
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assume that this is true for the sequence (un)n∈I1 . So the set of indices I1 is
just N.

Now we begin to define our sequence (yn)n∈N. First we put

yn =

{
xn, for n = 1, 2, . . . , 2k+1,
xn, if 2vj < n ≤ 2vj+1 for some j ∈ I2.

It remains to define (yn)n∈N for 2uj < n ≤ 2uj+1, j = 1, 2, 3, . . . . From the
definition of the number uj there are indices

2uj + 1 ≤ n1 < n2 < n3 < . . . nlj < 2uj+1,

where lj = 2uj−k such that the numbers P (xn1), P (xn2), . . . , P (xnlj ) are big-
ger or equal to c. Now we consider the number∣∣∣∣x1 + x2 + · · ·+ x2uj − y1 − y2 − · · · − y2uj

2uj

∣∣∣∣ . (10)

If this number is less than αj (defined later) we put

yn =

{
xn, 2uj < n ≤ 2uj+1 and n /∈ {n1, n2, . . . , nlj},
m0, n ∈ {n1, n2, . . . , nlj}.

Otherwise, we just take yn = xn, 2uj < n ≤ 2uj+1.
The sequence (αj)j∈N is defined by

αj =


ε
2 −

K
2k
, for j = 1,

αj−1, if (10) for j − 1 is bigger or equal to αj−1,
αj−1

2 , if (10) for j − 1 is less than αj−1.

Since the sequence (αj)j∈N is constant as long as (10) is greater of equal to
αj , eventually for sufficiently large j (10) will become smaller than αj . This
means that lim

j→∞
αj = 0.

Now the sequence (yn)n∈N is defined everywhere. It remains to show that
this sequence is ε-close to (xn)n∈N and that (9) holds. Let us first demonstrate
(9). For each j for which (10) is less that αj we have changed exactly 2uj−k

terms of the sequence (xn)n∈N. Therefore we have

P (x1) + P (x2) + · · ·+ P (x2uj+1)− P (y1)− P (y2)− · · · − P (y2uj+1)
2uj+1

≥
2uj−k P (m1)−P (m0)

2

2uj+1
≥ P (m1)− P (m0)

2k+2
.
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From this we deduce

AU ((P (xn))n∈N) ≥ AL((P (yn))n∈N) +
P (m1)− P (m0)

2k+2
.

On the other hand since (10) is less than αj and this sequence goes to zero, we
get AL((P (xn))n∈N) ≤ AU ((P (yn))n∈N). Together, since AU ((P (xn))n∈N) =
AL((P (xn))n∈N) = P (A((xn)n∈N)) we get the desired conclusion.

AU ((P (yn))n∈N)−AL((P (yn))n∈N) ≥ P (m1)− P (m0)
2k+2

> 0.

To see that both sequences are close to each other in dD metric let us
evaluate ∣∣∣∣y1 + y2 + y3 + · · ·+ yn − x1 − x2 − x3 − · · · − xn

n

∣∣∣∣ . (11)

We can see that it suffices to look at n ∈ N between 2uj < n ≤ 2uj+1, for
some j = 1, 2, 3, . . . . This is because only for such n it could happen that
xn 6= yn, which means the numerator of the quotient (11) could increase.
Assume therefore that we have a index j for which (10) is less than αj . Then
for any 2uj < n ≤ 2uj+1 we get∣∣∣∣y1 + y2 + · · ·+ yn − x1 − x2 − · · · − xn

n

∣∣∣∣
≤
∣∣∣∣y1 + y2 + · · ·+ y2uj − x1 − x2 − · · · − x2uj

2uj

∣∣∣∣
+
∣∣∣∣y2uj+1 + y2uj+2 + · · ·+ y2uj+1 − x2uj+1 − x2uj+2 − · · · − x2uj+1

2uj

∣∣∣∣
<
ε

2
− K

2k
+

2uj−k

2uj
K =

ε

2
.

From this dD(a, b) < ε follows immediately. So our theorem holds.

A careful look at the proof of the previous theorem reveals that we have
much more than just ‘TF is nowhere dense’. Actually, we established that the
set TF is porous. Recall the definition of a porous set.

Definition 3.6. Let E be a set in a metric space. Given the number c ∈ (0, 1]
we say that a point x0 ∈ E is a c-porosity point of the set E if there exists a
sequence of open balls Bk with radius rk → 0 centered at x0 such that for each
k there is a ball Gk of radius ρk for which Gk ⊂ Bk \ E and lim k→∞

ρk
rk
≥ c.

We say x0 is a porosity point of the set E0 provided it is a c-porosity point
of the set E0 for some c > 0. The set E is said to be porous (c-porous) if any
its point is a porosity (c-porosity) point of E.
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Remark. If in the definition of a point of c-porosity we require that for any
ball Br of radius r > 0 centered at x0 there is a ball Gr of radius ρ(r) > 0
such that Gr ⊂ Br \E and lim r→0+

ρ(r)
r ≥ c, then x0 is said to be very porous

point of E. Following the previous definition we can define a very porous and
c-very porous set, respectively.

Theorem 3.7. Let X be a Banach space. Assume that M ⊂ X satisfies (5)
and contains at least two distinct elements. Let F ⊂ X be a closed subset of
the space X. Then the set

TF = {(xn)n∈N ∈MN; A(xn)n∈N exists and A((xn)n∈N) ∈ F}

is closed and c-very porous in the complete metric space (MN, dD). The num-
ber c > 0 depends only on the Banach space X and the set M .

Proof. This proof makes use of the construction given it the previous theo-
rem. The key is to realize that P ∈ X ′ picked in the second part of the proof
depends only on the chosen set M . Choose any (xn)n∈N in TF . For any integer

k ≥ 2 if we put εk =
K

2k−2
then

1
2k

<
εk
2K

. (K is again the diameter of the set

M). According to the previous construction there is a sequence (yn)n∈N in a
ball of radius less that εk such that

AU ((P (yn))n∈N)−AL((P (yn))n∈N) ≥ P (m1)− P (m0)
2k+2

> 0.

We take Bk = {(zn)n∈N; d(x, z) < 2εk}, and

Gk =
{

(zn)n∈N; d(y, z) <
1
2
P (m1)− P (m0)

2k+2

}
.

Since the norm of P in the previous theorem was one, according to Lemma 3.4
any sequence (zn)n∈N ∈ Gk is not in the set TF . Therefore we getGk ⊂ Bk\TF .
Clearly, if we put now

rk = r(Bk) = 2εk =
K

2k−3
,

ρk = r(Gk) =
P (m1)− P (m0)

2k+3
,

then

lim k→∞
ρk
rk
≥ lim
k→∞

P (m1)− P (m0)
2k+3

K

2k−3

=
P (m1)− P (m0)

64K
> 0.
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This proves c-porosity. But c
2 -very porosity of the set TF follows from this

immediately, we just have to realize that for any r > 0 small there is k ∈ N
such that

r ≥ εk >
r

2
.

Hence for such k, Gk ⊂ Gr. Now, in the definition of very porosity we take
ρ(r) = ρk and get an estimate

lim r→0+
ρ(r)
r
≥ lim k→∞

ρk
2εk
≥ lim
k→∞

P (m1)− P (m0)
2k+3

2
K

2k−3

=
P (m1)− P (m0)

128K
> 0.

The theorem above has an important corollary if we take M = {0, 1}.

Corollary 3.8. Let c ∈ [0, 1] be a real number. The set

Tc = {(an)n∈N ∈ {0, 1}N;h((an)n∈N) = c}

is closed, nowhere dense and 1
16 -very porous in the metric space ({0, 1}N, dD).

(One can get the constant 1
16 if we closely follow the proof of Theorem 3.7 for

this special case M = {0, 1}. One also gets 1
8 -porosity of the set Tc).

We can also establish a variant of Corollary 3.8.

Proposition 3.9. Let 0 ≤ h0 ≤ h1 ≤ 1 be given numbers. Then the set

{(an)n∈N ∈ {0, 1}N;h0 ≤ hL((an)n∈N) ≤ hU ((an)n∈N) ≤ h1}

is closed in the complete metric space ({0, 1}N, dD).

Since the proof is practically identical with the proof of Theorem 3.6 (mak-
ing use of Lemma 3.4) we omit it.

4 Application to Series with Alternating Signs

Now we are ready to establish several results about the ‘size’ of the sets C and
B in the D-metric for the series (1) analogous to those stated for a Frèchet,
Baire and Euclidean metrics in [D1] and [D2]. Here we make use of several
results which can be found in [C], [D3], [H] and [Z]. Our first result says when
these sets are porous in the metric space ({0, 1}N, dD).
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Theorem 4.1. Let (bn)n∈N be a nonincreasing sequence of real numbers for
which lim n→∞nbn > 0 and limn→∞ bn = 0. Then the set

C = {(an)n∈N ∈ {0, 1}N; series (1) converges}

is nowhere dense and 1
16 -very porous in the complete metric space ({0, 1}N, dD).

If lim
n→∞

nbn =∞, then also the set

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k |
k∑

n=1

(−1)anbn| ≤M}

is nowhere dense and 1
16 -very porous in the complete metric space ({0, 1}N, dD).

Moreover, this set is of type Fσ in this space.

Proof. According to [C] or Theorem 3.4 of [D3] if for such sequence (bn)n∈N
the series

∞∑
n=1

(−1)anbn (1)

converges, then necessarily h((an)n∈N) = 1
2 . Therefore C ⊂ T 1

2
. If lim

n→∞
nbn =

∞ we have the same result for the set B. (In the notation of paper [D3]
d((an)n∈N) is our 1−h((an)n∈N). Hence d((an)n∈N) = 1

2 ⇐⇒ h((an)n∈N) = 1
2 ).

Then corollary 3.8 with c = 1
2 gives us our result.

Now one can work on this result in two different directions. Clearly, if the
assumptions of Theorem 4.1 hold then C ⊂ T 1

2
and T 1

2
is a closed set and hence

a complete metric space with topology inherited from ({0, 1}N, dD). Therefore
we can ask what is the ‘size’ of the set C in this much smaller metric space.
We will address this issue in the next theorem.

The other possible improvement of Theorem 4.1 would be lifting of the
condition

lim n→∞nbn > 0. (12)

We address this question later. It is also interesting to compare condition (12)
with condition (SLPS) from the paper [D2]. As proved there, if (bn)n∈N is
nonincreasing, then (SLPS) and (12) are equivalent. Let us recall that in the
paper mentioned we have showed that (SLPS) implies that the sets C and B
are σ-very porous in ({0, 1}N, dB). Now we have similar result for the D-metric
with one restriction - monotonicity of the sequence (bn)n∈N. It would certainly
be interesting to try to lift this assumption, as well.
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Theorem 4.2. Let (bn)n∈N be a nonincreasing sequence of real numbers tend-
ing to zero satisfying the condition (12). Then the set

C = {(an)n∈N; series (1) converges}

is of the first Baire category in the complete metric space (T 1
2
, dD). If also

lim
n→∞

nbn =∞ then we have the same result for the set

B = {(an)n∈N; ∃M > 0 ∀k |
k∑

n=1

(−1)anbn| ≤M}.

This set B is also of type Fσ in this space.

Proof. Define B 1
2

= B ∩ T 1
2
. Then we have C ⊂ B 1

2
⊂ T 1

2
. If we prove the

statement of the theorem for the set B 1
2
, we are done. Write therefore

B 1
2

=
∞⋃
M=1

∞⋂
k=1

{
(an)n∈N ∈ T 1

2
;

∣∣∣∣∣
k∑

n=1

(−1)anbn

∣∣∣∣∣ ≤M
}
.

We define Fi by

Fi =
∞⋂
k=1

{
(an)n∈N ∈ T 1

2
;

∣∣∣∣∣
k∑

n=1

(−1)anbn

∣∣∣∣∣ ≤ i
}
.

Clearly, B 1
2

= ∪Fi. The sets Fi are closed in the space (T 1
2
, dD) by Corollary

2.3 (Namely, the complement of Fi could be written as a union of open sets
from this corollary). Thus B 1

2
is a Fσ set. It remains to show that each Fi is

a nowhere dense set.
Take any sequence (an)n∈N ∈ Fi. We want to show that for any ε > 0

there is another sequence (dn)n∈N ∈ T 1
2

such that dD(a, d) < ε and d =
(dn)n∈N /∈ Fi. Here we will make use of Example 3.6 and Corollary 3.7 from
[D3]. According to them for any nonincreasing sequence (bn)n∈N tending to
zero whose sum is infinity there is a sequence (cn)n∈N ∈ T 1

2
; i.e., h((cn)n∈N) =

1
2 for which

lim k→∞

k∑
n=1

(−1)cnbn = +∞ and lim k→∞

k∑
n=1

(−1)cnbn = −∞. (13)

We define the sequence (dn)n∈N using both (an)n∈N and (cn)n∈N. Let k be
a integer specified later and put

dn =

{
an, for n ≤ k,
cn, for n > k.
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The claim is that for k big enough sequences (an)n∈N and (dn)n∈N are close.
To see this pick the integer k such that we have

∀n ≥ k :
∣∣∣∣a1 + a2 + · · ·+ an

n
− 1

2

∣∣∣∣ < ε

4
, and

∣∣∣∣c1 + c2 + · · ·+ cn
n

− 1
2

∣∣∣∣ < ε

4
.

From this for any n > k we have an estimate∣∣∣∣d1 + d2 + · · ·+ dn − a1 − a2 − · · · − an
n

∣∣∣∣
=
∣∣∣∣ck+1 + ck+2 + · · ·+ cn − ak+1 − ak+2 − · · · − an

n

∣∣∣∣
=
∣∣∣∣c1 + c2 + · · ·+ cn

n
− a1 + a2 + · · ·+ an

n
+
a1 + · · ·+ ak

n
− c1 + · · ·+ ck

n

∣∣∣∣
≤
∣∣∣∣c1 + c2 + · · ·+ cn

n
− 1

2

∣∣∣∣+
∣∣∣∣12 − a1 + a2 + · · ·+ an

n

∣∣∣∣+
∣∣∣∣a1 + · · ·+ ak

n
− k

2n

∣∣∣∣
+
∣∣∣∣ k2n − c1 + · · ·+ ck

n

∣∣∣∣ ≤ ε

4
+
ε

4
+
k

n

ε

4
+
k

n

ε

4
< ε.

For n ≤ k there is no difference between the sequences (an)n∈N and (dn)n∈N.
Together this yields dD(a, d) < ε. The sequence (dn)n∈N clearly does not
belong to any Fi since the tails of the sequences (dn)n∈N and (cn)n∈N are
same and for the sequence (cn)n∈N we have (13).

Now we want to lift condition (12). We first prove the following auxiliary
result.

Proposition 4.3. Let (bn)n∈N be a nonincreasing sequence tending to zero
whose sum is infinity. Let (an)n∈N ∈ {0, 1}N be a given sequence for which the
series

∑∞
n=1(−1)anbn has bounded partial sums (i.e. belongs to B). Then for

any ε > 0 there is a sequence (cn)n∈N ∈ {0, 1}N such that dD(a, c) < ε and∑∞
n=1(−1)cnbn diverges either to +∞ or −∞.

Proof. The sequence (cn)n∈N will be defined by a slight modification of the
given sequence (an)n∈N. The idea behind our construction will be similar to
the one used the proof of Theorem 3.5. Our first claim is that

∞∑
i=1

2ib2i =∞. (14)
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To see this consider
∞∑
i=0

2ib2i = b1 + (b2 + b2) + (b4 + · · ·+ b4︸ ︷︷ ︸
4 times

) + (b8 + · · ·+ b8︸ ︷︷ ︸
8 times

) + . . .

≥ b1 + (b2 + b3) + (b4 + b5 + · · ·+ b7) + (b8 + b9 + · · ·+ b15) + . . .

=
∞∑
n=1

bn =∞.

Now take any given ε > 0 and find a positive integer k such that
1
2k

<
ε
2 . For each j ≥ k + 1 there are at least 2j−k zeros or at least 2j−k ones
among the numbers a2j+1, a2j+2, a2j+3, . . . , a2j+2j . Now we sort out the set
of the integers j ≥ k + 1 into two increasing sequences of integers x1 < x2 <
x3 < . . . , and y1 < y2 < y3 < . . . , such that an integer j ≥ k + 1 is in
the sequence (xn)n∈I1 if there are at least 2j−k zeros among the numbers
a2j+1, a2j+2, a2j+3, . . . , a2j+2j , and in the sequence (yn)n∈I2 otherwise. Of
course it is possible that one of these two sequences is finite. But by (14)

∞ =
∞∑

j≥k+1

2jb2j+1 =
∑
n∈I1

2xnb2xn+1 +
∑
n∈I2

2ynb2yn+1 .

This means that at least one of the sums on the right hand side is infinite.
Without loss of generality assume that this is true for the first one. It follows
that the sequence (xn)n∈I1 is infinite and the set of indices I1 is just N. Now
we can define our sequence (cn)n∈N. First we put

cn =

{
an, for n = 1, 2, . . . , 2k+1,
an, if 2yj < n ≤ 2yj+1 for some j ∈ I2.

So it remains to define (cn)n∈N for 2xj < n ≤ 2xj+1, j = 1, 2, 3, . . . . From
the definition of the number xj there are at least 2xj−k zeros among the
numbers a2xj+1, a2xj+2, a2xj+3, . . . , a2xj+1 . Among those zeros pick exactly the
first 2xj−k of them and change them to ones. For the remaining numbers n
just take cn = an. Now the sequence (cn)n∈N is defined everywhere. It remains
to be seen that such a sequence gives rise to a divergent series (to −∞) and
that its distance from (an)n∈N in the D-metric is less than ε.

First let us look at the convergence of such series. We know that the
original sequence (an)n∈N gave us a series (1) with bounded partial sums
which means that there exist M > 0 such that |sn| =

∣∣∣∑n
k=1(−1)akbk

∣∣∣ ≤ M,

for n = 1, 2, . . . . Therefore we have
∑∞
n=1(−1)cnbn ≤ M −

∑
n∈N;cn 6=an 2bn.
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If we prove that
∑
n∈N;cn 6=an bn = ∞, then we are done, since the divergence

of the series
∑∞
n=1(−1)cnbn to −∞ follows. Among the numbers n between

2xj < n ≤ 2xj+1 there are exactly 2xj−k of them for which cn 6= an. This and
the monotonicity of (bn)n∈N gives us∑

n∈N;cn 6=an

bn ≥
∞∑
j=1

2xj−kb2xj+1 ≥ 1
2k

∞∑
j=1

2xj b2xj+1 =∞.

The last equality comes from the way the sequence (xj)j∈N was picked.
We show now, that the series (cn)n∈N is not ‘far away’ from (an)n∈N in the

D-metric. To see this let us evaluate
c1 + c2 + c3 + · · ·+ cn − a1 − a2 − a3 − · · · − an

n
.

We can see that the critical n where this number has to be estimated are those
n between 2xj < n ≤ 2xj+1 for some j = 1, 2, 3, . . . , because only there could
an 6= cn. For such n we get

c1 + · · ·+ cn − a1 − · · · − an
n

=

n∑
i=1,ci 6=ai

1

n
≤

j∑
i=1

2xi−k

2xj
<

1
2k

2xj+1

2xj
≤ 2

2k
< ε.

Hence dD(a, c) < ε follows.

This result leads to the final assertion.

Theorem 4.4. Let (bn)n∈N be a nonincreasing sequence tending to zero whose
sum is infinity. Then the sets

C = {(an)n∈N ∈ {0, 1}N; series (1) converges},

and

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k
∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤M},

are of the first Baire category the complete metric space ({0, 1}N, dD). The set
B is also of type Fσ in this space.

Proof. Again it is sufficient to prove our theorem only for the set B since
C ⊂ B. Write the set B as in the proof of Theorem 4.2

B =
∞⋃
M=1

∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤M}.
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We define Fi by Fi =
⋂∞
k=1

{
(an)n∈N;

∣∣∣∑k
n=1(−1)anbn

∣∣∣ ≤ i
}
. Then clearly,

B = ∪Fi. The sets Fi are again closed. It remains to be seen that they are
nowhere dense.

Take any sequence (an)n∈N ∈ Fi. We want to show that for any ε > 0 there
is another sequence (cn)n∈N such that d(a, c) < ε and c = (cn)n∈N /∈ Fi. But
the existence of such sequence is guaranteed by Proposition 4.3 and therefore
the set Fi is indeed nowhere dense. Hence our theorem is proved.

As examples of series where previous theorems are applicable could serve

∞∑
n=1

(−1)an
1
n

or
∞∑
n=2

(−1)an
1

lnn
.
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