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Abstract

We extend additive set-valued set functions and normal multimea-
sures defined on a ring of subsets. We also prove a Carathéodory-Hahn-
Kluvanek-type theorem for additive set-valued set functions. Finally,
we establish results on the extension of transition multimeasures.

1 Introduction

The theory of set-valued measures (multimeasures) is a natural extension of
the classical theory of vector measures, where the set function is allowed to
become set-valued instead of single-valued. The study of multimeasures was
first motivated by the needs of mathematical economics and, in particular, the
search for equilibria in exchange economies with production, in which coali-
tions are the primary economic units (see [31] and [13]). From this point of
departure, Godet-Thobie has developed the subject of multimeasures exten-
sively during 1970 to 1975 in a series of papers ([16], [17], [18], [19], [20])
culminating in her Ph.D-thesis [21] in 1975. The subject of multimeasures has
since then attracted the interest of many mathematicians, who contributed
important results, both in theory and in applications, in the fields of control
systems, statistics, mathematical economics, game theory, etc.

Loosely speaking, one calls M a multimeasure if the range space X is (at
least) a commutative topological group and M is suitably countably additive.
Central to the approaches that have been taken appear to be the definitions of
convergence of an infinite sum of subsets of X. Furthermore, different types
of approaches can be distinguished according to the range space including the
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values of the multimeasures. Significant contributions to the study of multi-
measures were made by Artstein [3], Debreu and Schmeidler [13], Schmeidler
[30], Wenxiu, Jifeng and Aijie [33] for Rn-valued multimeasures, by Aló, de
Korvin and Roberts [1,2], Costé [6-9], Hiai [22], Papageorgiou [26-29] and
Kandilakis [23] for Banach space-valued multimeasures and by Castaing [5],
Costé and Pallu de la Barriére [10,11] and Godet-Thobie [19,21] for multimea-
sures with values in a locally convex vector space.

The extension problem for countably additive scalar measures has its roots
in integration theory. To apply the Lebesgue construction it was necessary to
extend scalar set functions, usually defined explicitly only on a ring, to the
sigma-algebra of measurable sets. However, the extension problem for vector
measures has had a more difficult development. The most inclusive statement
about the extension theorem for vector measures has been given by Kluvanek
[24]. On the other hand, the extension of set-valued set functions (and in
particular additive set-valued set functions) has been neglected. While results
on the extension of additive set-valued set functions are basically nonexistent,
only two approaches on the extension of multimeasures were thus far estab-
lished. In [23] Kandilakis considered the extension of Banach space-valued
multimeasures while in [33] Wenxiu, Jifeng and Aijie proved extension results
for multimeasures with values in a finite-dimensional space. In this paper it
is our purpose to study the extension of additive set-valued set functions and
multimeasures in general. We also establish results on the extension of tran-
sition multimeasures; i.e., multimeasures parametrized by the elements of a
measurable space. Transition multimeasures are useful in the study of Markov
temporary equilibrium processes in dynamic economies (see Blume [4]).

The organization of the paper is as follows.

We start by establishing the necessary notations and definitions that go
along with the subject of multimeasures. In the second section we look at
the extension of set-valued set functions defined on a ring of subsets. In
particular, we establish results on the extension of additive set-valued set
functions and normal multimeasures. In the last section our multimeasures are
now defined on an algebra of subsets and are being extended to the generated
sigma-algebra. In the process we will give a Carathéodory-Hahn-Kluvanek-
type theorem for additive set-valued set functions (see Theorem 2 on page 27 of
[14]), thereby extending the corresponding result (Theorem 2.6) of Kandilakis
[23] to additive set-valued set functions (see also Corollary 3 on page 28 of
[14]). In the last section we extend transition multimeasures.
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2 Preliminaries

Let T be a non-empty point set on which no topological structure is required
and let X be a linear topological space with topological dual X ′. We denote
by P(X) the class of all nonempty subsets of X. Furthermore, by Pf(b)(X)
(respectively, Pk(X)) we will denote the closed (bounded) (respectively, com-
pact) sets in P(X). A c after f(b) or k will mean that the set is in addition
convex. A w in front of f(b) (respectively, k) means that the closedness (re-
spectively, compactness) is with respect to the weak topology w(X,X ′).

We now let (X, d) be a metric space. Then the distance between a point
x ∈ X and a non-empty set A ⊆ X is defined as d(x,A) = inf{d(x, a) |
a ∈ A}. Furthermore, for any A,B ∈ Pk(X), we define their Hausdorff semi-
metric by d(A,B) = sup{d(a,B) | a ∈ A}, and their Hausdorff metric by
H(A,B) = max{d(A,B), d(B,A)}. In addition, we put ‖A‖ = H(A, {0})
(the norm of the set A). Whenever we refer to the metric space Pk(X), it
must be understood that Pk(X) is equipped with the Hausdorff metric H.

For A ∈ P(X), we let A denote the closure of A and coA denote the closed
convex hull of A. For all x′ ∈ X ′, we set σ(x′, A) = sup{(x′, x) | x ∈ A} (the
support function of A).

Unless otherwise specified we will assume that A is an arbitrary nonempty
class of subsets of T . By a set-valued set function we mean a relation defined
on A and with values in P(X). Furthermore, if A,B ∈ P(X), then we put

A+B = {a+ b | a ∈ A, b ∈ B}.

Definition 2.1. If X is a linear topological space, then a set-valued set func-
tion M : A → P(X) is said to be punctually additive if

M(A ∪B) = M(A) +M(B)

for every pair A,B ∈ A of disjoint sets such that A ∪B ∈ A.

Definition 2.2. If X is a linear topological space, then a set-valued set func-
tion M : A → Pf (X) is said to be additive if

M(A ∪B) = M(A) +M(B)

for every pair A,B ∈ A of disjoint sets such that A ∪B ∈ A.

As for single-valued set functions we have the concept of countable addi-
tivity: We say that a set-valued set function M : A → P(X) is countably
additive if

M(
∞⋃
k=1

Ak) =
∞∑
k=1

M(Ak),
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for every sequence (Ak) ⊆ A of mutually disjoint sets such that ∪∞k=1Ak ∈ A.
Depending on how we define the above infinite sum we obtain different notions
of countably additivity, as will be seen below.

For the rest of this section we consider (T,S) ((Ω, T ), respectively), where
S (T , respectively) is a σ-ring of subsets of T (Ω, respectively). By a multimea-
sure we mean a countably additive set-valued set function M : S → P(X) such
that M(∅) = {0}. In particular, we will differentiate between the following
types of multimeasures:

Definition 2.3. If X is a linear topological space, then a set-valued set func-
tion M : S → P(X) is called a strong multimeasure if

(a) M(∅) = {0} and M is punctually additive;

(b) for every xk ∈ M(Ak) the series Σ∞k=1xk is unconditionally convergent
and

M

( ∞⋃
k=1

Ak

)
=
{
x ∈ X | x =

∞∑
k=1

xk, xk ∈M(Ak)
}
.

Definition 2.4. If X is a linear topological space, then a set-valued set func-
tion M : S → Pf (X) is called a normal multimeasure if

(a) M(∅) = {0} and M is additive;

(b) for every sequence (Ak) ⊆ S of mutually disjoint sets such that A =
∪∞k=1Ak, we have that

lim
n→∞

H
(
M(A),

n∑
k=1

M(Ak)
)

= 0.

Definition 2.5. If X is a linear topological space, then a set-valued set func-
tion M : S → Pf (X) is called a weak multimeasure if

(a) M(∅) = {0};

(b) for every x′ ∈ X ′ the set function A 7→ σ(x′,M(A)) is a signed measure
with values in R ∪ {+∞}.

As for single-valued measures we have the notion of total variation of a
set-valued set function. Let X be a normed space and suppose that M : A →
P(X) is a set-valued set function such that M(∅) = {0} if ∅ ∈ A. For every
A ⊆ T we define the variation of M on A, denoted by v(M,A), by

v(M,A) = sup
I

∑
i∈1

‖M(Ai)‖,
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where the supremum is taken for all the families (Ai)i∈I ⊆ A of mutually
disjoint sets contained in A. The set function v(M) is called the variation of
M and the restriction of v(M) to the class A will again be denoted by v(M).
We say that M : A → P(X) is of bounded variation (with respect to A) if
v(M,A) < ∞ for every A ∈ A. If M : S → P(X) is a strong multimeasure,
then the variation v(M) of M is a positive measure (see Proposition 1.1 on
page 98 of [22]).

A set A ∈ S is said to be an atom for a multimeasure M : S → P(X)
if M(A) 6= {0} and if either M(B) = {0} or M(A\B) = {0} holds for every
B ⊆ A,B ∈ S. We say that M is atomic if there exists at least one atom in
S, and that M is non-atomic if there are no atoms in S.

If µ : S → X is a positive measure on S, then we say thatM is µ-continuous
on S if and only if for any A ∈ S with µ(A) = 0 we have that M(A) = {0}.
We call a measure m : S → X a selector of M if m(A) ∈ M(A) for all
A ∈ S. We denote by SM the set of selectors of M . A set-valued set function
M : S → P(X) is called strongly additive if for every sequence (Ak) ⊆ S
of mutually disjoint sets the series

∑∞
k=1 xk converges for any xk ∈ M(Ak),

k ∈ IN .
Let X be a separable Banach space and let µ be a positive measure on S. A

multifunction F : T → P(X) is said to be µ-measurable if and only if for every
closed subset C of X, the set F−(C) = {t ∈ T | F (t)∩C 6= ∅} is µ-measurable.
A set-valued set function M : Ω × S → Pf (X) is said to be a transition
multimeasure if and only if for all A ∈ S, ω 7→ M(ω,A) is an S-measurable
multifunction and for all ω ∈ Ω, A 7→ M(ω,A) is a multimeasure. We will
distinguish between strong, normal and weak transition multimeasures. A
selector transition measure (or simply a transition selector) of a transition
multimeasure M : Ω × S → Pf (X) is a set function m : Ω × S → X such
that for all A ∈ S, ω 7→ m(ω,A) is an S-measurable function, for all ω ∈ Ω,
A 7→ m(ω,A) is a measure and for all (ω,A) ∈ Ω × S, m(ω,A) ∈ M(ω,A).
The set of all transition selectors of M will be denoted by TSM .

3 Extension of Additive Set-Valued Set Functions

We let S be a ring of subsets of T and µ a positive, finite, subadditive and
increasing set function on S. Then the function ρµ : S × S → R defined by

ρµ(A,B) = µ(A\B) + µ(B\A), A,B ∈ S,

is a finite semi-metric on S.

Proposition 3.1. Suppose that X is a Banach space and let R be a ring
contained in S. If M : R → Pf (X) is an additive set-valued set function such
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that ‖M(A)‖ ≤ µ(A) for A ∈ R, then M is a uniformly continuous mapping
from (R, ρµ) into (Pf (Y ), H).

Proof. For A,B ∈ R we have that

H(M(A),M(B)) = H(M(A\B) +M(A ∩B),M(B\A) +M(A ∩B))
≤ H(M(A\B),M(B\A)) +H(M(A ∩B),M(A ∩B))
≤ H(M(A\B), {0}) +H(M(B\A), {0})
= ‖M(A\B)‖+ ‖M(B\A)‖
≤ µ(A\B) + µ(B\A) = ρµ(A,B).

Proposition 3.2. Suppose that R is a ring dense in S for the topology defined
by ρµ and let X be a separable Banach space. If M : R → Pk(X) is an additive
set-valued set function such that ‖M(A)‖ ≤ µ(A) for all A ∈ R, then M can
be extended to an additive set-valued set function N : S → Pk(X) such that
‖N(A)‖ ≤ µ(A) for all A ∈ S. If µ is additive, then v(N) is an extension of
v(M).

Proof. From Theorem 2 on page 154 of [16] follows that SM 6= ∅. Since
‖M(A)‖ ≤ µ(A) for each A ∈ R, we infer that each m ∈ SM is uniformly
continuous on the dense class R. By Theorem 1 on page 62 of [15] follows
that each m ∈ SM can be extended to a uniformly continuous finitely additive
set function n : S → X such that ‖n(A)‖ ≤ µ(A) for all A ∈ S. For A ∈ S,
put

N(A) = {n(B) | B ⊆ A,B ∈ S}.
If A,B ∈ S with A ∩B = ∅, then

N(A) +N(B) = {n(C) + n(D) | C ⊆ A,D ⊆ B,C,D ∈ S}

= {n(C ∪D) | C ∪D ⊆ A ∪B} = N(A ∪B);

whenceN is an additive set-valued set function. Clearly we have that ‖N(A)‖ ≤
µ(A) for all A ∈ S. We now want to show that

|d(n(A), N(A))− d(n(B), N(B))| < ‖n(A)− n(B)‖+H(N(A), N(B)),

because by the uniform continuity of N and n it will then follow that the set
function A 7→ d(n(A), N(A)) is uniformly continuous. Indeed, from

d(n(A), N(A)) ≤ d(n(B), N(A)) + ‖n(A)− n(B)‖,

follows that we only need to prove that

d(n(B), N(A)) ≤ d(n(B), N(B)) +H(N(A), N(B)).



On the Extension of Set-Valued Set Functions 267

For all ε > 0 we can choose x ∈ N(A) and y ∈ N(B) such that

d(n(B), y) ≤ d(n(B), N(B)) +
ε

2
and d(y, x) ≤ d(y,N(A)) +

ε

2
.

Consequently, for all ε > 0,

d(n(B), x) ≤ d(n(B), y) + d(y, x)

≤ d(y,N(A)) + d(n(B), y) +
ε

2
≤ d(y,N(A)) + d(n(B), N(B)) + ε;

therefore

d(n(B), N(A)) ≤ d(n(B), N(B)) +H(N(A), N(B)) + ε.

Since the set function A 7→ d(n(A), N(A)) is identically null on the dense class
R, and since N is closed-valued, we deduce that n(A)∈ N(A) and consequently

N(A) = {n(A) | n ∈ SN}

for all A ∈ S. Also, by Proposition 2 on page III-10 of [9] we infer that
M(A) = N(A) for all A ∈ R.

Lastly, if µ is additive, then m has finite variation v(m) on R, n has finite
variation v(n) on S and v(n) is an extension of v(m). Since v(N) = v(n), it
follows that v(N) is an extension of v(M).

Proposition 3.3. Suppose that R is a ring dense in S for the topology defined
by ρµ and let X be a separable Banach space. If M : R → Pfbc(X) is an
additive set-valued set function such that ‖M(A)‖ ≤ µ(A) for all A ∈ R, then
M can be extended to an additive set-valued set function N : S → Pfb(X)
such that ‖N(A)‖ ≤ µ(A) for all A ∈ S. If µ is additive, then v(N) is an
extension of v(M).

Proof. By Theorem 3 on page 154 of [16] follows that there is a sequence
(mk) ⊆ SM of finitely additive set functions from R into X such that

M(A) = {mk(A) | k ∈ IN}

for all A ∈ R. Since ‖M(A)‖ ≤ µ(A) we have that ‖mk(A)‖ ≤ µ(A) for all
A ∈ R so that each mk is uniformly continuous on the dense class R. For
k ∈ N, let nk denote the extension of mk to S and put

N(A) = {nk(A) | k ∈ IN}
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for all A ∈ S. Clearly, N is an additive Pfbc(X)-valued set function. Also,
since ‖nk(A)‖ ≤ µ(A) for all A ∈ S, we have that ‖N(A)‖ ≤ µ(A). Lastly,
since v(N) = v(nk) on S and v(M) = v(mk) on R, the conclusion follows
from Theorem 1 on page 62 of [15].

We now discuss the set-valued analogue of the Carathéodory-Hahn-Kluvanek
theorem for additive set-valued set functions. The set-valued Carathéodory-
Hahn-Kluvanek theorem has been given by Kandilakis ([23], page 88, Theorem
2.6) for countably additive set-valued set functions. The same type of results
were also obtained in [34].

First we give an example of a punctually additive set-valued set function
which is not a strong multimeasure.

Example 3.4. Consider the semiring R = {A ⊆ R |A is at most countable}
and define the set-valued set function M : R → [0,∞] by

M(A) =

{
{0} if A is finite
{∞} if A is countable.

To see that M is punctually additive, let A,B ∈ R be such that A ∩ B = ∅.
If both A and B are finite, then A ∪B is finite so that

M(A ∪B) = {0} = M(A) +M(B).

On the other hand, if either A or B is countable, then A∪B is countable and

M(A ∪B) = {∞} = M(A) +M(B).

Finally, M is not a strong multimeasure because M (
⋃∞
n=1{n}) = M(N) =

{∞} and

∞∑
n=1

M({n}) = {y ∈ [0,∞] | y =
∞∑
n=1

yn, yn ∈M({n})} = {0}.

Proposition 3.5 ([2], p. 405, Theorem 1). Let X be a separable Banach space
and suppose that M : A → Pfbc(X) is an additive set-valued set function. If
there exists a finitely additive nonnegative finite set function µ on A such that
M is µ-continuous, then there exists a σ-algebra S, a normal multimeasure
N : S → Pfbc(X) and a Boolean isomorphism i : A → S such that M(A) =
N(i(A)) for all A ∈ A.
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Proposition 3.6. Let X be a Banach space and suppose that M : A →
Pfb(X) is a strongly additive set-valued set function such that the set function
A→ σ(x′,M(A)) is a finitely additive measure on A for every x′ ∈ X ′. Then
there exists a finitely additive nonnegative real-valued measure µ on A such
that M is µ-continuous on A.

Proof. By the Stone Representation Theorem there exists a compact, Haus-
dorff and totally disconnected topological space

∼
X such that A is isomorphic

(as a Boolean algebra) with the algebra
∼
A of all clopen subsets of

∼
Y . Let i be

the isomorphism of A into
∼
A. Define

∼
M :

∼
A→ Pfb(X) by

∼
M (i(A)) = M(A)

for all A ∈ A.
Since i(A)→ σ(x′,

∼
M (i(A))) is a finitely additive measure on

∼
A for every

x′ ∈ X ′, it follows that i(A) → σ(x′,
∼
M (i(A))) is countably additive. By

Proposition 2.3 on page 87 of [23] we obtain a nonnegative and real-valued
countably additive measure

∼
µ on

∼
A such that

∼
M is

∼
µ-continuous on

∼
A. If we

define µ(A) =
∼
µ (i(A)) for A ∈ A, then the result follows.

Proposition 3.7. Let X be a Banach space and suppose that S is a σ-algebra
of subsets of the set T and let N : S → Pwk(X) be a set-valued set function
such that for every x′ ∈ X ′ the set function A 7→ σ(x′, N(A)) admits a Hahn
decomposition. Then N(S) is a relatively w(X,X ′)-compact subset of X.

Proof. Let x′ ∈ X ′ and let (H+, H−) be a Hahn decomposition for the
signed measure σ(x′, N(·)). Then we have that

σ(x′, N(S)) = sup
A∈S

σ(x′, N(A)) = sup
A∈S

σ(x′, N(A ∩H+)) = σ(x′, N(H+)).

But N(H+) ∈ Pwk(X), so we can find an x0 ∈ N(H+), depending on x′, such
that σ(x′, N(H+)) = (x′, x0) and hence σ(x′, N(S)) = (x′, x0). By James’
theorem we conclude that N(S) is a w(X,X ′)-compact subset of X.

Proposition 3.8. Let X be a Banach space. If M : A → Pfb(X) is a set-
valued set function such that M(A) is a relatively weakly compact subset of X
and the set function A 7→ σ(x′,M(A)) is a finitely additive measure on A for
every x′ ∈ X ′, then M is strongly additive.

Proof. For every x′ ∈ X ′ we have that

|
n∑
k=1

(x′, xk)| = |(x′,
n∑
k=1

xk)| ≤
n∑
k=1

|σ(x′,M(Ak))|
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for all xk ∈ M(Ak) with Ak ∈ A, k = 1, 2, . . . , n. But since the set function

A 7→ σ(x′,M(A)) is of finite variation, we have that lim
n→∞

n∑
k=1

|σ(x′,M(Ak))| <∞.

Hence
∑∞
k=1 xk is weakly unconditionally convergent and thus strongly uncon-

ditionally convergent (from Day [12]).

Summarizing the previous four results, we have:

Theorem 3.9. If X is a separable Banach space and if M : A → Pwkc(X)
is a set-valued set function such that the set function σ(x′,M(·)) is a finitely
additive measure on A for every x′ ∈ X ′, then the following are equivalent :

(a) There exist a σ-algebra S, a multimeasure N : S → Pwkc(X) and a
Boolean isomorphism i : A → S such that M(A) = N(i(A)) for all
A ∈ A.

(b) There exists a finitely additive nonnegative real-valued measure µ on A
such that M is µ-continuous on A.

(c) M is strongly additive.

(d) M(A) is a relatively w(X,X ′)-compact subset of X.

Proof. We only need to show that (a) implies (d).
But M(A) = N(i(A)) ⊆ N(S), which is a relatively weakly compact subset

of X (by Proposition 3.7).

4 Extension of Multimeasures and Transition Multimea-
sures

Unless otherwise stated, throughout this section we will suppose that A is an
algebra of subsets of the set T and we let S be the σ-algebra generated by A.

Proposition 4.1. Let X be a Banach space, suppose that the σ-algebra S is
countably generated and let µ be a positive measure on S. If M : A → Pfb(X)
is a normal multimeasure such that M is µ-continuous on A, then M can be
extended to a normal multimeasure N : S → Pfb(X) such that ‖N(A)‖ ≤ µ(A)
for all A ∈ S.

Proof. Since M is additive and the algebra A is countable, it follows from
Proposition 2 on page III-10 of [9] that for all A ∈ AM(A) = {m(A)|m ∈ SM}.
Furthermore, by Theorem 2 on page 59 of [21], it follows that limµ(A)→0 ‖M(A)‖ =
0 so that limµ(A)→0 ‖m(A)‖ = 0 for all m ∈ SM and A ∈ A.
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Consequently, each m ∈ SM is uniformly continuous on the dense class A
and thus may be extended to a uniformly continuous set function n : S → X.
If, for all A ∈ S, we put N(A) = {n(B)|B ⊆ A,B ∈ S}, then again we can
prove that N(A) = {n(A)|n ∈ SN} for A ∈ S. Clearly N extends M to S.

It only remains to show that N is a normal multimeasure. Put N ′(A) =
{n(B)|B ⊆ A,B ∈ S} and let (Ak) be a sequence of mutually disjoint sets in
S. Then

H

(
N ′

( ∞⋃
k=1

Ak

)
,

∞∑
k=1

N ′(Ak)

)

= H

(
n∑
k=1

N ′(Ak) +N ′

( ∞⋃
k=n+1

Ak

)
,

n∑
k=1

N ′(Ak) +
∞∑

k=n+1

N ′(Ak)

)

≤ H

(
N ′

( ∞⋃
k=n+1

Ai

)
,

∞∑
k=n+1

N ′(Ak)

)

≤ ‖N ′
( ∞⋃
k=n+1

Ak

)
‖+ ‖

∞∑
k=n+1

N ′(Ak)‖ ≤ 2
∞∑

k=n+1

v(N ′, Ak) −→ 0

as n → ∞. This shows that N ′ is a strong multimeasure. By Proposition 5
on page 57 of [21] it follows that N is a Pfb(X)-valued normal multimeasure.
Lastly, since ‖n(A)‖ ≤ µ(A) for all A ∈ S, we conclude that ‖N(A)‖ ≤
µ(A).

Proposition 4.2. Let X be a separable Banach space and let µ be a positive
measure on S. If M : A → Pkc(X) is a µ-continuous normal multimeasure,
then M can be extended to a normal multimeasure N : S → Pkc(X) such that
‖N(A)‖ ≤ µ(A) for every A ∈ S.

Proof. Since M(A) ∈ Pkc(X) for all A ∈ A and X is separable, there is a
countable set {x1, x2, . . .} which is dense in M(A). By Theorem 3 on page
154 of [16] there exists a sequence (mk) ⊆ SM such that mk(A) = xk for all
A ∈ A and by the convexity of M we have that M(A) = co{mk(A)|k ∈ N} for
all A ∈ S. Let nk be the extension of mk to S and for every A ∈ S put

N(A) = co{nk(A)|k ∈ N}.

If we put N ′(A) = {nk(A)|k ∈ N}, then by Proposition 5 on page 57 of [21] we
only need to show that N ′ is a strong multimeasure. Let (Ak) be a sequence
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of mutually disjoint sets in S and let A = ∪∞k=1Ak. Then

H

(
N ′(A),

∞∑
k=1

N ′(Ak)

)
≤ H

(
N ′(A),

n∑
k=1

N ′(Ak)

)
+

∞∑
k=n+1

‖N ′(Ak)‖

= H

(
N ′(A), N ′(

n⋃
k=1

Ak)

)
+

∞∑
k=n+1

v(N ′, Ak) −→ 0

as n→∞. Hence N ′(A) =
∑∞
k=1N

′(Ak) and therefore N ′ is a strong multi-
measure.

For the rest of this section we suppose that (Ω, T ) is a complete measurable
space and R is a ring of subsets of T . Let S be the σ-ring generated by R and
let λ : Ω× S → R+ be a transition measure.

Theorem 4.3. If M : Ω×R → Pkc(Rn) is a strong transition multimeasure of
bounded variation such that limλ(ω,A)→0M(ω,A) = 0 for (ω,A) ∈ (Ω,R), then
M can be extended to a strong transition multimeasure N : Ω× S → Pkc(Rn)
of bounded variation such that limλ(ω,A)→0N(ω,A) = 0 for (ω,A) ∈ (Ω,S).

Proof. For all A ∈ R, define F (ω) = M(ω,A) for ω ∈ Ω. Since F is
a measurable multifunction, there is a sequence (fk) ⊆ SF of measurable
functions fk : Ω→ Rn such that F (ω) = {fk(ω)|k ∈ N} for all ω ∈ Ω (see [25],
page 69, Theorem 7.8). By Theorem 2 on page 92 of [21] follows that there
is a sequence (mk) ⊆ TSM such that fk(ω) = mk(ω,A) for all ω ∈ Ω, and by
the convexity of M follows that

M(ω,A) = co {mk(ω,A)|k ∈ N}

for every (ω,A) ∈ Ω×R. Furthermore, limλ(ω,A)→0M(ω,A) = 0 so that
limλ(ω,A)→0mk(ω,A) = 0 for all (ω,A) ∈ Ω×R. By Proposition 2 on page 96
of [21] we may extend each mk to a unique transition measure nk : Ω×S → Rn.
For all (ω,A) ∈ Ω× S put N(ω,A) = co{nk(ω,A)|k ∈ N}. Since, for all A ∈ S,
we have that ω 7→ {nk(ω,A)|k ∈ N} is a measurable multifunction, it follows
that N is also a measurable multifunction. Clearly A 7→ N(ω,A) is a Pkc(Rn)-
valued strong multimeasure.

Theorem 4.4. Let X be a Hausdorff locally convex real vector space and
X ′ a separable Fréchet space. If M : Ω × R → Pkc(X) is a weak transi-
tion multimeasure of bounded variation such that limλ(ω,A)→0M(ω,A) = 0 for
(ω,A) ∈ (Ω,R), then M can be extended to a weak transition multimeasure
N : Ω× S → Pkc(X) of bounded variation such that limλ(ω,A)→0N(ω,A) = 0
for (ω,A) ∈ (Ω,S).
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Proof. If, for all A ∈ R, we define F (ω) = M(ω,A), then F is a measurable
multifunction. Since (Ω, T ) is complete, it is a Souslin family. Hence (see
Theorem 8.4 of [32]), there is a sequence (fk) ⊆ SextF of measurable functions
fk : Ω→ X such that F (ω) = co{fk(ω)|k ∈ N}. By Proposition 1 on page 95
of [21] there is a sequence (mk) ⊆ TSM such that fk(ω) = mk(ω,A) for all
ω ∈ Ω, and hence M(ω,A) = co{mk(ω,A)|k ∈ N} for every (ω,A) ∈ Ω×R.
Again, as before, limλ(ω,A)→0M(ω,A) = 0 so that limλ(ω,A)→0mk(ω,A) = 0
for all (ω,A) ∈ Ω×R. By Proposition 2 on page 96 of [21] we may extend
each mk to a unique transition measure nk : Ω× S → X.

For all (ω,A) ∈ Ω× S put

N(ω,A) = co{nk(ω,A)|k ∈ N}.

Since A 7→ N(ω,A) is a strong multimeasure, it follows from Theorem 5.1 of
[27] that A 7→ N(ω,A) is a weak multimeasure.

References
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R. Acad. Sci., 280 (1975), 1515–1518.
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