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ON THE INTERMEDIATE VALUE
PROPERTY OF MULTIVALUED

FUNCTIONS

Abstract

The present paper deals with a certain property of multivalued func-
tions which coincides with the Darboux property in the case of single
valued real functions of real variable. It is well known that derivatives,
and hence approximately continuous functions have the Darboux prop-
erty. The results contained here are generalizations of these properties
to the multivalued case.

1 Preliminaries

Let X and Y be two nonempty sets. A multivalued function F : X → Y is an
mapping from X to the nonempty subsets of Y ; thus, for each x ∈ X, F (x) is
a nonempty set in Y .

For F : X → Y and A ⊂ X and B ⊂ Y we denote the image of A and two
counterimages of B as follows:

F (A) =
⋃
{F (x) : x ∈ A},

F+(B) = {x ∈ X : F (x) ⊂ B}, and F−(B) = {x ∈ X : F (x) ∩B 6= ∅}.
Let us note that F−(B) = X \ F+(Y \B).
Let (X, T (X)) and (Y, T (Y )) be topological spaces. A multivalued function

F : X → Y is called upper (resp. lower) semicontinuous at a point x ∈ X if

∀G ∈ T (Y )(F (x) ⊂ G⇒ x ∈ IntF+(G))

(resp.∀G ∈ T (Y )(F (x) ∩G 6= ∅ ⇒ x ∈ IntF−(G))).

F is called continuous at x if it is simultaneously upper and lower semicontin-
uous at x.
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In case (Y, d) is a metric space, we have more notation. We use B(x, r) to
denote an open ball and B(A, r) =

⋃
{B(x, r) : x ∈ A}.

A multivalued function F : X → Y is called h-upper (resp. h-lower) semi-
continuous at the point x0 ∈ X if for each ε > 0 there exists a neighborhood
U(x0) of x0 such that F (x) ⊂ B(F (x0), ε) (resp.) F (x0) ⊂ B(F (x), ε)) for
each x ∈ U(x0). F is h-continuous at x0 if it is simultaneously h-upper and
h-lower semicontinuous at x0.

It is known that if F is upper semicontinuous at x ∈ X, then F is h-upper
semicontinuous at x, while if F is h-lower semicontinuous at x ∈ X, then F is
lower semicontinuous at x ([Lc, Th. 1.15 and 1.12]). If moreover the F (x) are
compact for x ∈ X, upper and h-upper semicontinuity are equivalent, as are
lower and h-lower semicontinuity ([Lc, Th. 1.17 and 1.14]).

Let P(Y ) denote the family of all subsets of Y and let P0(Y ) = P(Y )\{∅}.
We define the following families of sets:

C(Y ) = {A ∈ P0(Y ) : A is closed}
Cb(Y ) = {A ∈ P0(Y ) : A is closed and bounded}.

For A,B ∈ Cb(Y ) let dH(A,B) denote the Hausdorff metric of the sets A and
B. Then the set Cb(Y ) with the Hausdorff metric becomes a metric space.

Theorem A. If F : X → Y has closed and bounded values, then F is h-
continuous iff F is continuous (with respect to dH) as a function from X to
Cb(Y ).

Let (Y, ‖ · ‖) be a real normed linear space and let R denote the set of
real numbers. The symbol Cob(Y ) will denote the collection of all nonempty,
closed, bounded and convex subsets of Y .

If A ⊂ Y , B ⊂ Y , and λ ∈ R, let

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}, A−B = A+ (−1)B.

We will write A+ x instead of A+ {x}.

Theorem B. Let A,B,C ∈ P(Y ).

(i) If A is convex, α ≥ 0 and β ≥ 0, then (α+ β)A = αA+ βA.

(ii) If A and B are closed and convex and C is bounded, then A+C = B+C
implies A = B (see [Rd, Lemma 2]).

(iii) If Ai, Bi ∈ Cb(Y ) for i = 1, 2, then dH(A1 +A2, B1 +B2) ≤ dH(A1, B1)+
dH(A2, B2).
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(iv) If Y is reflexive and A,B ∈ Cob(Y ), then A+B ∈ Cob(Y ).

(v) If moreover C ∈ Cob(Y ), then dH(A,B) = dH(A + C,B + C) (see [Rd,
Th. 2]).

If Y is complete, then (Cb(Y ), dH) is also complete (see [Kt, p. 314]).
Therefore Price’s inequality (see [Pc. (2.9), p. 4])

dH(co(A), co(B)) ≤ dH(A,B),

where co(A) denotes the convex hull of A, implies the following.

Theorem C. A Cauchy sequence in Cob(Y ) must converge to an element of
Cob(Y ).

Let L(R) denote the σ-field of Lebesgue measurable subsets of R. Let
T ∈ L(R) and let (Y, T (Y )) be a topological space.

A multivalued function F : T → Y is called upper (resp. lower) measurable
if F+(A) is measurable for any open (resp. closed) subset A of Y .

The following assertion is known.

Theorem D. If (Y, T (Y )) is perfect and F is upper measurable, then F is
lower measurable (see [KŚ, Prop. 1 (i)]).

If (Y, T (Y )) is perfectly normal and F has compact values, then upper and
lower measurability of F are equivalent (see [KŚ, Prop. 1 (ii)]).

2 The D∗ Property of Continuous Multivalued Functions

Let (X, T (X)) and (Y, T (Y )) be topological spaces. In [EL] the following
definition of a Darboux property was given.

Definition 1. A multivalued function F : X → Y will be said to have the
Darboux property (or D property) if for every connected set C ⊂ X, the image
F (C) is connected in Y .

Let I ⊂ R be an interval. For each a, b ∈ R we will use a ∧ b and a ∨ b
to denote the minimum and maximum, respectively, of a and b. In [CK] the
following definition was introduced.

Definition 2. A multivalued function F : I → R will be said to have in-
termediate value property (or D∗ property) if for each pair of distinct points
x1, x2 ∈ I and each y1 ∈ F (x1) there exists y2 ∈ F (x2) such that (y1 ∧ y2, y1 ∨
y2) ⊂ F ((x1 ∧ x2, x1 ∨ x2)).
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Note each of the properties D and D∗ is equivalent to the usual Darboux
property when F (x) = {f(x)}, where f : I → R is a function.

The following examples show that they are not equivalent in general.

Example 1. The multivalued function F1 : R→ R defined by the formula

F1(x) =
{

[0, 2], if x = 0,
[0, 1], if x 6= 0,

has the D property , but not the D∗ property.

Example 2. Let F2(x) = [0, 1] ∪ [2, 3] for each x ∈ R. Then F2 has the D∗
property and does not have the D property ([CK]).

Note that F2 is continuous. Therefore, a continuous multivalued function
(with closed values) does not necessarily have the D property, but it does have
the D∗ property .

Theorem 1. If a multivalued function F : I → R with closed values is con-
tinuous, then it has the intermediate value property.

Proof. Assume the contrary. Then

there exist two distinct points x1, x2 ∈ I (say x1 < x2) and a point
y1 ∈ F (x1) such that for any y2 ∈ F (x2) a number α exists such that
α ∈ (y1 ∧ y2, y1 ∨ y2) \ F ((x1, x2)).

(1)

Obviously y1 6∈ F (x2) since otherwise taking y2 = y1 contradicts (1). Let

B1 = {y ∈ F (x2) : y < y1} and B2 = {y ∈ F (x2) : y > y1}.

Since F (x2) 6= ∅, at least one of the sets B1 and B2 is nonempty. Assume that
B1 6= ∅ and B2 6= ∅, and let y′ = supB1, y′′ = inf B2. Since F (x2) is a closed
set, y′, y′′ ∈ F (x2) and y′ < y1 < y′′, and since y1 ∈ F (x1), by condition
(1) there exist numbers α′ and α′′ such that α′ ∈ (y′, y1), α′′ ∈ (y1, y

′′) and
α′, α′′ 6∈ F ((x1, x2)). This implies that

F−((α′, α′′)) ∩ (x1, x2) = F−([α′, α′′]) ∩ (x1, x2).

Moreover y1 ∈ (α′, α′′) and y1 ∈ F (x1). Hence x1 ∈ F−((α′, α′′)). By the
choice of α′ and α′′, F (x2) ⊂ (−∞, α′) ∪ (α′′,+∞). Hence x2 6∈ F−([α′, α′′]).
We conclude that

F−((α′, α′′)) ∩ [x1, x2] = F−([α′, α′′]) ∩ [x1, x2]. (2)
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Let A = F−((α′, α′′)) ∩ [x1, x2]. By the continuity of F and (2) the set A
is both open and closed in [x1, x2]. This is a contradiction since x1 ∈ A and
x2 6∈ A.

Suppose now that B1 = ∅ and B2 6= ∅. Taking

A = F−((−∞, α′′)) ∩ [x1, x2],

where α′′ ∈ (y1, y
′′) \ F ((x1, x2)), y′′ = inf B2, we reach a contradiction just

as before. In the case B1 6= ∅ and B2 = ∅ consider instead

A = F−((α′,+∞)) ∩ [x1, x2],

where α′ ∈ (y′, y1) \ F ((x1, x2)), y′ = supB1. In any case we get a contradic-
tion, hence the proof is complete.

Remark 1. The assumption that the multivalued function have closed val-
ues is important. In order to illustrate this, let us consider the multivalued
function F : R→ R defined by the formula

F (x) =
{
{y : y = 1

k , k ∈ Z \ {0}}, if x ∈ (0, 1),
{y : y = 0 ∨ y = 1

k , k ∈ Z \ {0}}, if x 6∈ (0, 1),

where Z is the set of integers. Then F is continuous but does not have the D∗
property .

3 The D∗ Property of the Derivative of a Multivalued
Function

Let (Y, ‖ · ‖) be a reflexive real normed linear space with the metric d deter-
mined by the norm in Y .

We define a difference A	B of the sets A,B ∈ Cob(Y ) as follows:
We will say the difference A	B is defined if there exists a set C ∈ Cob(Y )

such that either A = B + C or B = A− C, and we define A	B to be C.

Example 3. Let A = αP and B = βP , where P ∈ Cob(Y ), α ≥ 0 and β ≥ 0.
Put C = (α − β)P . Then by Theorem B (i) A = B + C or B = A − C
depending on whether α ≥ β or α < β. Therefore αP 	βP exists and is equal
to (α− β)P .

Example 4. Let

A = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x},

B = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
2

(1− x)}.
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Then A	B does not exist. Indeed, suppose that there exists C ∈ Cob(R2)
such that A = B + C. Since (0, 1) ∈ A, there exist (a, b) ∈ B and (c, d) ∈ C
such that (0, 1) = (a + c, b + d), where a ≥ 0. Then c = −a and d = 1 − b.
On the other hand (0, 0) ∈ B. Therefore (0, 0) + (c, d) = (−a, 1− b) ∈ A and
−a ≥ 0. Hence a = 0. Since (c, d) = (0, 1 − b) ∈ C and (1, 0) ∈ B, we have
(1, 0) + (0, 1− b) ∈ A and b = 1. Therefore we have (a, b) = (0, 1) 6∈ B, which
is a contradiction. Now let us suppose that there exists C ∈ Cob(R2) such that
B = A−C. Let z ∈ C. We observe that for every x ∈ A, x− z ∈ A−C = B.
Hence we have A− z ⊂ B; i.e., some translation of A is contained in B, which
is of course not possible.

Theorem 2. Suppose A ∈ Cob(Y ) and B ∈ Cob(Y ).

(a) ∃C ∈ Cob(Y )A = B + C ⇐⇒ ∀ a ∈ Fr(A)∃ y ∈ Y a ∈ B + y ⊂ A.

(b) ∃C ∈ Cob(Y )B = A− C ⇐⇒ ∀ b ∈ Fr(B)∃ y ∈ Y b ∈ A+ y ⊂ B,

where Fr(P ) denotes the boundary of P ⊂ Y .

Proof. To prove (a), suppose the existence of C ∈ Cob(Y ) such that A =
B + C. If a ∈ A (in particular a ∈ FrA), then a ∈ B + C. Therefore there
are b ∈ B and c ∈ C such that a = b+ c. If z ∈ B, then z + c ∈ B + C = A.
Consequently B + c ⊂ A. Moreover a = b + c ∈ B + c. This proves that for
a ∈ Fr(A) there is y ∈ Y with a ∈ B + y ⊂ A.

Now let us suppose that for each a ∈ Fr(A) there exists y ∈ Y such that
a ∈ B+ y ⊂ A. Let C = {x : B+x ⊂ A}. Then C is closed and bounded. We
will show that C is convex. Let c, c′ ∈ C. Then B + c ⊂ A and B + c′ ⊂ A.
Let λ ∈ [0, 1]. We obtain

(1− λ)(B + c) + λ(B + c′) ⊂ A. (3)

Furthermore

(1− λ)(B + c) + λ(B + c′) = B + (1− λ)c+ λc′. (4)

We conclude from (3) and (4) that B + (1 − λ)c + λc′ ⊂ A. Hence that
z = (1 − λ)c + λc′ ∈ C, and finally that C is convex. Since B + C ⊂ A, we
need to prove that A ⊂ B + C. Let x ∈ A. Since A is convex, there exist
a, a′ ∈ FrA and λ ∈ [0, 1] such that x = (1 − λ)a + λa′. Then by hypothesis
there exist y, y′ ∈ Y such that a ∈ B+y ⊂ A and a′ ∈ B+y′ ⊂ A. Thus there
exist b, b′ ∈ B such that a = b+ y and a′ = b′ + y′ and x = (1− λ)a+ λa′ =
b′′ + (1− λ)y + λy′, where b′′ = (1− λ)b+ λb′. Thus x ∈ B + (1− λ)y + λy′.
Since y, y′ ∈ C and C is convex, u = (1−λ)y+λy′ ∈ C. Therefore x ∈ B+C,
which finishes the proof of (a).
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To prove (b) we apply similar arguments, with {x : B + x ⊂ A} replaced
by {x : A− x ⊂ B} in the second part of the proof.

Remark 2. We can replace Fr in Theorem 2 by the set of extreme points by
appealing to the Krein-Milman theorem.

To see this, let us suppose that for all a ∈ ex(A) (ex(A) means the set of
extreme points of A) there exists y ∈ Y with a ∈ B + y ⊂ A. The set ex(A)
is nonempty since A is compact. Let C be as in the proof of Theorem 2. It
suffices to show that A ⊂ B + C. For each a ∈ ex(A) there is y ∈ C with
a ∈ B+ y by hypothesis. Therefore ex(A) ⊂ B+C. Then co(ex(A)) ⊂ B+C
since B+C is closed and convex, and finally A ⊂ B+C by the Krein-Milman
theorem.

It is easy to see that

If B ∈ Cob(Y ) and y ∈ Y , then B + y 	B = {y}. In particular A	A = {0}.
If A	B exists, then dH(A,B) = ‖A	B‖,
where ‖C‖ = dH(C, {0}) for C ⊂ Y . (5)
If Y = R and A = [a, x] and B = [b, y], then A	B exists and
A	B = [(a− b) ∧ (x− y), (a− b) ∨ (x− y)].

Now we can present a definition of derivative of a multivalued function.

Definition 3. A multivalued function F : I → Y is said to be differentiable
at x0 ∈ I if there exists a set DF (x0) ∈ Cob(Y ) such that the limit (with

respect to the Hausdorff metric) limx→x0

F (x)	 F (x0)
x− x0

exists and is equal to

DF (x0).

Of course, implicit in the definition of DF (x0) is the existence of the dif-
ferences F (x)	 F (x0).

The set DF (x0) will be called the derivative of F at x0. F will be called
differentiable if it is differentiable at every point x ∈ I.

A multivalued function G : I → Y will be called a derivative if there exists
a differentiable multivalued function F : I → Y with G(x) = DF (x) for x ∈ I.
Example 5. Let S be the closed unit ball in R2, and consider a multival-
ued function F : (0, 2π) → R2 defined by F (α) = (2 + sinα)S. Then F is
differentiable and DF (α) = (cosα)S for each α ∈ (0, 2π).

Example 6. The multivalued function F : [0, 1]→ R2 defined by the formula

F (α) = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ α− αx}

is not differentiable, since the required differences do not exist.
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Theorem 3. If a multivalued function F : I → Y with closed, bounded and
convex values is differentiable at x0 ∈ I, then it is h-continuous at this point.

Proof. Suppose F is differentiable at x0. Let x 6= x0. By the differentiability
of F at x0, there exists a set DF (x0) ∈ Cob(Y ) such that

lim
x→x0

dH

(
F (x)	 F (x0)

x− x0
, DF (x0)

)
= 0. (6)

Then (see (5))

dH(F (x), F (x0)) = ‖F (x)	 F (x0)‖ =
∥∥∥∥F (x)	 F (x0)

x− x0

∥∥∥∥ |x− x0|

≤ (dH

(
F (x)	 F (x0)

x− x0
, DF (x0)

)
+ ‖DF (x0)‖)|x− x0|.

(7)

Since the set DF (x0) is bounded, (6) and (7) shows that DH(F (x), F (x0))
converges to zero as x tends to x0. Hence, F is h-continuous at x0, by Theorem
A.

Now we deal with the case when Y = R. Let F : I → R be a multivalued
function with compact and convex values. Then

F (x) = [i(x), s(x)], (8)

where i(x) = infx∈I F (x) and s(x) = supx∈I F (x).

If F : I → R is differentiable at x0 ∈ I, then by Theorem 3
F is h-continuous at x0 and consequently the functions i and s

are continuous at x0.

(9)

It should be noted that in this case F (x)	 F (x0) exists for x ∈ I and

F (x)	 F (x0)
x− x0

=


[ i(x)−i(x0)

x−x0
, s(x)−s(x0)

x−x0
], if δF (x) ≥ δF (x0), x > x0,

[ s(x)−s(x0)
x−x0

, i(x)−i(x0)
x−x0

], if δF (x) ≥ δF (x0), x < x0,

[ s(x)−s(x0)
x−x0

, i(x)−i(x0)
x−x0

], if δF (x) ≤ δF (x0), x > x0,

[ i(x)−i(x0)
x−x0

, s(x)−s(x0)
x−x0

], if δF (x) ≤ F (x0), x < x0,

(10)

where δA denotes diameter of A.
The following can be easily verified.
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Theorem 4. If the functions i : I → R and s : I → R are differentiable at
x0 ∈ I, then F is differentiable at x0 and

DF (x0) =
{

[i′(x0), s′(x0)], if i′(x0) ≤ s′(x0),
[s′(x0), i′(x0)], if i′(x0) > s′(x0).

However, in general, differentiability of F does not imply differentiability
of the functions i or s as the following example shows.

F (x) =
{

[0, x], if x ≤ 0,
[x, 0], if x < 0.

Let us suppose that F is differentiable at x0 ∈ I. According to Definition 3,
there is a set DF (x0) ∈ Cob(R) such that

lim
x→x0

F (x)	 F (x0)
x− x0

= DF (x0). (11)

This condition can be reinterpreted in terms of Dini derivatives of functions i
and s.

Let f : I → R be a function and x ∈ I. We will use f ′−(x) and f ′+(x)
to denote the left-side and right-side derivatives of f at x, D−f(x), D−f(x),
D+f(x) and D+f(x) to denote the left and right lower and upper Dini deriva-
tives of f at x. Further, given x, y ∈ I, x 6= y, we define Qf(x, y) by

Qf(x, y) =
f(x)− f(y)

x− y
.

Following Garg (see [G1] or [G2]), f will be called lower derivable at x if
D−f(x) ≤ D+f(x) and if so, then the interval [D−f(x), D+f(x)] will be
called the lower derivative of f at x and denoted by Lf ′(x).

Similarly, f is called upper derivable at x if D+f(x) ≤ D−f(x) and if so,
then [D+f(x), D−f(x)] is called the upper derivative of f at x and denoted by
Uf ′(x).

We will further call f semiderivable at x if it is either lower or upper deriv-
able at x, and then its lower or upper derivative will be called the semideriva-
tive of f at x and denoted by Sf ′(x).

If D+f(x) ≤ D−f(x), then [D+f(x), D−f(x)] will be called the lower
median of f at x; and when D−f(x) ≤ D+f(x), the interval [D−f(x), D+f(x)]
will be called the upper median of f at x. We will use Mf(x) and Mf(x) to
denote the lower and upper median, respectively, of f at x.

The following theorems will be useful. (See [G1, Th.5.1] or [G2, Th. 8.1.2]
for Theorem E and [G1, Th. 9.3] or [G2, Th. 10.4.1] for Theorem F.)
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Theorem E. If a function f : [x1, x2] → R is continuous, then there is a
point x ∈ (x1, x2) such that f is semiderivable at x and Qf(x1, x2) ∈ Sf ′(x).

Theorem F. Suppose f : I → R is continuous. Then for each connected set
C ⊂ R the set

⋃
{Sf ′(x) : x ∈ C ∩∆S(f)} is connected, where ∆S(f) denotes

the set of points in I where f is semiderivable.

Let us suppose that DF (x0) = [a, b], a, b ∈ R, a ≤ b. Then (10) and (11)
force a and b to be the only limit points of Qi(x, x0) and Qs(x, x0).

If a = b, then the four Dini derivatives of i and s at x0 are equal, and
hence the functions i and s are differentiable at x0 with i′(x0) = s′(x0).

If a < b, then i and s may or may not be differentiable at x0, but they do
have a semiderivative at x0 or a lower or upper median at x0. Let us consider
four basically different cases.

Case (i): There exists h > 0 such that δF (x) ≥ δF (x0) for each point
x ∈ (x0, x0 + h), and δF (x) ≤ δF (x0) for each x ∈ (x0 − h, x0). Then (11)
holds iff D+i(x0) = D+i(x0) = a, D+s(x0) = D+s(x0) = b, and D−i(x0) =
D−i(x0) = a, D−s(x0) = D−s(x0) = b. Thus i and s are differentiable
at x0 and DF (x0) = [i′(x0), s′(x0)]. Of course, Li′(x0) = Ui′(x0) = a and
Us′(x0) = Ls′(x0) = b.

Case (ii): There exists h > 0 such that δF (x) ≥ δF (x0) for each point
x ∈ (x0, x0 + h), and δF (x) ≥ δF (x0) for each x ∈ (x0 − h, x0). Then (11)
holds iff D+i(x0) = D+i(x0) = a, D+s(x0) = D+s(x0) = b, and D−s(x0) =
D−s(x0) = a, D−i(x0) = D−i(x0) = b. Thus i is upper derivable at x0, s
is lower derivable at x0, and Ui′(x0) = [a, b] = Ls′(x0) = [i′+(x0), s′+(x0)] =
[s′−(x0), i′−(x0)] = DF (x0).

Case (iii): There exists h > 0 such that δF (x) ≥ δF (x0) for each x ∈
(x0, x0 +h) but for each h > 0 there exists x ∈ (x0−h, x0) such that δF (x) ≥
δF (x0) and there exists x′ ∈ (x0−h, x0) such that δF (x′) < δF (x0). Then (11)
holds iff D+i(x0) = D+i(x0) = a and D+s(x0) = D+s(x0) = b, D−s(x0) =
a and D−s(x0) = b, D−i(x0) = a and D−i(x0) = b. Thus Ui′(x0) = a,
Ls′(x0) = b, and Mi(x0) = Ms(x0) = [i′+(x0), s′+(x0)] = DF (x0).

Case (iv): For each h > 0 there exists x ∈ (x0, x0 + h) such that δF (x) ≥
δF (x0) and there exists x′ ∈ (x0, x0 + h) such that δF (x′) < δF (x0), and
for each h > 0 there exists x ∈ (x0 − h, x0) such that δF (x) ≥ δF (x0) and
there exists x′ ∈ (x0 − h, x0) such that δF (x′) < δF (x0). Then (11) holds iff
D+i(x0) = a and D+i(x0) = b, D+s(x0) = a and D+s(x0) = b, D−i(x0) = a
and D−i(x0) = b,D−s(x0) = a and D−s(x0) = b. Thus neither i nor s is
semiderivable at x0, and Mi(x0) = Mi(x0) = Ms(x0) = Ms(x0) = DF (x0).

We turn our attention to the well-known result on ordinary derivative
of functions, namely the intermediate value property of derivative. We will
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extend this result to the multivalued case.

Theorem 5. Suppose F : I → R is a multivalued function with closed,
bounded and convex values. If F is a derivative, then F has the intermediate
value property.

Proof. Assume the contrary. Then there exist two distinct points x1, x2 ∈ I,
say x1 < x2, and a point y1 ∈ F (x1) such that for any y ∈ F (x2) there exists
a number α with α ∈ (y1 ∧ y, y1 ∨ y) \ F ((x1, x2)). Obviously y1 6∈ F (x2).
Let y2 = inf F (x2). We have either y1 < y2 or y1 > y2. Let us suppose that
y1 < y2 and

α ∈ (y1, y2) \ F ((x1, x2)). (12)

On the other hand there is by hypothesis a differentiable multivalued function
Φ : I → R such that F (x) = DΦ(x) for each x ∈ I. It follows from Theorem
3 that Φ is h-continuous. Assume Φ(x) = [i(x), s(x)] (see (8)). Then the
functions i and s are continuous (see (10)).

Let K =
⋃
{Si′(x) : x ∈ (x1, x2) ∩ ∆S(i)} and let L =

⋃
{Ss′(x) : x ∈

(x1, x2)∩∆S(s)}, where ∆S(i) and ∆S(s) denote the sets of points at which i
and s, respectively, are semiderivable. By Theorem F both sets K and L are
connected.

Let us remark, that

If x ∈ [x1, x2] and z ∈ {D+i(x), D−i(x), D+i(x), D−i(x)},
then z is a limit point of K.

Similarly, if x ∈ [x1, x2] and z ∈ {D+s(x), D−s(x), D+s(x), D−s(x)},
then z is a limit point of L.

(13)

In fact, without loss of generality we can assume z = D+i(x). Thus there is a
sequence (xn) which converges to x from the right such that

lim
n→∞

Qi(x, xn) = z. (14)

We conclude from Theorem E that for each n ∈ N there exists yn ∈ (x, xn)
such that i is semiderivable at yn and

Qi(x, xn) ∈ Si′(yn) ∈ K. (15)

By (14) and (15) we have (13).
Suppose F (x1) = [p, q] and F (x2) = [y2, r]. Then according to (12) we

have
p ≤ y1 < α < y2 ≤ r. (16)
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Let us suppose p ∈ {D+i(x1), D+i(x1)}. One of the points y2 or r belongs
to the set {D−i(x2), D−i(x2)}. Suppose y2. Then according to (13) p and y2

are the limit points of K. The set K is connected. Therefore (p, y2) ⊂ K and
by (16) α ∈ K. Similarly if p ∈ {D+s(x1), D+s(x1)}, then α ∈ L. Therefore
α ∈ K ∪ L. Let us note that K ∪ L ⊂ F ((x1, x2)). But this contradicts (12).
We obtain a similar conclusion when y1 > y2.

4 The D∗ Property of Approximately Continuous Multi-
valued Functions

Let (Y, T (Y )) be a topological space, let F : I → Y be a multivalued function
and x0 ∈ I.

Definition 4. F is called approximately upper (resp. lower) semicontinuous
at the point x0 if there exists a set A ∈ L(R) such that density D(x0, A) = 1
and the restriction F |A is h-upper (resp. h-lower) semicontinuous at x0.

If F is simultaneously approximately upper and lower semicontinuous at
x0, then it is called approximately continuous at x0.

The following assertion is known (see [Kw, Prop. 1]).

Theorem G. If a multivalued function F : I → Y is almost everywhere ap-
proximately upper (resp. lower) semicontinuous, then it is upper (resp. lower)
measurable.

From now on, let Y be a reflexive Banach space. Let T ∈ L(R) and
F : T → Y be a multivalued function which is lower measurable and bounded
(in the sense that all its values are contained in a fixed totally bounded set
K) with F (x) ∈ Cob(Y ) for x ∈ T .

Let E ⊂ T be a bounded Lebesgue measurable set. We define an integral
of F on E as follows. (Compare [Hk, p.218] for the case Y = Rn.)

If F takes only a finite number of values B1, B2, ..., Bn: i.e.,

F (x) =
n∑
i=1

χDi(x) ·Bi,

where Di = {x ∈ T : F (x) = Bi} for i = 1, 2, ..., n, then we put∫
E

F (x) dx =
n∑
i=1

|E ∩Di| ·Bi ∈ Cob(Y ).
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Using Theorem B (i), we find that

if A,B ∈ L(R) are non-overlapping, bounded sets such that

E = A ∪B, then
∫
E

F (x) dx =
∫
A

F (x) dx+
∫
B

F (x) dx.
(17)

If F and G take a finite number of values, then using Theorem B (iii) one
obtains

dH

(∫
E

F (x) dx,
∫
E

G(x) dx
)
≤
∫
E

dH(F (x), G(x)) dx. (18)

For a general measurable bounded multivalued function the definition of
integral is based on the following lemma.

Lemma 1. Let a totally bounded convex set K ⊂ Y and a number δ > 0 be
given. Then there exists a finite family Fδ of nonempty, closed, bounded and
convex subsets of Y such that if D ∈ Cob(K), then there exists a smallest set
B ∈ Fδ such that D ⊂ B ⊂ B(D, δ).

Proof. Let K ⊂ Y be totally bounded. Then Cb(K) is totally bounded in
Cb(Y ) (see [Kt, theorem 2, p. 113]), and then any sequence of elements in
Cb(K) contains a Cauchy subsequence (see [Ha, theorem II, p.108]). Therefore
any sequence of elements in Cob(K) ⊂ Cb(K) contains a Cauchy subsequence
whose limit is in Cob(K) by Theorem C (K is complete); i.e., Cob(K) is compact.
Let K be a finite subfamily of Cob(K) such that for every C ∈ Cob(K) there is
D ∈ K such that dH(C,D) < δ

2 . Then C ⊂ clB(D, δ2 ). Let L = {clB(D, δ2 ) :
D ∈ K}. Then the family of all nonempty intersections of sets from L is the
required family Fδ.

Now, take the K in the lemma to be the totally bounded set containing
all the values of F . Suppose x ∈ T . Let Fδ be the family corresponding to
δ > 0, and let Fδ(x) be the smallest member of Fδ containing F (x). Then
dH(F (x), Fδ(x)) < δ, multivalued function Fδ : T → Y takes only finite
number of values and by (18) and Theorem C limδ→0

∫
E
Fδ(x) dx exists in

Cob(Y ) and we take this limit to be the integral of multivalued function F on
E; i.e. ∫

E

F (x) dx = lim
δ→0

∫
E

Fδ(x) dx.

By a passage to a limit in (17) (resp. in (18)) we obtain
the corresponding equality (resp. inequality) for bounded,
measurable multivalued functions.

(19)
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Theorem 6. If a bounded multivalued function F : [a, b]→ Y with closed and
convex values is approximately continuous, then it is a derivative.

Proof. Suppose that F is approximately continuous. By Theorem G and
Theorem D, F is lower measurable, and since it is also bounded, the integral
of F exists on any measurable subset of [a, b].

Define a multivalued function Φ : [a, b]→ Y by Φ(x) =
∫ x
a
F (t) dt. We will

show that F is the derivative of Φ.
Let x0 ∈ [a, b]. Since F is approximately continuous at x0, there exists a

measurable set A ⊂ [a, b], such that D(x0, A) = 1 and F |A is h-continuous at
x0. Suppose ∆x > 0 and x0 + ∆x ∈ [a, b]. Then by (19)

Φ(x0 + ∆x) = Φ(x0) +
∫ x0+∆x

x0

F (x) dx

and by this

Φ(x0 + ∆x)	 Φ(x0) =
∫ x0+∆x

x0

F (x) dx.

Note, that by (19) we have

dH

(
Φ(x0 + ∆x)	 Φ(x0)

∆x
, F (x0)

)
= dH

(
1

∆x

∫ x0+∆x

x0

F (x) dx, F (x0)

)

=dH

(
1

∆x

∫ x0+∆x

x0

F (x) dx,
1

∆x

∫ x0+∆x

x0

F (x0) dx

)

≤ 1
∆x

∫ x0+∆x

x0

dH(F (x), F (x0)) dx

=
1

∆x

∫
[x0,x0+∆x]∩A

dH(F (x), F (x0)) dx

+
1

∆x

∫
[x0,x0+∆x]\A

dH(F (x), F (x0)) dx.

F is bounded. Let K be the fixed totally bounded set which includes all
the values of F . As ∆x tends to 0, the first term of the above expression
converges to 0 since F is h-continuous on A, and the second is majorized by

1
∆x |[x0, x0 + ∆x] \ A|2‖K‖, which converges to 0, since D(x0, [a, b] \ A) = 0.
This, together with a similar calculation for ∆x < 0 and x0 + ∆x ∈ [a, b],
yields

dH

(
Φ(x0)	 Φ(x0 +

∆
x

)∆x, F (x0)
)
≤ ε,
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and by this it follows that DΦ(x0) = F (x0). Hence that F is a derivative and
the proof of Theorem 5 is finished.

By Theorem 5 and Theorem 6 we have

Conclusion 1. If a bounded multivalued function F : I → R with closed and
convex values is approximately continuous, then it has the intermediate value
property.
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[KŚ] G. Kwiecińska, Ślȩzak W.,On complete measurability of multifunctions
defined on product spaces, Acta Math. Univ. Comenianae, vol. LXVI, 2
(1997), 293–305.

[Lc] A. Lechicki, Continuous and measurable multifunctions, Commenta-
tiones Mathematicae, vol.XXXI, 1, (1980), 141–156.
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