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A STUDY OF SOME GENERAL
INTEGRALS THAT CONTAINS THE WIDE

DENJOY INTEGRAL

Abstract

In this paper, using Thomson’s local systems, we introduce some
very general integrals, each containing the wide Denjoy integral: the
[S1S2D]-integral (of Lusin type); the [S1S2V]-integral (of variational
type); the [S1S2W]-integral (of Ward type); the [S1S2R]-integral (of
Riemann type); We prove that in certain conditions the integrals [S1S2V]
and [S1S2W] are equivalent (it is shown that the first integral satisfies
a Saks-Henstock type lemma). For the [S1S2R]-integral we only show
that it satisfies a quasi Saks Henstock type lemma (see Lemma 7.4).
Finally, if S1 = S+

o and S2 = S−o we obtain that the integrals [S+
o S−o V],

[S+
o S−o W] and [S+

o S−o D] are equivalent (in fact the [S+
o S−o D]-integral is

exactly the wide Denjoy integral). But the equivalence of the three inte-
grals with the [S+

o S−o R]-integral follows only if we assume the additional
condition that the primitives of the [S+

o S−o R]-integral are continuous
(see Theorem 11.1)

1 Introduction

It is well known that the Denjoy-Perron integral has a Riemann type definition.
This was discovered independently by Henstock and Kurzweil, and it is called
the Henstock-Kurzweil integral. Also the Denjoy-Perron integral allows char-
acterizations of variational and of Ward type (these characterizations are due
to Henstock). A very important fact in the theory of the Henstock-Kurzweil
integral is the Saks-Henstock Lemma. Since 1968, Henstock suggested (see [5,
p. 222]) that it is possible to obtain a Riemann type definition for the wide
Denjoy integral. Starting from this suggestion and from the fact that an ex-
plicit theorem wasn’t stated in Henstock’s book, Lee and Soedijono introduced
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a Riemann type integral, called the AH-integral, about which they claimed
that it was equivalent with the β-Ridder integral (note that the β-Ridder in-
tegral was also studied by Kubota, but he called it the AD- integral). Indeed,
by [12, Theorem 4.1] it follows that the AD integral is contained in the AH
integral and the two integrals are equal. But that the converse is also true
doesn’t seem to follow from their Theorem 4.2. To prove this theorem they
need to show the following facts:

1) F is approximately continuous on [a, b];

2) F
′

ap(x) = f(x) a.e. on [a, b];

3) F ∈ V BG on [a, b];

4) F satisfies Lusin’s condition (N) on [a, b];

5) F ∈ [V BG] on [a, b];

6) [V BG] ∩ (N) = [ACG] for approximately continuous functions on [a, b],

where F (x) = (AH)
∫ x
a
f(t) dt, x ∈ [a, b].

To show 1)-4) they use essentially a Saks-Henstock type lemma for the AH
integral, claiming that this lemma is easy to prove (I wasn’t able to do so).
With or without a Saks-Henstock type lemma, I wasn’t able to prove 1).
The items 2), 3) and 4) are true, but with different proofs (for 2) see Lemma
7.5; for 3) see Lemma 7.6; for 4) see Corollary 7.1).
In 4) there is also another error (it seems that the authors used the following
statement, that is not true: if {[F (ai), F (bi)]}ni=1 is a finite set of nonover-
lapping intervals then {[ai, bi]}ni=1 is also a set of nonoverlapping intervals).
The proof of 5) is not clear (because, if a function F satisfies the “strong Lusin
condition” then it isn’t clear if F is V B on any subset Z with |Z| = 0; but it
is true that F is V BG on Z, see Theorem 5.1; moreover, if a function is V B
on a set A and on a set B, then it is not necessarily V B on A ∪B).
Statement 6) is not true. Indeed, Sarkhel and Kar introduced the (PAC)
condition that is characterized as follows: A function F is (PAC) on a closed
set E if and only if F ∈ [V BG] ∩ (N) on E (The generalized Banach-Zarecki
theorem [19, Theorem 3.6]). In the same paper the authors constructed a
function F : [a, b] → R with the following properties: F is approximately
continuous, F ∈ (PAC), but F /∈ ACG. It follows that the function F from
above is approximately continuous, [V BG] and (N) on [a, b], but not [ACG].
Note however that V BG ∩ [CG] ∩ (N) = [ACG] (and this follows indeed by
the Banach-Zarecki theorem [15, p. 227]).

In this paper, using Thomson’s local systems, we introduce some very
general integrals, each containing the wide Denjoy integral:
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• the [S1S2D]-integral (of Lusin type);

• the [S1S2V]-integral (of variational type);

• the [S1S2W]-integral (of Ward type);

• the [S1S2R]-integral (of Riemann type);

We prove that in certain conditions, the integrals [S1S2V] and [S1S2W] are
equivalent (it is shown that the first integral satisfies a Saks-Henstock type
lemma). For the [S1S2R]-integral we only show that it satisfies a quasi Saks
Henstock type lemma (see Lemma 7.4).

Finally, if S1 = S+
o and S2 = S−o we obtain that the integrals [S+

o S−o V],
[S+
o S−o W] and [S+

o S−o D] are equivalent (in fact the [S+
o S−o D]-integral is exactly

the wide Denjoy integral). But the equivalence of the three integrals with the
[S+
o S−o R]-integral follows only if we assume the additional condition, that the

primitives of the [S+
o S−o R]-integral are continuous (see Theorem 11.1).

2 Preliminaries

We shall use the following well known classes of functions: C (continuous
functions), D (Darboux functions), B1 (Baire one functions), AC, V B, [ACG],
[ACG], ACG (the ACG functions are not supposed to be continuous), V BG,
[CG] (or B∗1) [V BG], (N) (Lusin’s condition) , T2, N−∞ (see for example [15]
or [1]). We denote by 〈x, y〉 the closed interval with the endpoints x and y,
where x, y ∈ R.

Definition 2.1 (Thomson). [21, p. 3] A family S = {S(x)}x∈R is said to be
a local system if each S(x) is a collection of sets with the following properties:

(i) {x} /∈ S(x);

(ii) If σx ∈ S(x) then x ∈ σx;

(iii) If σx ∈ S(x) and σx ⊂ A then A ∈ S(x);

(iv) If σx ∈ S(x) and δ > 0 then σx ∩ (x− δ, x+ δ) ∈ S(x).

Definition 2.2. Let S1 = {S1(x)}x∈R and S2 = {S2(x)}x∈R be local systems
and let x ∈ R, A ⊂ R.

• (Thomson, [21, p. 5]). We define the local system S1 ∧ S2 = {(S1 ∧
S2)(x)}x∈R by (S1 ∧S2)(x) = S1(x)∩S2(x) (it is easy to verify that this
is a local system).
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• (Thomson, [21, p. 37]). S1 is said to be bilateral at x if σx has x as a
bilateral accumulation point, whenever σx ∈ S1(x). S1 is bilateral on A
if it is bilateral at each point of A.

• (Thomson, [21, p. 18]). Let S∞ = {S∞(x) : x ∈ R} denote the local
system defined at each point x as S∞(x) = {σ : σ contains x and has
x as an accumulation point }. We can define right and left versions
of this, by writing: S+

∞(x) = {σ : σ contains x and has x as a right
accumulation point } and S−∞(x) = {σ : σ contains x and has x as a left
accumulation point }.

• Let S∞,∞ = S+
∞ ∧ S−∞. Clearly S∞,∞(x) = {σ : σ contains x and has x

as a bilateral accumulation point }.

• S1 is said to be S2-filtering at x if σ
′

x ∩ σ
′′

x ∈ S2(x) whenever σ
′

x, σ
′′

x ∈
S1(x). S1 is said to be S2-filtering on A if it is so on each point of A.

• (Thomson, [21, p. 10]). S is said to be filtering at x if it is S-filtering
at x.

• (Thomson, [21, p. 5]). We will write S1 � S2 on A, if at every point
x ∈ A we have S1(x) ⊆ S2(x).

• If S1 � S+
∞ and S2 � S−∞ then we define the following local system:

(S1;S2) = {(S1;S2)(x)}x∈R, where (S1;S2)(x) = {S : x ∈ S and there
exist δ > 0, A ∈ S1(x) and B ∈ S2(x) such that ((x−δ, x)∩B)∪ ((x, x+
δ) ∩A) ⊂ S}.

Remark 2.1. If S is S∞,∞-filtering then it is a bilateral local system.

Definition 2.3. Let S = {S(x)}x∈R be a local system. Let F : [a, b]→ R and
t ∈ [a, b].

• F is said to be SC (S-continuous) at t if for every ε > 0 there exists
σt ∈ S(t) such that |F (x)−F (t)| < ε, whenever x ∈ σt ∩ [a, b]. F is said
to be SC on a set A ⊂ [a, b] if it is so at each point t ∈ A.

• F is said to be S-upper (respectively lower) semi-continuous at t if for
every ε > 0 there exists σt ∈ S(t) such that F (t)−F (x) < ε (respectively
F (t) − F (x) > −ε), whenever x ∈ σt ∩ [a, b]. F is said to be S-upper
(respectively lower) semi-continuous on a set A ⊂ [a, b] if it is so at each
point t ∈ A.

Remark 2.2. With the above notations we have:
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(i) If F is SC at t ∈ [a, b] then F is both, S-upper semi-continuous and
S-lower semi-continuous at t. If S is a filtering local system the converse
is also true.

(ii) Definition 2.3 is a slight modification of Thomson’s definitions (31.1) and
(31.3) of [21, pp. 70–71].

Definition 2.4. Let S = {S(x)}x∈R be a bilateral local system, and let F :
[a, b]→ R.

• F is said to be right (respectively left) SC at a point x ∈ [a, b) (respec-
tively x ∈ (a, b]), if for every ε > 0 there exists σx ∈ S(x) such that
|F (t)− F (x)| < ε, whenever t ∈ σx ∩ [x, b) (respectively t ∈ σx ∩ (a, x]).
F is said to be right (respectively left) SC on a set A ⊂ [a, b) (respec-
tively A ⊂ (a, b]), if it is so at each point x ∈ A. If F is right SC on [a, b)
and left SC on (a, b], we say that F is bilateral SC on [a, b].

• F is said to be right (respectively left) S- upper semi-continuous at
a point x ∈ [a, b) (respectively x ∈ (a, b]), if for every ε > 0 there
exists σx ∈ S(x) such that F (t) − F (x) < ε, whenever t ∈ σx ∩ [x, b)
(respectively t ∈ σx ∩ (a, x]). F is said to be right (respectively left)
S-upper semi-continuous on a set A ⊂ [a, b) (respectively A ⊂ (a, b]), if
it is so at each point x ∈ A.

• F is said to be right (respectively left) S- lower semi-continuous at a
point x ∈ [a, b) (respectively x ∈ (a, b]), if for every ε > 0 there exists
σx ∈ S(x) such that F (t)−F (x) > −ε, whenever t ∈ σx ∩ [x, b) (respec-
tively t ∈ σx ∩ (a, x]). F is said to be right (respectively left) S-lower
semi-continuous on a set A ⊂ [a, b) (respectively A ⊂ (a, b]), if it is so at
each point x ∈ A.

• F is said to be SCi at t ∈ [a, b] if for every ε > 0 there exists σt ∈ S(t)
such that F (x) ≤ F (t) + ε for x ∈ σt ∩ [a, t], and F (t) − ε ≤ F (y) for
y ∈ σt ∩ [t, b]. F is said to be SCd at t if −F is SCi at t. F is said to be
SCi (respectively SCd) on a set A if it is so at each point of A.

Lemma 2.1. Let S1 = {S1(x)}x∈R and S2 = {S2(x)}x∈R be local systems
such that S1 � S+

∞ on [a, b) and S2 � S−∞ on (a, b]. Let F : [a, b] → R and
x ∈ [a, b].

(i) The following assertions are equivalent:

a) F is (S1;S2)C at x;

b) F is left S2C at x if x ∈ (a, b], and F is right S1C at x if x ∈ [a, b).
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(ii) The following assertions are equivalent:

a) F is (S1;S2)Ci at x;

b) F is left S2-upper semi-continuous at x if x ∈ (a, b], and F is right
S1-lower semi-continuous at x if x ∈ [a, b).

Proof. Evident.

Remark 2.3. Let F : [a, b]→ R.

(i) F is right S+
∞ lower semicontinuous at a point x ∈ [a, b) if and only if F

is S+
∞ lower semicontinuous at x.

(ii) F is left S−∞ lower semicontinuous at a point x ∈ [a, b) if and only if F
is S−∞ lower semicontinuous at x.

(iii) F is lower internal (this condition is due to Garg, see [1, p. 33]) if and
only if F is (S+

∞;S−∞)Ci on [a, b]. (see (i), (ii) and Lemma 2.1, (ii)).

Lemma 2.2. Let S1 = {S1(x)}x∈R and S2 = {S2(x)}x∈R be local systems
such that S1 � S+

∞ on [a, b) and S2 � S−∞ on (a, b]. Let F,G : [a, b] → R
and c ∈ (a, b). Let F1 : [a, c] → R, F1(x) = F (x), and let F2 : [c, b] → R,
F2(x) = F (x).

(i) If S1 = S2 and F is S1C at x ∈ [a, b] then F is (S1;S2)C at x;

(ii) Suppose that S1 = S2 is filtering on [a, b]. Then S1C = (S1;S2)C on
[a, b].

(iii) F1 ∈ (S1;S2)C (resp. (S1;S2)Ci) on [a, c] and F2 ∈ (S1;S2)C (resp.
(S1;S2)Ci) on [c, b] if and only if F is (S1;S2)C (resp. (S1;S2)Ci) on
[a, b].

(iv) (S1;S2)C ⊂ (S1;S2)Ci ∩ (S1;S2)Cd on [a, b].

(v) B1 ∩ (S1;S2)Ci ⊂ D−B1 on [a, b].

(vi) B1 ∩ (S1;S2)C ⊂ B1 ∩ (S1;S2)Ci ∩ (S1;S2)Cd ⊂ DB1 on [a, b].

(vii) Suppose that S1 is S+
∞-filtering on [a, b) and S2 is S−∞-filtering on (a, b].

Then on [a, b] we have

• (S1;S2)Ci + (S1;S2)Ci ⊂ (S+
∞;S−∞)Ci;

• (B1 ∩ (S1;S2)Ci) + (B1 ∩ (S1;S2)Ci) ⊆ B1 ∩ (S+
∞;S−∞)Ci = D−B1;

• (S1;S2)C + (S1;S2)C ⊂ (S+
∞;S−∞)C;
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• (B1 ∩ (S1;S2)C) + (B1 ∩ (S1;S2)C) ⊆ B1 ∩ (S+
∞;S−∞)C = DB1.

Proof. See Theorem 2.5.1, (i), (iv) of [1] and Remark 2.3, (iii).

Lemma 2.3. Let F : [a, b] → R. If F ∈ [ACG] ∩ (S+
∞;S−∞)Ci on [a, b] and

F
′

ap(x) ≥ 0 a.e. on [a, b] then F is increasing on [a, b].

Proof. We have [ACG] ⊂ [V BG] ⊂ T2 (see Theorem 2.11.1, (vi) and The-
orem 2.18.9 of [1]) and [ACG] ⊂ N−∞ (see for example Theorem 2.20.1 and
Lemma 2.21.1 of [1]). Let Q be a perfect subset of [a, b]. Since F ∈ [V BG],
there exists a portion (α, β) ∩ Q 6= ∅ of Q such that F ∈ V B on it (see
Theorem 1.9.1, (ii) of [1]). Then F/Q is continuous nearly everywhere on
(α, β) ∩ Q, hence F ∈ B1 on [a, b] (see Theorem 2.2.1 of [1]). By Lemma
2.2, F ∈ D−B1T2 ∩N−∞ on [a, b]. Now Corollary 4.3.1. of [1] completes our
proof.

Corollary 2.1. Let F : [a, b] → R. If F ∈ [ACG] ∩ (S+
∞;S−∞)C on [a, b] and

F
′

ap(x) = 0 a.e. on [a, b] then F is constant on [a, b].

3 Examples of Local Systems

We recall the following local systems.

• S+
o ={S+

o (x)}x∈R, where S+
o (x) = {U : U is a right neighborhood of x}.

• S−o = {S−o (x)}x∈R, where S−o (x) = {U : U is a left neighborhood of x}.

• S+
ap = {S+

ap(x)}x∈R, where S+
ap(x) = {S : x ∈ S and di+(S;x) = 1}.

• S−ap = {S−ap(x)}x∈R, where S−ap(x) = {S : x ∈ S and di−(S;x) = 1}.

• For α ∈ (0, 1) let S+
α = {S+

α (x)}x∈R, where S+
α (x) = {S : x ∈ S and

di+(S;x) ≥ α}.

• For α ∈ (0, 1) let S−α = {S−α (x)}x∈R, where S−α (x) = {S : x ∈ S and
di−(S;x) ≥ α}.

• S+
pro,o = {S+

pro,o(x)}x∈R, where S+
pro,o(x) = {A : x ∈ A and there is a

measurable set E ⊆ A such that d+(E, x) = 1 and d+(E, x) > 0};

• S−pro,o = {S−pro,o(x)}x∈R, where S−pro,o(x) = {A : x ∈ A and there is a
measurable set E ⊆ A such that d−(E, x) = 1 and d−(E, x) > 0};
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• S+
pro = {S+

pro(x)}x∈R, where S+
pro,o(x) = {A : x ∈ A and there is a

measurable set E ⊂ A such that E ∩ P ∈ S+
pro,o(x) whenever P is a

measurable set in S+
pro,o(x);

• S−pro = {S−pro(x)}x∈R, where S−pro,o(x) = {A : x ∈ A and there is a
measurable set E ⊂ A such that E ∩ P ∈ S−pro,o(x) whenever P is a
measurable set in S−pro,o(x);

(Here di+ and di− are the interior right respectively left densities of the set S
at x.)

Remark 3.1. The local systems S+
o , S−o , S+

ap, S−ap, S+
α and S−α were defined

by Thomson in [21, pp. 18, 22]. The local systems S+
pro,o, S−pro,o, S+

pro and
S−pro were used by Filipczak in [3] (p. 172; with different names), who gives
credit for their introduction to Sarkhel and De. In fact in Sarkhel and De’s
terminology [18, pp. 30-32], a set A ∈ S+

pro(x) if and only if x ∈ A and R \ A
is sparse at x on the right.

Remark 3.2. With the above notations we have:

(i) The local systems S+
o , S−o , S+

ap and S−ap are filtering.

(ii) If α > 1
2 then S+

α is S+
∞-filtering, and S−α is S−∞-filtering.

(iii) (S+
o ;S−o )C = C;

(iv) (S+
ap;S−ap)C = Cap, where Cap denotes the class of approximately contin-

uous functions.

(v) S+
pro and S−pro are filtering. (Indeed. Let P be a measurable set in
S+
pro,o(x), and let A1, A2 ∈ S+

pro(x), A = A1 ∩A2. Then x ∈ A and there
exists Ei measurable, Ei ⊂ Ai such that Ei ∩ P ∈ S+

pro,o(x), i = 1, 2.
Let E = E1 ∩ E2. Then E ∩ P = E1 ∩ (E2 ∩ P ) ∈ S+

pro,o(x). Hence
A ∈ S+

pro(x).)

(vi) (S+
pro;S−pro)C = Cpro, where Cpro is the proximal continuity introduced

by Sarkhel and De in [18].

4 A Fundamental Lemma

Lemma 4.1. Let P be a perfect nowhere dense subset of [a, b], a, b ∈ P , and
let δ : P → (0,+∞). Then there exists a finite set A = {([y, z];x) : x ∈
{y, z} ⊂ P, x is a limit point of [y, z] ∩ P and [y, z] ⊂ (x − δ(x), x + δ(x))},
such that ∪([y,z],x)∈A[y, z] ⊇ P .
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Proof. Let {(ai, bi)}, i = 1,∞ be the intervals contiguous to P , and let
η : [a, b]→ (0,+∞),

η(x) =


δ(x) , if x ∈ P \ ∪∞i=1{ai, bi} ,

min{ bi−ai3 , δ(x)} , if x ∈ {ai, bi} , i = 1,∞

min{x−ai2 , bi−x2 } , if x ∈ (ai, bi) , i = 1,∞ .

Let π be a η-fine partition of [a, b] (i.e., a = xo < x1 < . . . < xn = b and
ti ∈ [xi−1, xi] ⊂ (ti − η(ti), ti + ηi(ti)); that such a partition exists follows for
example by [1, p. 87]. Let π1 = {(I, x) ∈ π : x ∈ P} and π2 = {(I, x) ∈ π :
x /∈ P}. Clearly π = π1 ∪ π2. If (I, x) ∈ π2 then x /∈ P . Then there exists
some i such that x ∈ (ai, bi), hence x ∈ I ⊂ (x− η(x), x+ η(x)) ⊂ (ai, bi). It
follows that

∪(I,x)∈π1I ⊃ P . (1)

Let (I, x) ∈ π1 and let [y, z] be the smallest closed interval that contains I∩P .
We have three situations:

1) Suppose that x ∈ P \ ∪∞i=1{ai, bi}. Then x, y, z ∈ P and y ≤ x ≤ z. If
x ∈ {y, z} then x is a limit point of [y, z] ∩ P , and if x ∈ (y, z) then [y, x] ∩ P
and [x, z] ∩ P have x as a limit point.

2) Suppose that x = ai for some i. Then z = ai and [y, ai] ∩ P has ai as a
limit point.

3) Suppose that x = bi for some i. Then y = bi and [bi, z] ∩ P has bi as a
limit point.

By 1), 2), 3) and (1) it follows that there exists a finite set A with the
required properties.

Definition 4.1. Let Z be a real set.

• Let PZ be the collection of all sequences {Zn}n of sets whose union is
Z. If in addition each Zn is closed then we denote this collection by PZ .

• Let {Zn}n ∈ PZ and δn : Zn → (0,+∞). Let β = β({Zn}, {δn}) denote
the collection of all tag intervals ([x, y], t), t ∈ {x, y} ⊂ Z, such that
x, y ∈ Zn and y−x < δn(t) whenever t ∈ Zn. Let’s denote the collection
of all β by BZ . If the collection PZ is replaced by PZ then we denote
this collection by BZ . (The collection BR was defined by Thomson in
[20, p. 115], but he called it C).

• Let Bo denote the collection of all BZ , with |Z| = 0.
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• Let β ∈ BZ for some real set Z, and let π = {(Ik, tk)}mk=1 be a finite
subset of β. π is said to be a β-partial partition of Z if the intervals
{Ik}k are nonoverlapping.

Definition 4.2. Let P be a real set. We denote by

• Is+(P ) = {x ∈ P : x is a right isolated point of P};

• Is−(P ) = {x ∈ P : x is a left isolated point of P};

• Is(P ) = Is+(P ) ∪ Is−(P ).

Let {Pn}n be a sequence of real sets. We denote by

• Is+({Pn}) = ∪∞n=1Is
+(Pn);

• Is−({Pn}) = ∪∞n=1Is
−(Pn);

• Is({Pn}) = ∪∞n=1Is(Pn) (this set is countable, see [15, p. 260]).

Definition 4.3. Let {Pn}n ∈ P [a,b] and let δn : Pn → (0,+∞). Let S1 =
{S1(x)}x∈R be a local system such that S1 � S+

∞ on [a, b], and let S2 =
{S2(x)}x∈R be a local system such that S2 � S−∞ on [a, b]. For each x ∈
Is+(Pn ∩ [a, b)) let σ(1)

x,n ∈ S1(x), and for each x ∈ Is−(Pn ∩ (a, b]) let σ(2)
x,n ∈

S2(x).

(i) Let α = α({Pn}, {δn}, σ(1)
x,n, σ

(2)
x,n) denote the collection of all tag intervals

([x, y], t), t ∈ {x, y} ⊂ [a, b] such that:

• For t = x ∈ Pn
∗ y ∈ (t, t+ δn(t)) ∩ Pn whenever t is a right accumulation point

for Pn;
∗ y ∈ σ(1)

t,n whenever t ∈ Is+(Pn ∩ [a, b));

• For t = y ∈ Pn
∗ x ∈ (t − δn(t), t) ∩ Pn whenever t is a left accumulation point

for Pn;
∗ x ∈ σ(2)

t,n whenever t ∈ Is−(Pn ∩ (a, b]).

(ii) We denote the collection of all α by A(P [a,b];S1;S2)

(iii) Let A be a real set such that A ⊃ Is({Pn}). Let σ(1)
t ∈ S1(t), with t ∈

A∩ [a, b), and let σ(2)
t ∈ S2(t), with t ∈ A∩(a, b]. Let βA = βA(σ(1)

t , σ
(2)
t )

denote the collection of all tag intervals ([x, y], t), t ∈ {x, y} ⊂ [a, b] such
that:
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• x = t and y ∈ σ(1)
t whenever t ∈ A ∩ [a, b);

• y = t and x ∈ σ(2)
t whenever t ∈ A ∩ (a, b].

(iv) We denote the collection of all βA by BA(S1;S2).

(v) We denote by B(P [a,b];S1,S2) = B[a,b]∪(∪{BA(S1,S2) : A is a countable
subset of [a, b] that contains Is({Pn})}).

(vi) Let β ∈ B(P [a,b];S1;S2) and let π = {(Ik, tk)}mk=1 be a finite subset of
β. π is said to be a β-partial partition of [a, b] if the intervals {Ik}k
are nonoverlapping. If in addition ∪mk=1Ik = [a, b] then π is said to be a
β-partition of [a, b].

Remark 4.1. With the notations of Definition 4.3 we have:

(i) B(P [a,b];S1,S2) ⊃ A(P [a,b];S1,S2).

(ii) B[a,b] ∪BIs({Pn})(S+
o ;S−o ) is the family PC, introduced by Henstock [21,

p. 115].

(iii) A(P [a,b];S+
ap;S−ap) was defined in [12]

Lemma 4.2 (Fundamental lemma). For each β ∈ A(P [a,b];S1;S2), there
exists a β-partition of [a, b] (see Definition 4.3). Particularly, the assertion is
true for every β ∈ B(P [a,b];S1;S2)

Proof. We shall use the Romanovski Lemma (see for example [1, p. 10]). Let
A = {(p, q) ⊆ (a, b) : [p1, q1] admits a β-partition whenever (p1, q1) ⊆ (p, q)}.

(i) If (p, q) ∈ A and (q, r) ∈ A then clearly (p, r) ∈ A.
(ii) If (p, q) ∈ A and (p1, q1) ⊂ (p, q) then (p1, q1) ∈ A (see the definition

of A.
(iii) Let (c, d) ⊆ (a, b) such that (p, q) ∈ A whenever [p, q] ⊂ (c, d). We

show that (c, d) ∈ A. Let c ∈ Pn. Let c1 ∈ (c, c + δn(c)) ∩ Pn ∩ (c, (c + d)/2)
if c is a right accumulation point for Pn, and let c1 ∈ σ

(1)
c ∩ (c, (c + d)/2)

if c is right isolated in [a, b) ∩ Pn. Then ([c, c1], c) ∈ β. Similarly we find
d1 ∈ ((c + d)/2, d) such that ([d1, d], d) ∈ β. But (c1, d1) ∈ A and [c, d] =
[c, c1] ∪ [c1, d1] ∪ [d1, d]. Therefore [c, d] admits a β-partition. Analogously we
obtain that [c2, d2] admits a β-partition, whenever (c2, d2) ⊂ (c, d). Hence
(c, d) ∈ A.

(iv) Let E ⊂ [a, b] be a perfect set such that all intervals contiguous to E are
contained in A. We show that there exists (p, q) ∈ A such that E ∩ (p, q) 6= ∅.
Since E = ∪∞n=1(E ∩Pn), by the Baire Category Theorem (see for example [1,
p. 10]) it follows that there exists a positive integer n and an interval (p, q)
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such that ∅ 6= (p, q) ∩ E = (E ∩ Pn) ∩ (p, q). We may suppose without loss
of generality that p, q ∈ E and [p, q] ∩ E is perfect. Applying Lemma 4.1 to
[p, q] ∩ E and δn, there exists a finite set π = {([x, y], t) : t ∈ {x, y} ⊂ E,
t is a limit point of [x, y] ∩ E, and {[x, y]} are nonoverlapping intervals }
and ∪([x,y],t)∈π[x, y] ⊇ E. Clearly π is a β- partial partition of [a, b]. Since
[p, q] \∪([x,y],t)∈π[x, y] consists of a finite number of intervals contiguous to E,
it follows that [p, q] admits a β- partition. Similarly it follows that each [p1, q1]
admits such a partition, whenever (p1, q1) ⊂ (p, q). Therefore (p, q) ∈ A.

By (i)-(iv) and the Romanovski Lemma, it follows that (a, b) ∈ A.
The second part follows by Remark 4.1, (i).

Remark 4.2. Lemma 4.2 generalizes a result of Henstock [7, p. 56] as well
as Theorem 3.1 of Lee and Soedijono [12, p. 265].

5 A Characterization of ACG ∩ C on a Real Compact Set

Definition 5.1. Let F : [a, b]→ R and P ⊆ [a, b]. F is said to be NBo on P if
it has the following property: for every ε > 0 and every Z ⊂ P , |Z| = 0, there
exists a β = β({Zi}, {δi}) ∈ BZ ∈ Bo, such that

∑
([x,y],t)∈π |F (y)−F (x)| < ε,

whenever π is a β-partial partition of Z.

Lemma 5.1. Let F1, F2 : [a, b]→ R and P ⊆ [a, b]. If F1, F2 ∈ NBo on P and
α1, α2 ∈ R then α1F1 + α2F2 ∈ NBo on P .

Proof. Clearly α1F1 and α2F2 are NBo on P , so it is sufficient to prove that
F1 + F2 ∈ NBo on P . Let ε > 0 and Z ⊂ P , |Z| = 0. Since Fk ∈ NBo , k =
1, 2, there exists βk = βk({Z(k)

i }, {δ
(k)
i }) ∈ BZ such that

∑
([x,y],t)∈π |Fk(y) −

Fk(x)| < ε/2, whenever π is a βk-partial partition of Z. Let Zij = Z
(1)
i ∩Z

(2)
j .

Then {Zij}i,j ∈ PZ . Let δij : Zij → (0,∞), δij(x) = min{δ(1)i (x), δ(2)j (x)}.
Then β = β({Zij}, {δij}) ∈ BZ . Let π be a β-partial partition of Z. Clearly π
is also a β1 and a β2-partial partition of Z. It follows that

∑
([x,y],t)∈π |(F1 +

F2)(y) − (F1 + F2)(x)| ≤
∑

([x,y],t)∈π |F1(y) − F1(x)| +
∑

([x,y],t)∈π |F2(y) −
F2(x)| < ε. Therefore F1 + F2 ∈ NBo on P .

Lemma 5.2. Let F : [a, b]→ R and Z ⊂ [a, b] such that |Z| = 0. If F ∈ V BG
on Z and |F (Z)| > 0 then there exists Zo ⊂ Z such that F is bounded and
strictly monotone on Zo, and |F (Zo)| > 0.

Proof. Since |F (Z)| > 0 and F ∈ V BG on Z it follows that Z = ∪∞i=1Ai,
such that F ∈ V B on each Ai and |F (Ai)| > 0 for at least one Ai. Therefore
we may suppose without loss of generality that F ∈ V B on Z. Let
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A = {x ∈ Z : (F/Z)
′
(x) exists and is finite};

B = {x ∈ Z : (F/Z)
′
(x) does not exist, finite or infinite};

C = {x ∈ Z : (F/Z)
′
(x) = ±∞}.

Clearly Z = A ∪ B ∪ C. Let F̃ : [a, b] → R such that F̃ ∈ V B on [a, b] and
F̃ = F on Z (this is possible, see for example [1, p. 42]). Then F̃

′
(x) does not

exist on B. By Theorem 7.2 of [15, p. 230], |F (B)| = 0. (That |F (B)| = 0
follows also directly from Theorem 4.4 of [15, p. 223].)
We show that F is LG on A (a function F is said to be LG on a set A if
A = ∪nAn and F is Lipschitz on each An, see [1]). Let An = {x ∈ A :
|(F/Z)

′
(x)| < n}. Then A = ∪∞n=1An. For x ∈ An there exists δ(x) > 0 such

that |(F (y)−F (x))/(y−x)| < n, whenever y 6= x, y ∈ Z ∩ (x−δ(x), x+δ(x)).
Let An,j = {x ∈ An : δ(x) > 1/j} and An,j,k = An,j ∩ [a+ (k− 1)/j, a+ k/j],
j = 1, 2, . . ., k = 0,±1,±2, . . .. Then An = ∪j(∪kAn,j,k). If x < y, x, y ∈
An,j,k then 0 < y−x < 1/j < min{δ(x), δ(y)}. It follows that |F (y)−F (x)| <
n · |y − x|, hence F is Lipschitz on An,j,k. Therefore F is LG on A. Since
LG ⊂ (N) (see for example Corollary 2.32.1, (iv) of [1]) and |A| = 0, it follows
that |F (A)| = 0.
But F (Z) = F (A) ∪ F (B) ∪ F (C), hence |F (C)| = |F (Z)| > 0. We may
suppose without loss of generality that C = {x ∈ Z : (F/Z)

′
= +∞}. Let

δ : C → (0,+∞) such that (F (y) − F (x))/(y − x) > 1, whenever y 6= x and
y ∈ Z ∩ (x− δ(x), x+ δ(x)). Let

Ci = {x ∈ C : δ(x) > 1/i}, i = 1, 2, . . .;

Cij = Ci ∩ [a+ (j − 1)/i, a+ j/i], i = 1, 2, . . ., j = 0,±1,±2, . . ..

Then C = ∪iCi = ∪i ∪j Cij . Let x, y ∈ Ci,j , x < y. Then y − x ≤ 1/i <
min{δ(x), δ(y)}. It follows that F (y)− F (x) > y − x > 0, hence F is strictly
increasing on Cij . Since F (C) = ∪∞i=1 ∪ij=1 F (Cij) and |F (C)| > 0, it follows
that there exists some Cij such that |F (Cij)| > 0. Let’s denote this Cij by
Zo. Since F is V B on Zo ⊂ Z, F is bounded on Zo. Thus Zo has the required
properties.

Theorem 5.1. Let F : [a, b] → R and P ⊆ [a, b]. If F is NBo on P and
Z ⊂ P , |Z| = 0 then

(i) F is V BG on Z;

(ii) |F (Z)| = 0, hence NBo ⊂ (N).
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Proof. (i) For ε = 1 let β = β({Zi}, {δi}) ∈ BZ be such that
∑

([x,y],t)∈π |F (y)
−F (x)| < 1 whenever π is a β-partial partition of Z. Let Zi,j = {x ∈ Zi :
δi(x) > 1/j} and Zi,j,k = Zi,j ∩ [a + (k − 1)/j, a + k/j], j = 1, 2, . . ., k =
0,±1,±2, . . .. Then Zi = ∪jZi,j = ∪j(∪kZi,j,k). Let {[αn, βn]}, n = 1, 2, . . . , p
be a finite set of nonoverlapping closed intervals, with endpoints in Zi,j,k. Since
0 < βn − αn < 1/j < min{δi(αn), δi(βn)}, it follows that ([αn, βn], αn) ∈ β,
hence

∑p
n=1 |F (βn)− F (αn)| < 1. Therefore F is V BG on the set Z.

(ii) Suppose on the contrary that |F (Z)| > 0. By (i) and Lemma 5.2,
it follows that there exists Zo ⊂ Z such that F is strictly increasing (for
example) and bounded on Zo, and |F (Zo)| > 0. Let ε = |F (Zo)|. For ε/4 there
exists a β = β({Zi}, {δi}) ∈ BZo such that

∑
([x,y],t)∈π |F (y) − F (x)| < ε/4,

whenever π is a β-partial partition of Zo. Since F is V B on Zo, it follows that
F/Zo is continuous nearly everywhere on Zo. We may suppose without loss of
generality that F/Zo is continuous on Zo (because |F (Zo)| > 0). Since each
Zi contains countable many isolated points of Zi (see [15, p. 260]), we may
suppose without loss of generality that Zi contains no isolated points of Zi.
Let Y1 = Z1, Y1 = Zi \ (∪i−1

j=1Zj), i ≥ 2. Then Zo = ∪∞i=1Yi and Yi1 ∩ Yi2 = ∅
for i1 6= i2. Let t ∈ Zo. Then there exists an unique i such that t ∈ Yi. Let

Ai =
{
〈F (t), F (x)〉

}
(〈t,x〉,t)∈β(Zi,δi)

t∈Yi

and A =
{
〈F (x), F (y)〉

}
(〈x,y〉,x)∈β . Then A is a Vitali cover for F (Zo) (indeed:

if xo ∈ Zo then x ∈ Zi for some i, and for each

y ∈
((
x− δi(x), x+ δi(x)

)
∩ Zi

)
\ {x} 6= ∅

we have 〈F (x), F (y)〉 ∈ A, F (x) 6= F (y); if y → x then F (y) → F (x)). Let
π ⊂ β be a finite subset such that∑

(〈x,y〉,x)∈π

|F (y)− F (x)| > 3
4
|F (Zo)|

and
{
〈F (x), F (y)〉}(〈x,y〉,x)∈π contains only pairwise disjoint closed intervals

(by Vitali’s Covering Theorem – see for example [1, p. 10]). Since F is strictly
increasing, π is a partition, so

3
4
|F (Zo)| <

∑
(〈x,y〉,x)∈π

|F (y)− F (x)| < ε

4
=

1
4
|F (Zo)| ,

a contradiction.
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Lemma 5.3. ([1, p. 12]) Let P be a closed subset of [a, b] and let F ∈ C on
P . The following assertions are equivalent:

(i) F ∈ V BG on P ;

(ii) For every closed subset S of P there exists (α, β)∩ S 6= ∅ such that F is
V B on (α, β).

(iii) F ∈ V BG on Z whenever Z ⊂ P and |Z| = 0.

Remark 5.1. (i) ⇔ (ii) in Lemma 5.3 follows also by [15, p. 223].

Lemma 5.4. Let F : [a, b] → R and P ⊂ [a, b]. If F ∈ ACG on P then
F ∈ NBo on P .

Proof. Let ε > 0 and Z ⊂ P , |Z| = 0. Since F is ACG on P , F is ACG
on Z too. So there exists a sequence of sets {Zi}i such that Z = ∪∞i=1Zi and
F is AC on each Zi. For ε/2i let ηi > 0 be given by the fact that F is AC
on Zi, and let Gi be an open set such that Zi ⊂ Gi and |Gi| < ηi. Further,
let δi : Zi → (0,+∞) such that (x − δi(x), x + δi(x)) ⊂ Gi, for every x ∈ Zi;
let β = β({Zi}, {δi}) and let π be a β-partial partition of Z. We denote by
πi = {([x, y], t) ∈ π : t ∈ Zi}. Clearly x, y ∈ Zi and [x, y] ⊂ Gi, whenever
([x, y], t) ∈ πi. It follows that

∑
([x,y],t)∈π

|F (y)− F (x)| =
∞∑
i=1

∑
([x,y],t)∈πi

|F (y)− F (x)| <
∞∑
i=1

ε

2i
= ε ,

hence F ∈ NBo on P .

Theorem 5.2. Let P be a closed subset of [a, b] and let F ∈ C on P . The
following assertions are equivalent:

(i) F ∈ ACG on P ;

(ii) F ∈ NBo on P .

Proof. (i) ⇒ (ii) See Lemma 5.4
(ii)⇒ (i) By Theorem 5.1, F is (N) on P , and F is V BG on every Z ⊂ P ,

with |Z| = 0. By Lemma 5.3, it follows that F is V BG on P . Therefore
F ∈ V BG ∩ (N) ∩ C = ACG ∩ C (see for example [1, p. 75]).
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6 The Lusin Type [S1S2D] Integral

Definition 6.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b]→ R. f is said to be [S1S2D]-integrable on [a, b], if there exists F : [a, b]→
R such that F is (S1;S2)C on [a, b], F ∈ [ACG] on [a, b] and F

′

ap(x) = f(x)a.e.
on [a, b]. We write [S1S2D]

∫ x
a
f(t)dt = F (x)− F (a).

Lemma 6.1. The [S1S2D]-integral is well defined.

Proof. Let F,G : [a, b] → R, F,G ∈ [ACG] ∩ (S1;S2)C on [a, b] such that
F

′

ap(x) = G
′

ap(x) = f(x) a.e. on [a, b]. Then (F − G)
′

ap(x) = 0 a.e. on [a, b]
and F −G ∈ [ACG]∩ (S+

∞;S−∞)C on [a, b]. By Corollary 2.1, F −G is constant
on [a, b].

Remark 6.1. We have the following special cases for the [S1S2D]-integral:

• The [S+
o S−o D]-integral is in fact the wide Denjoy integral D. Therefore

any [S1S2D]-integral contains the D-integral.

• The [S+
apS−apD]-integral is in fact the β-Ridder integral (that is also called

by Kubota the AD integral, see [14], [8]).

• For α, β ∈ (1/2, 1) we obtain the [S+
α S−β D]-integral, that seems to be

new.

• The [S+
proS−proD]-integral is strictly contained in many of the integrals

studied by Sarkhel, De and Kar in [18], [16], [17], [19].

Lemma 6.2. Let f : [a, b] → R be [S1S2D]-integrable on [a, b], and let c ∈
(a, b). Then f is [S1S2D]-integrable on both [a, c] and [c, b], and we have

[S1S2D]
∫ b

a

f(t) dt = [S1S2D]
∫ c

a

f(t) dt+ [S1S2D]
∫ b

c

f(t) dt (2)

Proof. Let F (x) = [S1S2D]
∫ x
a
f(t) dt and let

F1 : [a, c]→ R, F1(x) = F (x) if x ∈ [a, c];

F2 : [c, b]→ R, F2(x) = F (x) if x ∈ [c, b].

By Lemma 2.2, F1, F2 ∈ (S1;S2)C on [a, c] respectively [c, b]. Then f is
[S1S2D]-integrable on [a, c] and on [c, b], and we have

[S1S2D]
∫ c
a
f(t) dt = F1(c)− F1(a) = F (c)− F (a);
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[S1S2D]
∫ b
c
f(t) dt = F2(b)− F2(c) = F (b)− F (c).

Now (2) follows immediately.

Lemma 6.3. Let f : [a, b] → R be [S1S2D]-integrable on [a, c] and on [c, b],
where c ∈ (a, b). Then f is [S1S2D]-integrable on [a, b] and

[S1S2D]
∫ b

a

f(t) dt = [S1S2D]
∫ c

a

f(t) dt+ [S1S2D]
∫ b

c

f(t) dt (3)

Proof. Let F1 : [a, c]→ R, F1 ∈ [ACG]∩(S1S2)C such that (F1)
′

ap(x) = f(x)
a.e. on [a, c]. Let F2 : [c, b]→ R, F2 ∈ [ACG]∩ (S1S2)C such that (F2)

′

ap(x) =
f(x) a.e. on [c, b]. Let F : [a, b]→ R,

F (x) =

{
F1(x) , x ∈ [a, c]

F2(x) + F1(c)− F2(c) , x ∈ [c, b]

Then F ∈ [ACG]∩ (S1;S2)C on [a, b] (see Lemma 2.2) and F
′

ap(x) = f(x) a.e.
on [a, b]. Hence f is [S1S2D]-integrable on [a, b] and we have (3).

Lemma 6.4. Let f1, f2 : [a, b] → R be [S1S2D]-integrable on [a, b], and let
α1, α2 ∈ R. If S1 is filtering on [a, b) and S2 is filtering on (a, b], then α1f1 +
α2f2 is [S1S2D]-integrable on [a, b] and [S1S2D]

∫ b
a

(α1f1 + α2f2)(t) dt = α1 ·
[S1S2D]

∫ b
a
f1(t) dt+ α2 · [S1S2D]

∫ b
a
f2(t) dt .

Proof. Since f1 and f2 are [S1S2D]-integrable on [a, b], there exist F1, F2 :
[a, b]→ R, belonging to [ACG]∩(S1;S2)C on [a, b], such that (F1)

′

ap(x) = f1(x)
and (F2)

′

ap(x) = f2(x) a.e. on [a, b]. Clearly (α1F1 + α2F2)
′

ap(x) = α1f1(x) +
α2f2(x) a.e. on [a, b], and α1F1 + α2F2 ∈ [ACG] on [a, b]. Then α1F1 + α2F2

is left S1C on (a, b] (since S1 is filtering on (a, b]) and α1F1 + α2F2 is right
S2C on (a, b] (since S2 is filtering on [a, b)). By Lemma 2.1 it follows that
α1F1 + α2F2 is (S1;S2)C on [a, b]. Thus α1f1 + α2f2 is [S1S2D]-integrable
on [a, b] and [S1S2D]

∫ b
a

(α1f1 + α2f2)(t) dt = (α1F1 + α2F2)(b) − (α1F1 +
α2F2)(a) = α1 · [S1S2D]

∫ b
a
f1(t) dt+ α2 · [S1S2D]

∫ b
a
f2(t) dt .

7 The Riemann Type [S1S2R] Integral

Definition 7.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b]→ R. f is said to be [S1S2R] integrable on [a, b], if there is a real number
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I with the following property: for every ε > 0 there exists β = β({Xi}, {δi}) ∈
B[a,b] such that for every countable set A with A ⊃ Is({Xi}) there exists
βA = βA(σ(1)

x , σ
(2)
x ) ∈ BA(S1,S2) so that |s(f, π) − I| < ε/2 whenever π is a

(β ∪ βA)-partition of [a, b].

Theorem 7.1. The number I in Definition 7.1 is unique, and we denote it
by [S1S2R]

∫ b
a
f(t)dt.

Proof. Suppose that there exist two numbers I1 and I2 as in Definition 7.1.
For ε > 0 and Ik, k = 1, 2 let βk = βk({X(k)

i }, {δ
(k)
i }) be given by Defini-

tion 7.1. For A = Is({X(1)
i }) ∪ Is({X

(2)
i }) let

β
(k)
A = β

(k)
A (σ(k,1)

x , σ(k,2)
x ) ∈ BA(S1;S2) ,

k = 1, 2 be given by Definition 7.1. We define

• σ(1)
x = σ

(1,1)
x ∩ σ(2,1)

x ∈ S+
∞(x);

• σ(2)
x = σ

(1,2)
x ∩ σ(2,2)

x ∈ S−∞(x);

• δi,j : Xi ∩Xj → (0,+∞), δi,j(x) = min{δ(1)i (x), δ(2)j (x)};

• β3 = β3({X(1)
i ∩X

(2)
j }, {δi,j}) ∈ B[a,b];

• βA = βA(σ(1)
x , σ

(2)
x ) ∈ B(S+

∞;S−∞);

• β = β3 ∪ βA;

By Lemma 4.2 there exists π, an β-partition of [a, b]. Clearly π is also a
(βk ∪ β(k)

A )-partition of [a, b], k = 1, 2. It follows that |s(f, π) − Ik| < ε,
k = 1, 2, hence |I1 − I2| < 2ε. Since ε is arbitrary we obtain that I1 = I2.

Lemma 7.1. Let f1, f2 : [a, b] → R be [S1S2R]-integrable on [a, b], and let
α1, α2 ∈ R. If S1 is filtering on [a, b) and S2 is filtering on (a, b], then α1f1 +
α2f2 is [S1S2R]- integrable on [a, b] and [S1S2R]

∫ b
a

(α1f1 + α2f2)(t)dt = α1 ·
[S1S2R]

∫ b
a
f1(t)dt+ α2 · [S1S2R]

∫ b
a
f2(t)dt .

Proof. Let I = [S1S2R]
∫ b
a
f1(t)dt and J = [S1S2R]

∫ b
a
f2(t)dt. Suppose that

α1, α2 6= 0 and let ε > 0.

For ε/(2|α2|) let β1 = β1({X(1)
i }, {δ

(1)
i }) ∈ B[a,b] be given by the fact that f1

is [S1S2R]-integrable on [a, b].
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For ε/(2|α1|) let β2 = β1({X(2)
i }, {δ

(2)
i }) ∈ B[a,b] be given by the fact that f2

is [S1S2R]-integrable on [a, b].

Let Xij = X
(1)
i ∩X

(2)
j . Then {Xij}i,j ∈ P [a,b].

Let δij : Xij → (0,+∞), δij(x) = min{δ(1)i (x), δ(2)j (x)}.

Let β = β({Xij}, {δij}) ∈ B[a,b].

Clearly Is({Xij}) contains both, Is({X(1)
i }) and Is({X(2)

j }).

Let A be a countable subset of [a, b] that contains Is({Xij}).

For ε/(2|α2|), let β(1)
A = β

(1)
A (σ(1,1)

x , σ
(1,2)
x ) ∈ BA(S1;S2) be given by the fact

that f1 is [S1S2R]-integrable on [a, b].

For ε/(2|α1|), let β(2)
A = β

(2)
A (σ(2,1)

x , σ
(2,2)
x ) ∈ BA(S1;S2) be given by the fact

that f2 is [S1S2R]-integrable on [a, b].

Let σ(1)
x = σ

(1,1)
x ∩ σ(2,1)

x . Since S1 is filtering, σ(1)
x ∈ S1(x).

Let σ(2)
x = σ

(1,2)
x ∩ σ(2,2)

x . Since S2 is filtering, σ(2)
x ∈ S2(x).

Let βA = βA(σ(1)
x , σ

(2)
x ) ∈ BA(S1;S2).

Let π be a (β ∪ βA)-partition of [a, b]. Then π is also a (β1 ∪ β(1)
A )-partition

and a (β2 ∪ β(2)
A )-partition of [a, b]. Then |s(α1f1 + α2f2;π)− (α1I + α2J)| ≤

|α1| · |s(f1;π)−I|+ |α2| · |s(f2;π)−J | < ε/2 + ε/2 = ε. Therefore α1I+α2J =
[S1S2R]

∫ b
a

(α1f1 + α2f2)(t)dt.

Lemma 7.2 (A Cauchy criterion). Let S1 = {S1(x)}x∈R be a local system
S+
∞-filtering on [a, b), and let S2 = {S2(x)}x∈R be a local system S−∞-filtering

on (a, b]. Let f : [a, b]→ R. The following assertions are equivalent:

(i) f is [S1S2R]-integrable on [a, b].

(ii) For ε > 0 there exists β = β({Xi}, {δi}) ∈ B[a,b] (depending on ε)
and for every pair of countable subsets A1 and A2 of [a, b] there exist
βAk = βAk(σ(k,1)

x , σ
(k,2)
x ) ∈ BAk(S1;S2) (depending only on ε), such that

|s(f, π1) − s(f, π2)| < ε, whenever πk is a (β ∪ βAk)-partition of [a, b],
k = 1, 2.
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Proof. (i) ⇒ (ii) This is obvious.
(ii) ⇒ (i) For εk = 1/k, k = 2,+∞, let βk = βk({X(k)

i }, {δ
(k)
i }) be given

by (ii). Let Ak = Is({X(k)
i }). For n > m > 2 let Am,n = Am∪An∪Is({X(m)

i ∩
X

(n)
j }). By (ii), for εm and the pair of sets Am and Am,n, there exist

βAm = βAm(σ(m,1)
x , σ(m,2)

x ) ∈ BAm(S1;S2)

and
β

(1)
Am,n

= β
(1)
Am,n

(σ(m,n,1,1)
x , σ(m,n,1,2)

x ) ∈ BAm,n(S1;S2)

such that |s(f, π1)− s(f, π2)| < εm whenever π1 is a (βm ∪ βAm)-partition for
[a, b] and π2 is a (βm ∪ β(1)

Am,n
)-partition of [a, b].

Again by (ii), for εn and the pair of sets An and Am,n, there exist βAn =
βAn(σ(n,1)

x , σ
(n,2)
x ) ∈ BAn(S1;S2) and β

(2)
Am,n

= β
(2)
Am,n

(σ(m,n,2,1)
x , σ

(m,n,2,2)
x ) ∈

BAm,n(S1;S2) such that |s(f, π1)− s(f, π2)| < εn whenever π1 is a (βn ∪βAn)-
partition for [a, b] and π2 is a (βn ∪ β(2)

Am,n
)-partition of [a, b]. Let

δ
(m,n)
i,j : X(m)

i ∩X(n)
j → (0,+∞), δ(m,n)

i,j (x) = min{δ(m)
i (x), δ(n)

j (x)};

βm,n = βm,n({X(m)
i ∩X(n)

j }, {δ
(m,n)
i,j }) ∈ B[a,b];

σ
(m,n,1)
x = σ

(m,n,1,1)
x ∩ σ(m,n,2,1)

x ;

σ
(m,n,2)
x = σ

(m,n,1,2)
x ∩ σ(m,n,2,2)

x ;

β
(3)
Am,n

= β
(3)
Am,n

(σ(m,n,1)
x , σ

(m,n,2)
x ) ∈ BAm,n(S+

∞;S−∞);

β = βm,n ∪ β(3)
Am,n

.

By Lemma 4.2 there exists π a β-partition of [a, b]. But π is also a βm∪β(1)
Am,n

-

partition and a (βn ∪ β(2)
Am,n

)-partition of [a, b]. Let πm be a (βm ∪ βAm)-
partition of [a, b] and let πn be a (βn∪βAn)-partition of [a, b]. Then |s(f, πm)−
s(f, π)| < εm and |s(f, πn)−s(f, π)| < εn. It follows that |s(f, πm)−s(f, πn)| <
1/m + 1/n < 2/m = 2εm. Therefore {s(f, πm)}m is a Cauchy sequence. Let’s
denote its limit by I. Then |s(f, πm) − I| ≤ 2εm. Let ε > 0 and m > 2 such
that 3/m < ε. Let A be a countable subset of [a, b]. Then there exists βA =
βA(σ(1)

x , σ
(2)
x ) ∈ BA(S1;S2) such that |s(f, π)− s(f, πm)| < 1/m whenever π is

a (βm ∪ βA)-partition of [a, b]. It follows that |s(f, π)− I| < 1/m + 2/m < ε.
Therefore f is (S1S2R)- integrable on [a, b].
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Lemma 7.3. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b), and

let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f : [a, b]→ R.

(i) If a < c < b and f is [S1S2R]-integrable on [a, c] and on [c, b] then f is
[S1S2R]-integrable on [a, b] and we have

[S1S2R]
∫ c
a
f(t) dt+ [S1S2R]

∫ b
c
f(t) dt = [S1S2R]

∫ b
a
f(t) dt.

(ii) If a ≤ c < d ≤ b and f is [S1S2R]-integrable on [a, b] then f is [S1S2R]-
integrable on [c, d].

Proof. (i) Let I(1) = [S1S2R]
∫ c
a
f(t) dt and I(2) = [S1S2R]

∫ b
c
f(t) dt.

Consider ε > 0.

For ε
2 and I(1) let β(1) = β(1)({X(1)

i }, {δ
(1)
i }) ∈ B[a,c] be given by Def. 7.1.

For ε
2 and I(2) let β(2) = β(2)({X(2)

i }, {δ
(2)
i }) ∈ B[c,b] be given by Def. 7.1.

Let A(1) = Is({X(1)
i }) and A(2) = Is({X(2)

i }).

Note that c ∈ A(1) ∩A(2), {X(1)
i , X

(2)
j }i,j ∈ P [a,b] and Is({X(1)

i } ∪ {X
(2)
j }) =

A(1) ∪A(2) .

Let A be a countable subset of [a, b].

Let A1 = A(1) ∪ (A ∩ [a, c]) and A2 = A(2) ∪ (A ∩ [c, b]).

Clearly A(1) ⊆ A1 and A(2) ⊆ A2. By Definition 7.1, for ε/2 and Ak, k = 1, 2
there exists βAk = βAk(σ(k,1)

x , σ
(k,2)
x ) ∈ BAk(S1;S2) such that |s(f, π)−I(1)| <

ε/2 whenever π is a (β(1) ∪ βA1)-partition of [a, c], and |s(f, π) − I(2)| < ε/2
whenever π is a (β(2) ∪βA2)-partition of [c, b]. Let δ(1)?i : X(1)

i → (0,+∞) and
δ
(2)?
j : X(2)

j → (0,+∞) be defined as follows:

δ
(1)?
i (x) =

{
min{δ(1)i (x), c− x} if x < c

min{δ(1)i (c), c− a} if x = c

δ
(2)?
j (x) =

{
min{δ(2)j (x), c− x} if x > c

min{δ(1)j (c), b− c} if x = c

Let

σ(1)
x =

{
σ

(1,1)
x ∩ (2x− c, c) ∈ S1(x) if x ∈ [a, c) ∩A1

σ
(2,1)
x ∈ S1(x) if x ∈ [c, b) ∩A2



72 Vasile Ene

σ(2)
x =

{
σ

(1,2)
x ∈ S2(x) if ∈ (a, c] ∩A1

σ
(2,2)
x ∩ (c, 2x− c) ∈ S2(x) if ∈ (c, b] ∩A2

Let βA = βA(σ(1)
x , σ

(2)
x ) ⊂ βA1 ∪ βA2 ;

Let {X ′

k}k be a relabeling of the set {X(1)
i }i ∪ {X

(2)
j }j ;

Let δ
′

k : X
′

k → (0,+∞), δ
′

k = δ
(1)?
i if X

′

k = X
(1)
i , and δ

′

k = δ
(2)?
j if X

′

k = X
(2)
j

βo = βo({X
′

k}, {δ
′

k}) ⊂ β(1) ∪ β(2).

β = βo ∪ βA.

Let π be a β-partition of [a, b]. Let ([x, y], t) ∈ π. If t < c then y < c, and if
t > c then x > c. It follows that

C = ∪([x,y],t)∈π
t<c

[x, y] ⊂ [a, c) and D = ∪([x,y],t)∈π
t>c

[x, y] ⊂ (c, b] .

Let xc = supC and yc = inf D. We observe that ([xc, c], c) and ([c, yc], c)
belong to β. Let π1 = {(I, t) ∈ π : t ≤ c} and π2 = {(I, t) ∈ π : t ≥ c}.
Then π1 is a (β(1) ∪ βA1)-partition of [a, c] and π2 is a (β(2) ∪ βA2)-partition
of [c, b]. We have |s(f, π) − I(1) − I(2)| = |s(f, π1) − I(1) + s(f, π2) − I(2)| <
|s(f, π1)− I(1)|+ |s(f, π2)− I(2)| < ε. It follows that f is [S1S2R]-integrable
on [a, b] and [S1S2R]

∫ b
a
f(t) dt = I(1) + I(2).

(ii) Let a < c < d < b.

For ε > 0 let β = β({Xi}, {δi}) ∈ B[a,b] be given by Lemma 7.2.

Let β1 = β1({Xi ∩ [c, d]}, {δi/Xi∩[c,d]}).

Let A(1), A(2) be a pair of countable subsets of [c, d].

Let β3 = β3({Xi ∩ [a, c]}, {δi/Xi∩[a,c]}).

Let A3 be a countable subset of [a, c] such that A3 ⊃ Is({Xi ∩ [a, c]}).

Let β4 = β4({Xi ∩ [d, b]}, {δi/Xi∩[d,b]}).

Clearly
β ⊇ β1 ∪ β3 ∪ β4 . (4)

Let A4 be a countable subset of [d, b] such that A4 ⊃ Is({Xi ∩ [d, b]}).

Let A1 = A(1)∪A3∪A4∪ Is({Xi∩ [c, d]}) and A2 = A(2)∪A3∪A4∪ Is({Xi∩
[c, d]}) (both contain Is({Xi}).
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For Ak, k = 1, 2 let σ(k,1)
x ∈ S1(x), x ∈ [a, b) ∩ Ak and σ

(k,2)
x ∈ S2(x),

x ∈ (a, b] ∩Ak be given by Lemma 7.2.

Let βAk = βAk(σ(k,1)
x , σ

(k,2)
x ) ∈ BAk(S1,S2), k = 1, 2.

Let β(k)
A3

= β
(k)
A3

(σ(k,1)
x , σ

(k,2)
x ) ∈ BA3(S1;S2), k = 1, 2.

Let β(k)
A4

= β
(k)
A4

(σ(k,1)
x , σ

(k,2)
x ) ∈ BA4(S1;S2), k = 1, 2.

Let σ(1)
x = σ

(1,1)
x ∩ σ(2,1)

x ∈ S+
∞, if x ∈ (A3 ∪A4) \ {b}.

Let σ(2)
x = σ

(1,2)
x ∩ σ(2,2)

x ∈ S−∞, if x ∈ (A3 ∪A4) \ {a}.

Let βA3 = βA3(σ(1)
x , σ

(2)
x ) ∈ BA3(S+

∞;S−∞).

Let βA4 = βA4(σ(1)
x , σ

(2)
x ) ∈ BA4(S+

∞;S−∞).

Let βA(k) = βA(k)(σ(k,1)
x , σ

(k,2)
x ) ∈ BA(k)(S1;S2), k = 1, 2.

Clearly βAk ⊇ βA(k) ∪ β(k)
A3
∪ β(k)

A4
, k = 1, 2.

Let π1 be a (β1 ∪ βA(1))-partition of [c, d].

Let π2 be a (β1 ∪ βA(2))-partition of [c, d].

By Lemma 4.2 there exists π3, a (β3 ∪ βA3)-partition of [a, c]. Clearly π3 is
both, a (β3 ∪ β(1)

A3
) partition and a (β3 ∪ β(2)

A3
) partition of [a, c].

By Lemma 4.2 there exists π4, a (β4 ∪ βA4)-partition of [d, b]. Clearly π4 is
both, a (β4 ∪ β(1)

A4
)-partition and a (β4 ∪ β(2)

A4
) partition of [d, b].

Let π(k) = πk ∪π3 ∪π4, k = 1, 2. Then π(1) and π(2) are (β ∪βAk)-partitions
of [a, b] (see (4)).

We have

|s(f, π(1))− s(f, π(2))| < ε , hence |s(f, π1)− s(f, π2)| < ε .

By Lemma 7.2 it follows that f is [S1S2R]-integrable on [c, d].

Lemma 7.4 (A quasi Saks-Henstock lemma). Let S1 ={S1(x)}x∈R be a local
system S+

∞-filtering on [a, b), and let S2 = {S2(x)}x∈R be a local system S−∞-
filtering on (a, b]. Let f : [a, b] → R be [S1S2R]-integrable on [a, b]. Let
F : [a, b] → R, F (a) = 0, F (x) = [S1S2R]

∫ x
a
f(t) dt, x ∈ (a, b]. For every

ε > 0 there exists β = β({Xi}, {δi}) ∈ B[a,b], such that
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(i) |s(f, π)− S(F, π)| < ε, whenever π is a β-partial partition of [a, b].

(ii)
∑

([x,y],t)∈π |f(t)(y − x)− (F (y)− F (x))| < 2ε whenever π is a β-partial
partition of [a, b].

Proof. Let ε > 0. For ε
2 and F (b) let β = β({Xi}, {δi}) be given by Definition

7.1. Let π be a β-partial partition of [a, b].
(i) Let (ck, dk), k = 1, 2, . . . , n be the components of the open set (a, b) \

(∪(I,t)∈πI). By Lemma 7.3 we have [S1S2R]
∫ dk
ck
f(t) dt = F (dk) − F (ck).

For each k = 1, 2, . . . , n let β(k) = β(k)({Y (k)
j }, {δ

(k)
j }) ∈ B[ck,dk] be given by

Definition 7.1. Let A(k) = Is({Y (k)
j }), k = 1, 2, . . . n and let Ao = ∪nk=1A

(k) ∪
Is({Xi}). By Definition 7.1 it follows that for ε/(2n), A(k) and β(k) there
exists βA(k) = βA(k)(σ(k,1)

x , σ
(k,2)
x ) ∈ BA(k)(S1;S2) such that |s(f, π′

)−(F (dk)−
F (ck))| < ε/(2n) whenever π

′
is a βk partition of [ck, dk], where βk = β(k) ∪

βA(k) . For ε/2, Ao and β there exists βAo = βAo(σ
(0,1)
x , σ

(0,2)
x ) ∈ BAo(S1;S2)

such that |s(f, π′
)− F (b)| < ε/2 whenever π

′
is a βo-partition of [a, b], where

βo = β ∪ βAo . Let

σ
(k,+)
x = σ

(0,1)
x ∩ σ(k,1)

x ∈ S+
∞(x), if x ∈ A(k) ∩ [ck, dk);

σ
(k,−)
x = σ

(0,2)
x ∩ σ(k,2)

x ∈ S−∞(x), if x ∈ A(k) ∩ (ck, dk].

Clearly {Xi ∩ Y (k)
j }(i,j) ∈ P [ck,dk]. Let

δ
(k)
i,j : Xi ∩ Y (k)

j → (0,+∞), δi,j(x) < min{δi(x), δ(k)j (x)};

αk = αk({Xi ∩ Y (k)
j }, δ

(k)
i,j , σ

(k,+)
x , σ

(k,−)
x ) ∈ A(P [ck,dk];S+

∞;S−∞).

Let π(k) be an αk-partition of [ck, dk], k = 1, 2, . . . , n (see Lemma 4.2). Then
π(k) is also a βk- partition and a βo-partition of [ck, dk]. Then πo = π ∪
(∪nk=1π

(k)) is a βo- partition of [a, b]. Since F (b) = S(F, πo), it follows that
|s(f, πo)−S(F, πo)| < ε/2. We have |s(f, π)−S(F, π)+

∑n
k=1(F (dk)−F (ck)−

s(f, π(k)))| < ε/2, hence |s(f, π)− S(F, π)| < ε.
(ii) Let π1 = {([x, y], t) ∈ π : f(t)(y − x) > F (y) − F (x)} and π2 =

{([x, y], t) ∈ π : f(t)(y−x) ≤ F (y)−F (x)}. Then π = π1∪π2. By (i) we have
|s(f, π1)−S(F, π1)| < ε and |s(f, π2)−S(F, π2)| < ε. Thus

∑
([x,y],t)∈π |f(t)(y−

x)− (F (y)− F (x))| < ε+ ε = 2ε.

Corollary 7.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b] → R be [S1S2R]-integrable on [a, b]. Let F : [a, b] → R, F (a) = 0,



A Study of Some General Integrals 75

F (x) = [S1S2R]
∫ x
a
f(t) dt, x ∈ (a, b]. Then F ∈ NBo on [a, b], hence F ∈ (N)

on [a, b].

Proof. Let ε > 0 and Z ⊂ [a, b], |Z| = 0. By Lemma 5.4.5 of [1], there
exists δ : Z → (0,+∞) such that |s(f ;π)| < ε, whenever π is a McShane δ-fine
partial partition (i.e., if ([x, y], t) ∈ π then [x, y] ⊂ (t− δ(t), t+ δ(t)) ) of [a, b],
with all tags in Z. By Lemma 7.4, (i), there exists β = β({Xi}i, {δi}i) ∈ B[a,b],
such that |s(f, π) − S(F, π)| < ε, whenever π is a β-partial partition of [a, b].
Let Zi = Z ∩ Xi and let δ?i : Zi → (0,+∞), δ?i (x) = min{δ(x), δi(x)}. Let
βo = βo({Zi}, {δ?i }) ∈ BZ and let πo be a βo-partial partition of Z. Then πo
is also a β-partial partition of [a, b]. It follows that |S(F, πo)| ≤ |s(f, πo) −
S(F, πo)|+ |s(f, πo)| < 2ε (see Lemma 7.4).

Lemma 7.5. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b] → R be [S1S2R]-integrable on [a, b]. Let F : [a, b] → R, F (a) = 0,
F (x) = [SS2R]

∫ x
a
f(t) dt, x ∈ (a, b]. Then F

′

ap(x) = f(x) a.e. on [a, b].

Proof. Let A = {x ∈ (a, b) : there exists α(x) > 0 with the following
property: for every η(x) > 0, with (x−η(x), x+η(x)) ⊂ (a, b), and for every Dx

with di(Dx, x) = 1, there exists y ∈ Dx∩(x−η(x), x+η(x)) such that |F (y)−
F (x)−f(x)(y−x)| > α(x)(y−x)}. Let An = {x ∈ (a, b) : α(x) ≥ 1/n}. Then
A = ∪∞n=1An. By Lemma 7.4 (ii), for ε > 0, there exists β = β({Xi}, {δi}) ∈
B[a,b] such that

∑
([x,y],t)∈π |F (y) − F (x) − f(t)(y − x)| < ε, whenever π is a

β-partial partition of [a, b]. Let An,i = {x ∈ An ∩ Xi : d(Xi, x) < 1}. By
the Lebesgue Density Theorem (see for example [1, p. 10]) it follows that
|An,i| = 0. Let Bn = An \ (∪∞i=1An,i). Clearly |An| = |Bn|. If x ∈ Bn and
x ∈ Xi for some i then d(Xi, x) = 1 (indeed, if d(Xi, x) 6= 1 then x ∈ An,i, a
contradiction). For δi(x) > η(x) > 0 with (x − η(x), x + η(x)) ⊂ (a, b), there
exists y ∈ Xi ∩ (x − η(x), x + η(x)) such that |F (y) − F (x) − f(x)(y − x)| ≥
(1/n)|y − x|. If y > x then ([x, y], x) ∈ β and if y < x then ([y, x], x) ∈ β. Let
A = {[x, y] : z ∈ Bn ∩ {x, y} and ([x, y], z) ∈ β}. Then A is a Vitali cover
of Bn, hence by Vitali’s Covering Theorem (see for example [1, p. 11]) there
exists π, a β-partial partition of [a, b] such that |Bn| ≤ ε+

∑
([x,y],z)∈π(y−x) ≤

ε + n ·
∑

([x,y],z)∈π |F (y) − F (x) − f(z)(y − x)| < ε + nε. Since ε is arbitrary,
it follows that |Bn| = 0, hence |A| = 0. Therefore F

′

ap(x) = f(x) on (a, b) \A.
Thus F

′

ap = f a.e. on [a, b].

Lemma 7.6. Let f : [a, b] → R, f ∈ [S1S2R]-integrable on [a, b], and let
F (x) = [S1S2R]

∫ x
a
f(t) dt, x ∈ [a, b]. Then F ∈ V BG on [a, b].
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Proof. For ε = 1 let β = β({Xi}, {δi}) ∈ B[a,b] be given by Definition 7.1.
Clearly ∪∞i=1Xi = [a, b]. Let

Xij = {x ∈ Xi : δi(x) > (b− a)/j}, j = 1, 2, . . .;

Xijk = Xij ∩ [a+ (k − 1) b−aj , a+ k b−aj ], k = 1, 2, . . . , j;

Xijkm = {x ∈ Xijk : |f(x)| < m}, m = 1, 2, . . . .

Clearly [a, b] = ∪i,j,k,mXijkm. Let {[an, bn]}, n = 1, 2, . . . , p be a finite set
of nonoverlapping intervals with endpoints in Xijkm. Then ([an, bn], an) ∈ β.
By Lemma 7.4,

∑p
n=1 |f(an)(bn − an) − (F (bn) − F (an))| < 2. It follows

that
∑p
n=1 |F (bn) − F (an)| ≤

∑p
n=1 |f(an)(bn − an) − (F (bn) − F (an))| +∑p

n=1 |f(an)|(bn− an) < 2 +m(b− a), hence F ∈ V B on Xijkm. Therefore F
is also V BG on [a, b].

Remark 7.1. To prove Lemma 7.5 and Lemma 7.6 we have followed the
technique used by Lee and Soedijono in Theorem 4.2 of [12], and our proof is
based on a quasi Saks- Henstock type lemma, i.e., Lemma 7.4 (see Section 1).
But we do not know if either of the two integrals, the AH integral and the
[S1S2R]-integral, satisfy a Saks-Henstock type lemma.

8 The Ward Type [S1S2W ] Integral

Definition 8.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b]→ R.

• We define the following classes of majorants:
[S1S2W](f ; [a, b]) = {M : [a, b] → R : M(a) = 0; M ∈ (S1;S2)Ci on
[a, b]; there exists a β = β({Xi}, {δi}) ∈ B[a,b] such that M(y)−M(x) ≥
f(t)(y − x), whenever ([x, y], t) ∈ β.

• We define the following class of minorants:
[S1S2W](f ; [a, b]) = {m : [a, b]→ R : −m ∈ [S1S(2)W](−f ; [a, b])}.

• If [S1S2W](f ; [a, b]) 6= ∅ then we denote by Jf (x) (or simply J(x)),
x ∈ [a, b] the lower bound of all M(x), M ∈ [S1S2W](f ; [a, b]).

• If [S1S2W](f ; [a, b]) 6= ∅ then we denote by Jf (x) (or simply J(x)),
x ∈ [a, b] the upper bound of all m(x), m ∈ [S1S2W](f ; [a, b]).
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• If [S1S2W](f ; [a, b]) × [S1S2W](f ; [a, b]) 6= ∅ and J(b) = J(b) then f is
said to be [S1S2W]-integrable on [a, b]. In this case we write J(b) =
J(b) = [S1S2W]

∫ b
a
f(t) dt.

Lemma 8.1. Let S1 = {S1(x)}x∈R and S2 = {S2(x)}x∈R be local systems such
that S1 � S+

∞ on [a, b) and S2 � S−∞ on (a, b]. Let F, f : [a, b] → R and let
A = {a1, a2, a−3, . . .} be a countable subset of (a, b). If F ∈ (S1;S2)Ci on [a, b]
then for ε > 0, there exist βA = βA(σ(1)

x , σ
(2)
x ) ∈ BA(S1;S2) and H : [a, b]→ R

such that:

(i) H(a) = 0; H(b) < ε;

(ii) H is increasing on [a, b];

(iii) (F+H)(x)−(F+H)(t) ≥ f(t)(x−t) whenever x ∈ [t, b)∩σ(1)
t , t ∈ {a}∪A

and (F + H)(t) − (F + H)(x) ≥ f(t)(t − x) whenever x ∈ (a, t] ∩ σ(2)
t ,

t ∈ {b} ∪A.

(iv) F +H ∈ (S1;S2)Ci on [a, b].

Moreover, if F ∈ (S1;S2)C on [a, b] then |F (y)−F (x)−f(t)(y−x)| ≤ H(y)−
H(x) , whenever([x, y], t) ∈ βA(σ1)

x , σ
(2)
x ) .

Proof. Let ε > 0. Since F ∈ (S1;S2)Ci on [a, b] it follows that there exists
S

(1)
a ∈ S1(a) such that

F (x)− F (a) > − ε

23
whenever x ∈ S(1)

a , x > a ,

and for every ai there exists S(1)
ai ∈ S1(ai) such that

F (x)− F (ai) > −
ε

2i+3
whenever x ∈ S(1)

ai , x > a− i .

Let H1 : [a, b]→ R, H1(a) = 0,

H1(x) =
ε

22
+
∑
ai<x

ε

2i+3
.

Clearly H1 is increasing and H1(b) = ε/2. Let x > a. Then H1(x)−H1(a) ≥
ε/22, so

(F +H1)(x)− (F +H1)(a) >
ε

22
− ε

23
=

ε

23
> |f(a)|(x− a) ,
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whenever

x ∈ S(1)
a ∩

(
a− ε

(|f(a)|+ 1) · 23
, a+

ε

(|f(a)|+ 1) · 23

)
=: σ(1)

a and x > a.

Let x > aj . Then H1(x)−H1(aj) ≥ ε/2j+2, so

(F +H1)(x)− (F +H1)(aj) >
ε

2j+2
− ε

2j+3
=

ε

2j+3
> |f(aj)|(x− aj) ,

whenever

x ∈ S(1)
aj ∩

(
aj −

ε

(|f(aj)|+ 1) · 2j+3
, aj +

ε

(|f(aj)|+ 1) · 2j+3

)
=: σ(1)

aj

and x > aj . Similarly, there exists S(2)
b ∈ S2(b) such that

F (y)− F (b) <
ε

23
whenever y ∈ S(2)

b , y < b ,

and for every ai there exists S(2)
ai ∈ S2(ai) such that

F (y)− F (ai) <
ε

2i+3
whenever y ∈ S(2)

ai , y < ai .

Let H2 : [a, b]→ R, H2(a) = 0,

H2(x) =
∑
ai≤x

ε

2i+2
.

Clearly H2 is increasing and H2(b) = ε/2. Let

σ
(2)
b := S

(2)
b ∩

(
b− ε

(|f(b)|+ 1) · 23
, b+

ε

(|f(b)|+ 1) · 23

)
and

σ(2)
ai := S(2)

ai ∩
(
ai −

ε

(|f(ai)|+ 1) · 2i+3
, ai +

ε

(|f(ai)|+ 1) · 2i+3

)
.

Then (F + H2)(t) − (F + H2)(x) ≥ f(t)(t − x) whenever x ∈ (a, t] ∩ σ(2)
t ,

t ∈ {b} ∪A.
The function H = H1 +H2 satisfies the required properties.
If F ∈ (S1;S2)C on [a, b] then, for example, S(1)

ai may be chosen such that

|F (x)− F (ai)| <
ε

23
whenever x ∈ S(1)

ai , x > ai .
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Then for x ∈ σ(1)
ai , x > ai it follows that

|F (x)− F (ai)− f(ai)(x− ai)| < |F (x)− F (ai)|+ |f(ai)|(x− ai) <

<
ε

23
+

ε

23
=

ε

22
≤ H1(x)−H1(ai) ≤ H(x)−H(ai) .

Lemma 8.2. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b), and

let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f : [a, b]→ R.
If [S1S2W](f ; [a, b])× [S1S2W](f ; [a, b]) 6= ∅ and (M,m) ∈ [S1S2W](f ; [a, b])×
[S1S2W](f ; [a, b]) then we have

(i) M −m is positive and increasing on [a, b], hence M(b) ≥ m(b);

(ii) M − J is positive and increasing on [a, b], hence M(b) ≥ J(b);

(iii) J −m is positive and increasing on [a, b], hence J(b) ≥ m(b);

(iv) J − J is positive and increasing on [a, b], hence J(b) ≥ J(b).

Proof. (i) Let a ≤ c < d ≤ b. ForM there exists a β(1) = β(1)({X(1)
i }, {δ

(1)
i })

∈ B[a,b] such that M(y)−M(x) ≥ f(t)(y − x), whenever ([x, y], t) ∈ β(1). For
m there exists a β(2) = β(2)({X(2)

i }, {δ
(2)
i }) ∈ B[a,b] such that m(y)−m(x) ≤

f(t)(y − x), whenever ([x, y], t) ∈ β(2).
Let A = Is({X(1)

i ∩X
(2)
j ∩[c, d]}i,j) and let ε > 0. By Lemma 8.1, there exist

β
(k)
A = β

(k)
A (σ(k,1)

x , σ
(k,2)
x ) ∈ BA(S1;S2) and Hk : [c, d] → R, k = 1, 2, Hk(c) =

0, Hk(d) ≤ ε, Hk increasing, such thatM(y)−M(x)+H1(y)−H1(x) ≥ f(t)(y−
x), whenever ([x, y], t) ∈ β(1)

A and m(y)−m(x)−(H2(y)−H2(x)) ≤ f(t)(y−x),
whenever ([x, y], t) ∈ β(2)

A . Let

δi,j : X(1)
i ∩X

(2)
j ∩ [c, d]→ (0,+∞), δi,j(x) = min{δ(1)i (x), δ(2)j (x)}.

β = β({X(1)
i ∩X

(2)
j ∩ [c, d]}, {δi,j}) ∈ B[c,d].

σ
(1)
x = σ

(1,1)
x ∩ σ(2,1)

x , for x ∈ [c, d) ∩A.

σ
(2)
x = σ

(1,2)
x ∩ σ(2,2)

x , for x ∈ (c, d] ∩A.

βA = βA(σ(1)
x , σ

(2)
x ) ∈ BA(S+

∞,S−∞).
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By Lemma 4.2 there exists π, a β ∪ βA-partition of [c, d]. If ([x, y], t) ∈ β ∪ βA
then ([x, y], t) ∈ β(k) ∪ β(k)

A , k = 1, 2. It follows that (M − m)(d) − (M −
m)(c) + 2ε ≥ (H1 + M)(d) − (H1 + M)(c) − ((m −H2)(d) − (m −H2)(c)) =∑

([x,y],t)∈π((H1 +M)(y)− (H1 +M)(x))−
∑

([x,y],t)∈π((m−H2)(y)− (m−
H2)(x)) ≥

∑
([x,y],t)∈π(f(t)(y− x)− f(t)(y− x)) = 0. If ε→ 0 then we obtain

that M −m is increasing on [a, b]. Since M(a) = m(a) = 0, M −m is positive
on [a, b]. Clearly M(b) ≥ m(b).

(ii) By (i) we have M(d) −M(c) ≥ m(d) − m(c) ≥ m(d) − J(c), hence
M(d)−M(c) ≥ J(d)− J(c) whenever a ≤ c < d ≤ b. It follows that M(d)−
J(d) ≥ M(c) − J(c). Thus M − J is increasing and positive (since M(a) =
J(a) = 0) on [a, b]. Clearly M(b) ≥ J(b).

(iii) We have M(d)− J(c) ≥M(d)−M(c) ≥ m(d)−m(c) (see (i)), hence
J(d) − J(c) ≥ m(d) − m(c) whenever a ≤ c < d ≤ b. Therefore J − m is
increasing and positive (since J(a) = m(a) = 0). Clearly J(b) ≥ m(b).

(iv) We have M(d)− J(c) ≥ M(d)−M(c) ≥ J(d)− J(c) (see (ii)), hence
J(d) − J(c) ≥ J(d) − J(c) whenever a ≤ c < d ≤ b. Therefore J − J is
increasing and positive (since J(a) = J(a) = 0). Clearly J(b) ≥ J(b).

Lemma 8.3. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b), and

let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f : [a, b]→ R.
The following assertions are equivalent:

(i) f is [S1S2W] integrable on [a, b].

(ii) [S1S2W](f ; [a, b])×[S1S2W](f ; [a, b]) 6= ∅ and for every ε > 0 there exists
(M,m) ∈ [S1S2W](f ; [a, b])]×[S1S2W](f ; [a, b]) such that M(b)−m(b) <
ε.

Proof. (i) ⇒ (ii) For ε > 0 there exists a pair (M,m) ∈ [S1S2W](f ; [a, b])×
[S1S2W](f ; [a, b]) such that M(b) − ε/2 < J(b) = J(b) < m(b) + ε/2 (see the
definitions of J(b) and J(b)), hence M(b)−m(b) < ε.

(ii) ⇒ (i) By Lemma 8.2, (iv) we have 0 ≤ J(b)−J(b) ≤M(b)−m(b) < ε.
Since ε is arbitrary, it follows that J(b) = J(b).

Lemma 8.4. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b), and

let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f : [a, b]→ R
and c ∈ (a, b). If f is [S1S2W] integrable on [a, b] then f is [S1S2W] integrable
on [a, c] and on [c, b], and

[S1S2W]
∫ b

a

f(t) dt = [S1S2W]
∫ c

a

f(t) dt+ [S1S2W]
∫ b

c

f(t) dt . (5)



A Study of Some General Integrals 81

Proof. By Lemma 8.3 it follows that [S1S2W](f ; [a, b])× [S1S2W](f ; [a, b]) 6=
∅ and for every ε > 0 there exists (M,m) ∈ [S1S2W](f ; [a, b])×[S1S2W](f ; [a, b])
such that M(b)−m(b) < ε.

Let M1 = M/[a,c] and m1 = m/[a,c]. Let M2 = M/[c,b] −M(c) and m2 =
m/[c,b] −m(c). Then

(M1,m1) ∈ [S1S2W](f ; [a, c])× [S1S2W](f ; [a, c]) 6= ∅ . (6)

and
(M2,m2) ∈ [S1S2W](f ; [c, b])× [S1S2W](f ; [c, b]) 6= ∅ . (7)

We prove for example (6) ((7) follows similarly). Clearly M ∈ (S1;S2)Ci on
[a, c]. For M there exists β = β({Xi}, {δi}) ∈ B[a,b] such that M(y)−M(x) ≥
f(t)(y−x), whenever ([x, y], t) ∈ β. Then βo = βo({Xi∩ [a, c]}, {(δi)/Xi∩[a,c]})
∈ B[a,c] and βo ⊂ β. Then M1(y)−M1(x) ≥ f(t)(y−x), whenever ([x, y], t) ∈
βo. Therefore M1 ∈ [S1S2W](f ; [a, c]). Similarly, m1 ∈ [S1S2W](f ; [a, c]).
Thus we obtain that (6) is true.

By Lemma 8.2, (i) we have that M1(c)−m1(c) < ε and M2(c)−m2(c) < ε.
Therefore, by Lemma 8.3, it follows that f is [S1S2W]-integrable on [a, c] and
[c, b].

We also have m1(c) = m(c) < [S1S2W]
∫ c
a
f(t) dt < M(c) = M1(c) and

m2(b) = m(b) − m(c) ≤ [S1S2W]
∫ b
c
f(t) dt ≤ M(b) − M(c) = M2(b). It

follows that m(b) ≤ [S1S2W]
∫ c
a
f(t) dt + [S1S2W]

∫ b
c
f(t) dt ≤ M(b). But

m(b) ≤ [S1S2W]
∫ b
c
f(t) dt ≤ M(b) and M(b)−m(b) < ε. Since ε is arbitrary

we obtain (5).

Lemma 8.5. Let S1 = {S1(x)}x∈R be a local system, S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system, S−∞-filtering on (a, b]. Let f :
[a, b]→ R and c ∈ (a, b). If f is [S1S2W]-integrable on [a, c] and on [c, b], then
f is [S1S2W]-integrable on [a, b] and

[S1S2W]
∫ b

a

f(t) dt = [S1S2W]
∫ c

a

f(t) dt+ [S1S2W]
∫ b

c

f(t) dt (8)

Proof. For ε > 0, let (M1,m1) ∈ [S1S2W](f ; [a, c]) × [S1S2W](f ; [a, c]) 6= ∅
with M1(c)−m1(c) < ε, and (M2,m2) ∈ [S1S2W](f ; [c, b])× [S1S2W](f ; [c, b])
6= ∅ with M2(c)−m2(c) < ε (see Lemma 8.3). Let

M(x) =

{
M1(x) , x ∈ [a, c]

M1(c) +M2(x) , x ∈ [c, b]
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and

m(x) =

{
m1(x) , x ∈ [a, c]

m1(c) +m2(x) , x ∈ [c, b] .

For M1 let β1 = β1({X(1)
i }, {δ

(1)
i }) ∈ B[a,c] be given by Definition 8.1, and

for M2 let β2 = β2({X(2)
i }, {δ

(2)
i }) ∈ B[c,b] be given by the same defini-

tion. Then {X(1)
i }i ∪ {X

(2)
i }i ∈ P [a,b]. Let β = β1 ∪ β2. If ([x, y], t) ∈ β

then either ([x, y], t) ∈ β1 or ([x, y], t) ∈ β2. In both cases we have M(y) −
M(x) ≥ f(t)(y − x). By Lemma 2.2, (iii), M ∈ (S1;S2)Ci on [a, b]. Therefore
M ∈ [S1S2W](f ; [a, b]). Similarly we can show that m ∈ [S1S2W](f ; [a, b]).
Since M(b) − m(b) < 2ε, by Lemma 8.3, it follows that f ∈ [S1S2W] on
[a, b]. We also have m1(c) = m(c) ≤ [S1S2W]

∫ c
a
f(t) dt ≤ M(c) = M1(c)

and m2(b) = m(b) − m(c) ≤ [S1S2W]
∫ b
c
f(t) dt ≤ M2(b) = M(b) − M(c).

It follows that m(b) ≤ [S1S2W]
∫ c
a
f(t) dt + [S1S2W]

∫ b
c
f(t) dt ≤ M(b). But

m(b) ≤ [S1S2W]
∫ b
a
f(t) dt ≤M(b) and M(b)−m(b) < 2ε. Since ε is arbitrary

we obtain (8).

Lemma 8.6. Let f1, f2 : [a, b] → R be [S1S2W]-integrable on [a, b], and let
α1, α2 ∈ R. If S1 is filtering on [a, b) and S2 is filtering on (a, b], then α1f1 +
α2f2 is [S1S2W]- integrable on [a, b] and [S1S2W]

∫ b
a

(α1f1 + α2f2)(t) dt =
α1 · [S1S2W]

∫ b
a
f1(t) dt+ α2 · [S1S2W]

∫ b
a
f2(t) dt .

Proof. Let (M,m) ∈ [S1S2W](f1; [a, b]) × [S1S2W](f1; [a, b]) 6= ∅. If α > 0
then (αM,αm) ∈ [S1S2W](αf1; [a, b])× [S1S2W](αf1; [a, b]) 6= ∅. Hence

αf1 is [S1S2W]− integrable and

[S1S2W]
∫ b

a

αf1(t) dt = α · [S1S2W]
∫ b

a

f1(t) dt (9)

If α < 0 then (αm,αM) ∈ [S1S2W](αf1; [a, b])× [S1S2W](αf1; [a, b]) 6= ∅ and
(9) is valid.
It remains to prove that the lemma is true for α1 = β1 = 1.

Let Mk ∈ [S1S2W](fk; [a, b]) 6= ∅, k = 1, 2

For Mk let β(k) = β(k)({X(k)
i }, {δ

(k)
i }) ∈ B[a,b] be given by Definition 8.1,

k = 1, 2.

Let Xij = X
(1)
i ∩X

(2)
j . Then {Xij}i,j ∈ P [a,b].
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Let δij : Xij → (0,+∞), δij(x) = min{δ(1)i (x), δ(2)j (x)}.

Let β = β({Xij}, {δij}) ∈ B[a,b].

Let ([x, y], t) ∈ β. Clearly ([x, y], t) also belongs to β(k), k = 1, 2, so Mk(y)−
Mk(x) ≥ fk(t)(y − x).

It follows that (M1 +M2)(y)− (M1 +M2)(x) ≥ (f1(t) + f2(t))(y − x). Since
S1 is filtering on [a, b) and S2 is filtering on (a, b], it follows that M1 + M2 ∈
(S1;S2)Ci on [a, b]. Hence M1 +M2 ∈ [S1S2W](f1 + f2; [a, b]) and Jf1+f2(b) ≤
Jf1(b) + Jf2(b). Similarly we obtain that Jf1(b) + Jf2(b) ≤ Jf1+f2(b). By

Lemma 8.2, (iv) we obtain that f1 + f2 ∈ [S1S2W] and [S1S2W]
∫ b
a

(f1 +
f2)(t) dt = [S1S2W]

∫ b
a
f1(t) dt+ [S1S2W]

∫ b
a
f2(t) dt .

9 The Variational Type [S1S2V ]-Integral

Definition 9.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b] → R. f is said to be [S1S2V]-integrable on [a, b], if there exists H :
[a, b] → R, H ∈ (S1;S2)C, with the following property: for every ε > 0 there
exist β = β({Xi}, {δi}) ∈ B[a,b] and G : [a, b]→ R, such that G(a) = 0, G(b) ≤
ε, G is increasing on [a, b], and |H(y) − H(x) − f(t)(y − x)| < G(y) − G(x),
whenever ([x, y], t) ∈ β. H is called the [S1S2V] indefinite integral of f on
[a, b] and [S1S2V]

∫ b
a
f(t) dt = H(b)−H(a).

Lemma 9.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b), and

let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f : [a, b] →
R. If H1, H2 : [a, b] → R are [S1S2V] indefinite integrals of f on [a, b] then
H1(b)−H1(a) = H2(b)−H2(a). Therefore the [S1S2V] integral is well defined.

Proof. Let Hk : [a, b] → R, Hk ∈ (S1;S2)C, k = 1, 2, satisfying the follow-
ing property: for ε > 0 there exist β(k) = β(k)({X(k)

i }, {δ
(k)
i }) ∈ B[a,b] and

G(k) : [a, b] → R such that G(k)(a) = 0, G(k)(b) ≤ ε, G(k) is increasing on
[a, b] and |H(k)(y) − H(k)(x) − f(t)(y − x)| < G(k)(y) − G(k)(x), whenever
([x, y], t) ∈ β(k), k = 1, 2. Let Xm,n = X

(1)
m ∩X(2)

n . Then {Xm,n}m,n ∈ P [a,b].
Let A = Is({Xm,n}). By Lemma 8.1, there exist β(k)

A = β
(k)
A (σ(k,1)

x , σ
(k,2)
x ) ∈

BA(S1;S2) and h(k) : [a, b] → R, h(k)(a) = 0, h(k)(b) ≤ ε, h(k) increasing,
such that |H(k)(y) − H(k)(x) − f(t)(y − x)| ≤ h(k)(y) − h(k)(x), whenever
([x, y], t) ∈ β(k), k = 1, 2. Let σ+

x = σ
(1,1)
x ∩ σ(2,1)

x and σ−x = σ
(1,2)
x ∩ σ(2,2)

x .
Let δm,n : Xm,n → (0,+∞), δm,n(x) = min{δ(1)m (x), δ(2)n (x)}. Let β =
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β({Xm,n}, {δm,n}) ∈ B[a,b] and βA = βA(σ+
x , σ

−
x ) ∈ BA(S+

∞,S−∞). Then,
by Lemma 4.2 there exists π, a β ∪ βA-partition of [a, b]. But π is also a
β(1)∪β(1)

A - and a (β(2)∪β(2)
A )-partition of [a, b]. Therefore |(H1−H2)(b)−(H1−

H2)(a)| = |
∑

([x,y],t)∈π(H1 −H2)(y)− (H1 −H2)(x)| = |
∑

([x,y],t)∈π(H1(y)−
H1(x)− f(t)(y − x)− (H2(y)−H2(x)− f(t)(y − x))| ≤

∑
([x,y],t)∈π |H1(y)−

H1(x)−f(t)(y−x)|+
∑

([x,y],t)∈π |H2(y)−H2(x)−f(t)(y−x)| ≤
∑

([x,y],t)∈π∩β
|G(1)(y)−G(1)(x)|+

∑
([x,y],t)∈π∩β |G(2)(y)−G2)(x)|+

∑
([x,y],t)∈π∩β(1)

A

|H1(y)−
H1(x)−f(t)(y−x)|+

∑
([x,y],t)∈π∩β(2)

A

|H2(y)−H2(x)−f(t)(y−x)| ≤ G(1)(b)+

G(2)(b) + h(1)(b) + h(2)(b) ≤ 4ε. Since ε is arbitrary, it follows that H1(b) −
H1(a) = H2(b)−H2(a).

Lemma 9.2. Let S1 = {S1(x)}x∈R be a local system, S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system, S−∞-filtering on (a, b]. Let f :
[a, b] → R and a < c < b. If f is [S1S2V]-integrable on [a, b] then f is also
[S1S2V]-integrable on [a, c] and on [c, b], and

[S1S2V]
∫ c

a

f(t) dt+ [S1S2V]
∫ b

c

f(t) dt = [S1S2V]
∫ b

a

f(t) dt (10)

Proof. Since f is [S1S2V] integrable on [a, b], there exists a function H :
[a, b] → R, H ∈ (S1;S2)C satisfying the following property: for every ε > 0,
there exist β = β({Xi}, {δi}) ∈ B[a,b] and G : [a, b] → R, such that G(a) = 0,
G(b) ≤ ε, G is increasing on [a, b], and |H(y)−H(x)− f(t)(y − x)| < G(y)−
G(x), whenever ([x, y], t) ∈ β.
We define

X
(1)
i = Xi∩[a, c] andX(2)

i = Xi∩[c, b]; Clearly {X(1)
i }i ∈ P [a,c] and {X(2)

i }i ∈
P [c,b];

β(1) = β(1)({X(1)
i }, {δi}) ∈ B[a,c];

β(2) = β(2)({X(2)
i }, {δi}) ∈ B[c,b];

H1, G1 : [a, c]→ R, H1(x) = H(x), G1(x) = G(x).

H2, G2 : [c, b]→ R, H2(x) = H(x), G2(x) = G(x)−G(c).

By Lemma 2.2, (iii), H1, H2 ∈ (S1;S2)C on [a, c] respectively [c, b]. If ([x, y], t)
∈ β(1) then ([x, y], t) ∈ β, hence f is [S1S2V]-integrable on [a, c], and we
have [S1S2V]

∫ c
a
f(t) dt = H(c)−H(a). Similarly it follows that f is [S1S2V]-

integrable on [c, b], and [S1S2V]
∫ b
c
f(t) dt = H(b)−H(c).

Since [S1S2V]
∫ b
a
f(t) dt = H(b)−H(a), we obtain (10).
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Lemma 9.3. Let S1 = {S1(x)}x∈R be a local system, S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system, S−∞-filtering on (a, b]. Let f :
[a, b] → R and a < c < b. If f is [S1S2V]-integrable on [a, c] and [c, b] then f
is also [S1S2V]-integrable on [a, b] and

[S1S2V]
∫ c

a

f(t) dt+ [S1S2V]
∫ b

c

f(t) dt = [S1S2V]
∫ b

a

f(t) dt

Proof. Let I1 = [a, c] and I2 = [c, b]. Let Hk : Ik → R, Hk ∈ (S1;S2)C,
such that for every ε > 0, there exist βk = βk({X(k)

i }, {δ
(k)
i }) ∈ BIk , k = 1, 2,

and Gk : Ik → (0,+∞) such that Gk is increasing, G1(a) = 0, G1(c) < ε,
G2(c) = 0, G2(b) < ε, and |f(t)(y − x)− (Hk(y)−Hk(x))| < Gk(y)−Gk(x),
whenever ([x, y], t) ∈ βk, k = 1, 2.
Let H : [a, b]→ R,

H(x) =

{
H1(x) , if x ∈ [a, c]

H1(c) +H2(x)−H2(c) , if x ∈ [c, b] .

Let G : [a, b]→ (0,+∞),

G(x) =

{
G1(x) , if x ∈ [a, c]

G1(c) +G2(x) , if x ∈ [c, b] .

Let β = β1 ∪ β2. If ([x, y], t) ∈ β then either ([x, y], t) ∈ β1 or ([x, y], t) ∈ β2,
and clearly in both cases we have |f(t)(y−x)−(H(y)−H(x))| < G(y)−G(x).
Therefore f is [S1S2V]-integrable on [a, b] and [S1S2V]

∫ b
a
f(t) dt = H(b) −

H(a) = H(b) − H(c) + H(c) − H(a) = H2(b) − H2(c) + H1(c) − H1(a) =
[S1S2V]

∫ b
c
f(t) dt+ [S1S2V]

∫ c
a
f(t) dt.

Lemma 9.4. Let f1, f2 : [a, b] → R be [S1S2V]-integrable on [a, b], and let
α1, α2 ∈ R. If S1 is filtering on [a, b) and S2 is filtering on (a, b], then α1f1 +
α2f2 is [S1S2V]- integrable on [a, b] and [S1S2V]

∫ b
a

(α1f1 + α2f2)(t) dt = α1 ·
[S1S2V]

∫ b
a
f1(t) dt+ α2 · [S1S2V]

∫ b
a
f2(t) dt .

Proof. Let αk 6= 0.

For fk let Hk : [a, b] → R, k = 1, 2, Hk ∈ (S1;S2)C, with the following
property: for every ε > 0 there exist β(k) = β(k)({X(k)

i }, {δ
(k)
i }) ∈ B[a,b],

and Gk : [a, b] → R, such that G1(a) = 0, G1(b) ≤ ε
2|α2| , G2(a) = 0,

G2(b) < ε
2|α1| , Gk is increasing on [a, b], and |Hk(y)−Hk(x)− f(t)(y −

x)| < Gk(y)−Gk(x), whenever ([x, y], t) ∈ β(k).
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Let Xij = X
(1)
i ∩X

(2)
j . Then {Xij}i,j ∈ P [a,b].

Let δij : Xij → (0,+∞), δij(x) = min{δ(1)i (x), δ(2)j (x)}.

Let β = β({Xij}, {δij}) ∈ B[a,b].

Let G(x) = |α1|G1(x) + |α2|G2x). Clearly G(a) = 0, G(b) < ε and G is
increasing on [a, b].

Let ([x, y], t) ∈ β. Clearly ([x, y], t) also belongs to β(k), k = 1, 2.

Then we have |(α1H1 +α2H2)(y)− (α1H1 +α2H2)(x)− (α1f1 +α2f2)(t)(y−
x)| ≤ |α1|·|H1(y)−H1(x)−f1(t)(y−x)|+|α2|·|H2(y)−H2(x)−f2(t)(y−x)| <
|α1|(G1(y) − G1(x)) + |α2|(G2(y) − G2(x)) = G(y) − G(x). But α1H1 +
α2H2 ∈ (S1;S2)C on [a, b]. It follows that α1H1 + α2H2 is the [S1S2V]-
indefinite integral of α1f1 +α2f2 on [a, b] and [S1S2V]

∫ b
a

(α1f1 +α2f2)(t) dt=
α1 · [S1S2V]

∫ b
a
f1(t) dt+ α2 · [S1S2V]

∫ b
a
f2(t) dt .

10 The Relations Between the [S1S2R]-, the [S1S2W ]- and
the [S1S2V ]-Integrals

Definition 10.1. Let S1 = {S1(x)}x∈R be a local system, S+
∞-filtering on

[a, b), and let S2 = {S2(x)}x∈R be a local system, S−∞-filtering on (a, b]. A
function f : [a, b]→ R is said to be bi[S1S2V]-integrable on [a, b] if there exists
H : [a, b] → R, H ∈ (S1;S2)Ci ∩ (S1;S2)Cd, satisfying the following property:
for every ε > 0 there exists β(k) = β(k)({X(k)

i }, {δ
(k)
i }) ∈ B[a,b], k = 1, 2, and

Gk : [a, b] → [0,+∞), with Gk(a) = 0, Gk(b) ≤ ε, Gk increasing on [a, b],
k = 1, 2 such that H(y) − H(x) − f(t)(y − x) < G1(y) − G1(x), whenever
([x, y], t) ∈ β(1) and −H(y) + H(x) + f(t)(y − x) < G2(y) − G2(x) whenever
([x, y], t) ∈ β(2). H is called the bi[S1S2V]-indefinite integral of f on [a, b] and
we write bi[S1S2V]

∫ b
a
f(t) dt = H(b)−H(a).

Lemma 10.1. Let S1 = {S1(x)}x∈R be a local system, S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system, S−∞-filtering on (a, b]. Let f :
[a, b]→ R. Then we have:

(i) If f is [S1S2V]- integrable on [a, b] then f is also bi[S1S2V]-integrable
on [a, b], and the two integrals are equal. Moreover, if S1 is filtering
on [a, b) and S2 is filtering on (a, b] then the [S1S2V]-integral and the
bi[S1S2V]-integral are equivalent.

(ii) The following assertions are equivalent:
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a) f is bi[S1S2V]-integrable on [a, b];

b) f is [S1S2W]-integrable on [a, b],

and the two integrals are equal.

(iii) If f is [S1S2V]-integrable on [a, b] then f is also [S1S2W]-integrable on
[a, b] and the two integrals are equal.

Proof. (i) The first part is obvious. We show the second part. For ε > 0 let
βk = βk({X(k)

i }, {δ
(k)
i }) ∈ B[a,b] be given by Definition 10.1.

Let Xij = X
(1)
i ∩X

(2)
j ; then {Xij}i,j ∈ P [a,b].

Let δij : Xij → (0,+∞), δij(x) = min{δ(1)i (x), δ(2)j (x)}.

Let β = β({Xij}, {δij}) ∈ B[a,b].

Let A be a countable subset of [a, b] that contains Is({Xij}); then Is({Xij})
⊇ Is({X(1)

i }) ∪ Is({X(2)
j }).

Let β(k)
A = β

(k)
A (σ(k,1)

x , σ
(k,2)
x ) ∈ BA(S1;S2) and Gk : [a, b] → (0,+∞) be

given by Definition 10.1, k = 1, 2.

Let σ(1)
x = σ

(1,1)
x ∩ σ(2,1)

x ∈ S1(x).

Let σ(2)
x = σ

(1,2)
x ∩ σ(2,2)

x ∈ S2(x).

Let βA = βA(σ(1)
x , σ

(2)
x ) ∈ BA(S1;S2).

Let ([x, y], t) ∈ β ∪ βA. Then ([x, y], t) ∈ β(k) ∪ β(k)
A , k = 1, 2. It follows that

H(y)−H(x)−f(t)(y−x) < G1(y)−G1(a) and −H(y)+H(x)+f(t)(y−x) <
G2(y) − G2(a). Let G = G1 + G2. Then |H(y) − H(x) − f(t)(y − x)| <
G(y)−G(x).

(ii) a) ⇒ b) Let ε > 0. By Definition 10.1, there exist H : [a, b] → R
and β(k) = β(k)({X(k)

i }, {δ
(k)
i }) ∈ B[a,b] with the following property: for every

countable subset A(k) of [a, b] that contains Is({X(k)
i }), k = 1, 2 there exist

βA(k) = βA(k)(σ(k,1)
x , σ

(k,2)
x ) ∈ BA(k)(S1;S2), k = 1, 2 and Gk : [a, b]→ [0,+∞),

with Gk(a) = 0, Gk(b) < ε, Gk increasing on [a, b], k = 1, 2, such that H(y)−
H(x) − f(t)(y − x) < G1(y) − G1(x), whenever ([x, y], t) ∈ β(1) ∪ βA(1) and
−H(y)+H(x)+f(t)(y−x) < G2(y)−G2(x), whenever ([x, y], t) ∈ β(2)∪βA(2) .
Let M = H + G2 and m = H − G1. Then (M,m) ∈ [S1S2W](f ; [a, b]) ×
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[S1S2W](f ; [a, b]). It follows that J(b) ≤ H(b) and J(b) ≥ H(b). By Lemma
8.2, (iv), we obtain that J(b) ≥ J(b), hence H(b) = [S1S2W]

∫ b
a
f(t) dt.

b) ⇒ a) Since f is [S1S2W]- integrable on [a, b], we have J(b) = J(b)
(see Definition 8.1). By Lemma 8.2, (iv) it follows that J − J = 0 on [a, b].
Let H(x) = J(x) = J(x), x ∈ [a, b]. Clearly H(a) = 0. For ε > 0 let
(M,m) ∈ [S1S2W](f ; [a, b]) × [S1S2W](f ; [a, b]) 6= ∅ such that H(b) − ε/2 <
m(b) and M(b) < H(b) + ε/2. By Definition 8.1, there exists a β(k) =
η(k)({X(k)

i }, {δ
(k)
i }) ∈ B[a,b], k = 1, 2 with the following property: for ev-

ery countable subset A(k) of [a, b] that contains Is({X(k)
i }), k = 1, 2, there is a

βA(k) = βA(k)(σ(k,1)
x , σ

(k,2)
x ) ∈ BA(k)(S1;S2), k = 1, 2, such thatM(y)−M(x) ≥

f(t)(y − x) whenever ([x, y], t) ∈ β(1) ∪ βA(1) and m(y) −m(x) ≤ f(t)(y − x)
whenever ([x, y], t) ∈ β(2) ∪ βA(2) . Let G1 = H − m and G2 = M − H on
[a, b]. Then H(y)−H(x)− f(t)(y− x) ≤ G1(y)−G1(x) whenever ([x, y], t) ∈
β(1) ∪ βA(1) and f(t)(y − x) − (H(y) − H(x)) ≤ G2(y) − G2(x), whenever
([x, y], t) ∈ β(2) ∪ βA(2) .

(iii) See (i) and (ii).

Definition 10.2. Let F : [a, b] → R and let P be a closed subset of [a, b],
c = inf(P ), d = sup(P ). Let {(ck, dk)}k be the intervals contiguous to P . We
define the function FP : [c, d]→ R such that FP (x) = F (x), x ∈ P and FP is
linear on each [ck, dk].

Lemma 10.2. Let F : [a, b]→ R, let P be a closed subset of [a, b] and let A be
a measurable subset of P such that F ∈ V B on P . Then FP is derivable a.e.
on (inf P, supP ), F is approximately derivable a.e. on A and F

′

P (x) = F
′

ap(x)
a.e. on A.

Proof. FP is V B on [inf P, supP ] (see for example [1, p. 44]), hence FP
is derivable a.e. on (inf P, supP ). Let Po = {x ∈ P : d(P, x) = 1}. By
Lebesgue’s Density Theorem, Po is measurable and |Po| = |P |. It follows that
F

′

P (x) = F
′

ap(x) a.e. on Po, hence F
′

P (x) = F
′

ap(x) a.e. on A.

Theorem 10.1. Let S1 = {S1(x)}x∈R be a local system, S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system, S−∞-filtering on (a, b]. Let f :
[a, b]→ R. If f is [S1S2D]- integrable on [a, b] then f is also [S1S2V]-integrable
on [a, b], and the two integrals are equal.

Proof. Since f is [S1S2D]-integrable on [a, b], there exists a function F :
[a, b]→ R such that F ∈ [ACG] and F ∈ (S1;S2)C on [a, b]. Let {Pi}i ∈ P [a,b]

such that F ∈ AC on each Pi. Let ε > 0 and let A be a countable subset of
[a, b] that contains Is({Pi}). Suppose that A = {a1, a2, . . . , ai, . . .}. Since F ∈
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(S1;S2)C on [a, b], it follows that there exists βA = βA(σ(1)
x , σ

(2)
x ) ∈ BA(S1;S2)

such that |F (x)− F (ai)| < ε/2i whenever x ∈ (σ(2)
ai ∩ (a, ai]) ∪ (σ(1)

ai ∩ [ai, b)).
Let G1, G2 : [a, b]→ R, G1(a) = G2(a) = 0,

G1(x) =
∑
ai<x

O(F ; [ai, b) ∩ σ(1)
ai ) and G2(x) =

∑
ai≤x

O(F ; (a, ai]) ∩ σ(2)
ai ) .

(Here O(F ;X) denotes the oscillation of the function F on the set X.) Clearly
G1 and G2 are increasing on [a, b], G1(b) < ε and G2(b) < ε. Fix some ai.
Then

|F (x)− F (ai)| ≤ O(F ; [ai;x] ∩ σ(1)
ai ) < G1(x)−G1(ai) , (11)

whenever x ∈ [ai, b) ∩ σ(1)
ai , and

|F (x)− F (ai)| ≤ O(F ; [x, ai] ∩ σ(2)
ai ) < G2(ai)−G2(x) , (12)

whenever x ∈ (a, ai] ∩ σ(2)
ai . Let Si = {x ∈ Pi : F

′

Pi
(x) = f(x)}. Then Si is

measurable and |Si| = |Pi| (see Lemma 10.2). Let δi : Si → (0,+∞) such that

|F (y)− F (x)− f(x)(y − x)| < ε

2(b− a)
|y − x| ,

whenever y ∈ Pi ∩ (x− δi(x), x+ δi(x)). Let G3(x) = ε(x− a)/(2(b− a)). For
ε/2i let ηi > 0 be given by the fact that F ∈ AC on Pi. Let Bi = Pi \Si. Then
|Bi| = 0, hence there exists an open set Gi such that Bi ⊂ Gi and |Gi| < ηi.
Let C = A∪ (∪∞i=1Bi). Then |C| = 0. By the Tolstoff- Zahorski Theorem (see
for example Theorem 2.14.6 of [1]), there exists G4 : [a, b]→ (0,+∞) such that
G4 is increasing on [a, b], G4(a) = 0, G4(b) < ε and G

′

4(x) = +∞ whenever
x ∈ C. Let δ : C → (0,+∞) such that (G4(y) − G4(x))/(y − x) > |f(x)|
whenever y ∈ (x−δ(x), x+δ(x)). Let σ(k)?

x = σ
(k)
x ∩(x−δ(x), x+δ(x)), k = 1, 2,

x ∈ A. By (11) we obtain that |F (x)−F (ai)−f(ai)(x−ai)| ≤ G1(x)−G1(ai)+
G4(x) − G4(ai), whenever x ∈ [ai, b) ∩ σ(1)?

x and |F (x) − F (ai) − f(ai)(x −
ai)| ≤ G2(x) − G2(ai) + G4(x) − G4(ai), whenever x ∈ (a, ai] ∩ σ(2)?

x . Let
δi : Bi → (0,+∞) such that δi(x) < δ(x) and (x− δi(x), x+ δi(x)) ⊂ Gi). Let
G5(x) =

∑∞
i=1 V (F ;Bi ∩ [a, x]). Then G5(a) = 0, G5(b) <

∑∞
i=1 ε/2

i = ε. We
have |F (y)−F (x)−f(x)(y−x)| ≤ V (F ;Bi∩ [x, y])+G4(y)−G4(x) ≤ G5(y)−
G5(x) + G4(y)−G4(x), whenever x ∈ Bi and y ∈ Pi ∩ (x− δi(x), x + δi(x)).
Let G =

∑5
i=1Gi and let β = β({Pi}, {δi}) ∈ B[a,b]. It follows that |F (y) −

F (x) − f(t)(y − x)| < G(y) − G(x) whenever ([x, y], t) ∈ β ∪ βA. Therefore
F is the [S1S2V]-indefinite integral of f on [a, b]. Hence [S1S2D]

∫ b
a
f(t) dt =

[S1S2V]
∫ b
a
f(t) dt .
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Lemma 10.3. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on [a, b),

and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. Let f :
[a, b]→ R be [S1S2V]-integrable on [a, b].

(i) (Saks-Henstock type lemma) For ε > 0 there is a β = β({Xi}, {δi})
∈ B[a,b] with the following property: for every countable subset A of [a, b]
that contains Is({Xi}) there is a βA = βA(σ1)

x , σ
(2)
x ) ∈ BA(S1S2) such

that ∑
([x,y],t)∈π

∣∣∣∣[S1S2V]
∫ y

x

f(t) dt− f(t)(y − x)
∣∣∣∣ < ε ,

whenever π is a (β ∪ βA)-partial partition of [a, b].

(ii) f is [S1S2R]-integrable on [a, b], and the [S1S2V] and [S1S2R] integrals
are equal.

(iii) If F (x) = [S1S2V]
∫ x
a
f(t) dt then F is (S1;S2)C on [a, b].

Proof. (i) Since f is [S1S2V]-integrable on [a, b], there exists H : [a, b] → R
such that for every ε > 0 there exists a β = β({Xi}, {δi}) ∈ B[a,b] with the
following property: for every countable subset A of [a, b] that contains Is({Xi})
there is a βA = βA(σ1)

x , σ
(2)
x ) ∈ BA(S1;S2) and there exists an increasing

function G : [a, b]→ [0,+∞), such that G(a) = 0, G(b) < ε and |H(y)−H(x)−
f(t)(y−x)| < G(y)−G(x), whenever ([x, y], t) ∈ β ∪βA. Let π be a (β ∪βA)-
partial partition of [a, b]. By Lemma 9.2, H(y) − H(x) = [S1S2V]

∫ y
x
f(t) dt,

hence ∑
([x,y],t)∈π

∣∣∣∣f(t)(y − x)− [S1S2V]
∫ y

x

f(t) dt
∣∣∣∣ =

∑
([x,y],t)∈π

|f(t)(y − x)− (H(y)−H(x))| ≤
∑

([x,y],t)∈π

(G(y)−G(x)) ≤ G(b) < ε .

(ii) With the notations of (i), let π be a (β ∪ βA)-partition of [a, b]. Then

|s(f ;π)− (H(b)−H(a))| =

∣∣∣∣∣∣
∑

([x,y],t)∈π

(f(t)(y − x)−H(y) +H(x))

∣∣∣∣∣∣
≤

∑
([x,y],t)∈π

|f(t)(y − x)−H(y) +H(x)| ≤
∑

([x,y],t)∈π

(G(y)−G(x)) < ε .

It follows that f is [S1S2R]-integrable on [a, b], and then

[S1S2R]
∫ b

a

f(t) dt = H(b)−H(a) = [S1S2V]
∫ b

a

f(t) dt .
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(iii) Let xo ∈ [a, b) and ε > 0. Let δ > 0 such that |f(xo)| · δ < ε. For ε let
β = β({Xi}, {δi}) ∈ B[a,b] be given by (i). Let A = {xo} ∪ Is({Xi}. Then for
every x ∈ σ(1)

xo ∈ S1(xo), x > xo we have |F (x) − F (xo)| ≤ |F (x) − F (xo) −
f(xo)(x− xo)|+ |f(xo)|(x− xo) < 2ε. It follows that F is right S1-continuous
on [a, b). Similarly we obtain that F is left S2-continuous on (a, b]. By Lemma
2.1, (i), F is (S1;S2)C on [a, b].

11 The Characterization of the D-Integral

Theorem 11.1. Let f : [a, b]→ R. The following assertions are equivalent:

(i) f is [S+
o S−o D]-integrable (i.e., D-integrable) on [a, b];

(ii) f is [S+
o S−o V]- integrable on [a, b];

(iii) f is [S+
o S−o W]-integrable on [a, b].

(iv) f is [S+
o S−o R]-integrable on [a, b] and F is continuous on [a, b], where

F (x) = [S+
o S−o R]

∫ x
a
f(t) dt.

Moreover, all the integrals are equal.

Proof. (i) ⇒ (ii) and the equality of the integrals follow by Theorem 10.1.
(ii) ⇔ (iii) and the equality of the integrals follow by Lemma 10.1.
(ii) ⇒ (iv) and the equality of the integrals follow by Lemma 10.3.
(iv)⇒ (i) By hypothesis F (x) = [S+

o S−o R]
∫ x
a
f(t) dt is continuous on [a, b].

By Corollary 7.1, F ∈ (N) on [a, b], and by Lemma 7.6, F is V BG on [a, b].
Therefore F ∈ C ∩ V BG ∩ (N) = C ∩ ACG on [a, b] (see for example [1, p.
75]). Now, by Lemma 7.5, F

′

ap(x) = f(x) a.e. on [a, b]. It follows that f is
D-integrable on [a, b], and the two integrals are equal.

Remark 11.1. The fact that F ∈ ACG in the proof of Theorem 11.1, (iv)⇒
(i), can also be obtained as follows: by Corollary 7.1, F ∈ NBo on [a, b]; and
by Theorem 5.2, F ∈ ACG on [a, b].

12 Query

Definition 12.1. Let S1 = {S1(x)}x∈R be a local system S+
∞-filtering on

[a, b), and let S2 = {S2(x)}x∈R be a local system S−∞-filtering on (a, b]. A
function f : [a, b]→ R is said to be strong [S1S1D] integrable on [a, b] if there
exists a function F : [a, b]→ R with the following properties:

(i) F ∈ (S1;S2)C;
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(ii) F ∈ [V BG] ∩ (N);

(iii) F
′

ap(x) = f(x) a.e. on [a, b].

We write strong [S1S1D]
∫ b
a
f(t) dt = F (b)− F (a).

Remark 12.1. Note that Lemma 7.2 remains true if condition [ACG] is
replaced by [V BG] ∩(N), and Corollary 2.1 remains true if [ACG] is replaced
by [V BG]∩(N). But [V BG]∩(N) is a real linear space on [a, b] (see Corollary
3.1.1 and Theorem 3.6 of [19]). It follows that the above integral is well defined.

Question. How can the definitions of [S1S2V], [S1S2W] and [S1S2R] be mod-
ified such that each of them contain the strong [S1S2D]- integral?

Remark 12.2. Definition 12.1 can be extended by replacing condition (ii)
with “F ∈ V BG∩ (N)∩B1”. This is so because Lemma 7.2 still remains true
if [ACG] is replaced by V BG ∩ (N) ∩ B1, Corollary 2.1 still remains true if
[ACG] is replaced by V BG ∩ (N) ∩ B1, and V BG ∩ (N) ∩ B1 is a real linear
space (the proof of the latter is not easy, and it is shown by the author in [2]).

A special case of this new definition is an integral defined by Gordon in [4]
(Definition 3): (i) is replaced by “F ∈ Cap”, and (ii) by “F ∈ V BG ∩ (N)”.
However his argumentation about the integral being well defined is incomplete,
because he doesn’t take in consideration whether V BG∩ (N)∩ Cap is a linear
space or not.

13 Appendix

∗ After this paper has been accepted for publication in the present journal, the author
withdrew it, having in mind a lot of revisions. The present paper contains a lot of them,
but his main intention was to give up the two local systems in the definitions of the general
integrals, and use instead only one. He had started to do so but never finished his work.
In what follows the revised statements (with proofs) will be given as well as the changed
definitions. The modified results will be labelled with the old numbers and a ‘prime’ sign.

Lemma 2.1′. Let S = {S(x)}x∈R be a bilateral local system satisfying the following prop-
erty for each x ∈ R:

If σ′x, σ
′′
x ∈ S(x) then

`
σ′x ∩ (−∞, x]

´
∪
`
σ′′x ∩ [x,+∞)

´
∈ S(x) . (∗)

Let F : [a, b]→ R. Then we have:

(i) F is SC on [a, b] if and only if it is bilaterally SC on [a, b].

(ii) F is SCi on [a, b] if and only if F is simultaneously right S-lower semi-continuous on
[a, b) and left S-upper semi-continuous on (a, b].

Proof. Evident.

∗Extracted by Gabriela Ene from the author’s notes.
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4′ A Fundamental Lemma
Following the notations in [21] (pp. 5,6), we shall denote by I the collection of all nonde-
generate, real compact intervals. A subset β of the product I × R is said to be a covering
relation if x ∈ I whenever (I, x) ∈ β (see [22, p. 5]). If β is a covering relation and E a real
set then β(E), β[E] and σ(β) denote the following sets:

• β(E) = {(I, x) ∈ β : I ⊂ E};
• β[E] = {(I, x) ∈ β : x ∈ E};
• σ(β) = ∪(I,x)∈βI.

A packing is a covering relation β with the property that for distinct pairs (I1, x1) and
(I2, x2) the intervals I1 and I2 do not overlap. Evidently a packing is either finite or
countable infinite. Using the language of Henstock we call a finite packing β a division (a
β-division) of an interval [a, b] if σ(β) = [a, b].

Definition 13.1. Let E be a real set and δ : E → (0,+∞). We denote by β(E; δ) =
{(〈x, y〉) : x, y ∈ E, x is an accumulation point for 〈x, y〉∩E, and 〈x, y〉 ⊂ (x−δ(x), x+δ(x)}.
Clearly β(E; δ) is a covering relation (possibly empty).

Definition 4.2′. Let P be a real set. We denote by

• Is+(P ) = {x ∈ P : x is a right isolated point of P};
• Is−(P ) = {x ∈ P : x is a left isolated point of P};
• Is(P ) = Is+(P ) ∪ Is−(P ). This set is countable (see [15, p. 260]).

Definition 13.2. ([16]). A sequence {En} of sets whose union is E is called an E-form
with parts En. If, in addition, each part En is closed in E (i.e., En = Pn ∩ E, where Pn is
a closed set, so Pn = En) then the E-form is said to be closed.

Definition 13.3. Let {Ei}i be a closed [a, b]-form, δi : Ei → (0,+∞), and A a set that
contains ∪∞i=1Is(Ei). For each a ∈ A let σa be a set having the point a as a bilateral
accumulation point. Let

β=β({Ei}; {δi}; (σa)a∈A)=∪∞i=1β(Ei; δi) ∪
“
∪a∈A{(〈a, x〉, a) : x ∈ σa \ {a}}

”
.

Clearly β is a covering relation. It contains the AD full cover of Lee and Soedijono (see [12,
p. 265]), the cover U of Henstock (see [7, p. 56]), the covering relation called “composite
path derivation” defined by Thomson (see [20, p. 104]), and Henstock’s covering relation
PC ([20, p. 115]).

Lemma 4.1′. Let P be a perfect nowhere dense subset of [a, b], a, b ∈ P , and let δ : P →
(0,+∞). Then there exists a finite packing π contained in β(P ; δ) such that σ(π) ⊃ P .

Proof. Let {(ai, bi)}, i = 1,∞ be the intervals contiguous to P , and let η : [a, b]→ (0,+∞),

η(x) =

8>>><>>>:
δ(x) , if x ∈ P \ ∪∞i=1{ai, bi} ,

min{ bi−ai
3

, δ(x)} , if x ∈ {ai, bi} , i = 1,∞

min{x−ai
2

, bi−x
2
} , if x ∈ (ai, bi) , i = 1,∞ .

Let π be a β([a, b], η) partition of [a, b] (that such a partition exists follows for example by
[1, p. 87]). Let π = {(〈xi, yi〉, xi)}ni=1 and A = {i ∈ {1, 2, . . . , n} : int(〈xi, yi〉) ∩ P 6= ∅}
(here int(X) denotes the interior of the set X). For x ∈ P \ ∪∞i=1{ai, bi}, it follows that
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x ∈ 〈xi, yi〉 for some i ∈ {1, 2, . . . , n}. Clearly 〈xi, yi〉 ∩ P is an infinite set, so i ∈ A.
Therefore

P \
“
∪∞i=1{ai, bi}

”
⊂ ∪i∈A〈xi, yi〉 .

It follows that
P = P \ (∪∞i=1{ai, bi}) ⊂ ∪i∈A〈xi, yi〉 . (13)

If i ∈ A then xi ∈ P (because if xi ∈ (aj , bj) for some j then yi ∈ (xi − η(xi), xi + η(xi)) ⊂
(aj , bj), which implies that i /∈ A, a contradiction).

Fix some i ∈ A. If xi ∈ P \
`
∪∞j=1{aj , bj}

´
then xi is an accumulation point for

〈xi, yi〉 ∩ P . Let zi ∈ P such that 〈xi, yi〉 ∩ P = 〈xi, zi〉 ∩ P . Then
`
〈xi, zi〉, xi

´
∈ β(P ; δ).

If xi = aj for some j then yi < xi (because if xi < yi then [xi, yi] ⊂
ˆ
aj+

bj−aj
3

˜
, so i /∈ A).

It follows that [yi, xi] ∩ P has xi as an accumulation point. Let zi = inf[yi, xi] ∩ P , hence
[yi, xi] ∩ P = [zi, xi] ∩ P . Consequently ([zi, xi], xi) ∈ β(P ; δ).
If xi = bj for some j, then yi > xi. Let zi = sup(P ∩ [xi, yi]). Then ([xi, zi], xi) ∈ β(P ; δ).

By (13), it follows easily that π =
˘

(〈xi, zi〉, xi)
¯
i∈A satisfies our lemma.

Lemma 4.2′ (Fundamental lemma). For each β = β({Ei}; {δi}; (σa)a∈A), the interval
[a, b] has a β-division.

Proof. We shall use the Romanovski Lemma (see for example [1, p. 10]). Let A = {(p, q) ⊆
(a, b) : [p1, q1] has a β-division whenever (p1, q1) ⊆ (p, q)}.

(i) If (p, q) ∈ A and (q, r) ∈ A then clearly (p, r) ∈ A.
(ii) If (p, q) ∈ A and (p1, q1) ⊂ (p, q) then (p1, q1) ∈ A (see the definition of A).
(iii) Let (c, d) ⊆ (a, b) such that (p, q) ∈ A whenever [p, q] ⊂ (c, d). We show that

(c, d) ∈ A. Let c ∈ En. Let c1 ∈ (c, c + δn(c)) ∩ En ∩ (c, (c + d)/2) if c is a right
accumulation point for En, and let c1 ∈ σc ∩ (c, (c+ d)/2) if c is right isolated in [a, b)∩En.
Then ([c, c1], c) ∈ β. Similarly we find d1 ∈ ((c + d)/2, d) such that ([d1, d], d) ∈ β. But
(c1, d1) ∈ A and [c, d] = [c, c1] ∪ [c1, d1] ∪ [d1, d]. Therefore [c, d] admits a β-division.
Analogously we obtain that [c2, d2] has a β-division, whenever (c2, d2) ⊂ (c, d). Hence
(c, d) ∈ A.

(iv) Let E ⊂ [a, b] be a perfect set such that all intervals contiguous to E are contained in
A. We show that there exists (p, q) ∈ A such that E ∩ (p, q) 6= ∅. Since E = ∪∞n=1(E ∩En),
by the Baire Category Theorem (see for example [1, p. 10]) it follows that there exists a
positive integer n and an interval (p, q) such that ∅ 6= (p, q)∩E = (E∩En)∩ (p, q). We may
suppose without loss of generality that p, q ∈ E and [p, q] ∩ E is perfect. Applying Lemma
4.1′ to [p, q] ∩ E and δn, there exists a finite packing π contained in β(E; δn) such that
σ(π) ⊃ E. Clearly π is a finite packing contained in β. Since [p, q] \ σ(π) consists of a finite
number of intervals contiguous to E, it follows that [p, q] admits a β-division. Similarly
it follows that each [p1, q1] admits such a division, whenever (p1, q1) ⊂ (p, q). Therefore
(p, q) ∈ A.

By (i)-(iv) and the Romanovski Lemma, it follows that (a, b) ∈ A.

6′ The Lusin Type [SD] Integral

Definition 6.1′. Let S = {S(x)}x∈R be a local system S∞,∞-filtering. Let f : R→ R, and
let E a bounded nonempty set, with a = inf E, b = supE. f is said to be [SD]-integrable
on E if there is a real number I and a function F : R→ R,

F (x) =

8<:0 if x ≤ a

I if x ≥ b



A Study of Some General Integrals 95

such that F is SC on [a, b], F ∈ [ACG] on [a, b], and F
′
ap(x) = χE (x) · f(x) a.e. on [a, b],

where χE is the characteristic function of E. We write [SD]
R
E f(t) dt = I. F is said to be

the (unique) indefinite integral of f on E.

Lemma 6.2′. Let f : R → R be [SD]-integrable on [a, b] and let c ∈ (a, b). Then f is
[SD]-integrable on both [a, c] and [a, d], and we have

[SD]

Z b

a
f(t) dt = [SD]

Z c

a
f(t) dt+ [SD]

Z b

c
f(t) dt .

Proof. Let F : R→ R be the indefinite [SD]-integral of f on [a, b]. Let F1, F2 : R→ R,

F1(x) =

8<:F (x) if x ∈ (−∞, c]

F (c) if x ∈ [c,+∞)
, F2(x) =

8<:0 if x ∈ (−∞, c]

F (x)− F (c) if x ∈ [c,+∞) .

Then F1 (respectively F2) is the indefinite [SD]-integral of f on [a, c] (respectively [c, b])
and we have the relation from above.

Lemma 6.3′. Let f : R → R be [SD]-integrable on [a, c] and on [c, b], where c ∈ (a, b).
Then f is [SD]-integrable on [a, b] and we have:

[SD]

Z b

a
f(t) dt = [SD]

Z c

a
f(t) dt+ [SD]

Z b

c
f(t) dt .

Proof. Let F1 (respectively F2) be the indefinite [SD]-integral of f on [a, c] (respectively
[c, b]). Then F = F1 + F2 is the indefinite [SD]-integral of f on [a, b] and we have the
relation from above.

7′ The Riemann Type [SR] Integral
Definition 7.1′. Let S = {S(x)})x ∈ R be a local system S∞,∞-filtering. A function
f : R → R is said to be [SR] integrable on [a, b] to I ∈ R if for ε > 0 there exist a closed
[a, b]-form {Ei}, δi : Ei → (0,+∞), for A ⊇ ∪∞i=1Is(Ei) countable there is ∆A,ε : A→ P(R),
∆A,ε(x) ∈ S(x), and for B ⊃ A, B countable there is a ∆B,ε such that

|s(f ;α)− I| < ε ,

whenever α ⊂ β
`
{Eεi }, {δεi},∆A,ε ∨∆Bε

´
is a division of [a, b].

Theorem 7.1′. The number I in Definition 7.1′ is unique, and it will be denoted by

[SR]
R b
a f(t) dt.

Proof. Suppose that there exist two numbers I1 and I2 as in Definition 7.1′. Let {Eki }∞i=1,

k = 1, 2, be a closed [a, b]-form given for Ik and ε. Let Eij = E1
i ∩E2

j , δkij = Eij → (0,+∞)

and ∆k : ∪i,jIs(Eij)→ P(R), ∆k(x) ∈ S(x), be such that |s(f ;πk)− I − k| < ε, whenever
πk ⊂ βk = β({Eij}; δkij ; ∆k) is a division of [a, b]. Let δij : Eij → (0,+∞), δij(x) =

min{δ1ij(x), δ2ij(x)}, and let ∆ : ∪i,jIs(Eij) → P(R), ∆(x) = ∆1(x) ∩ ∆2(x) ∈ S∞,∞(x).

By Lemma 4.2′ there exists π ⊂ β = β({Eij}; {δij}; ∆). Clearly π ⊂ β1 ∩ β2. Hence
|s(f ;π)− Ik| < ε, k = 1, 2. It follows that |I1 − I2| < 2ε. Since ε is arbitrary we obtain that
I1 = I2.

Remark 13.1. If α ∈ R and f is [SR]-integrable to I on [a, b] then αf is [SR]-integrable
to αI on [a, b].
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Lemma 7.1′. Let S be a filtering local system on [a, b]. Let f1, f2 : [a, b] → R be [SR]-
integrable to I1 respectively I2 on [a, b]. Then f1 + f2 is [SR]-integrable on [a, b] to I1 + I2.

Proof. For ε
2
> 0 and Ik, k = 1, 2, let {Eki } be a closed [a, b]-form given by Definition

7.1′. Let Eij = E1
i ∩ E2

j . Then {Eij}i,j is a closed [a, b]-form. Let {Xi} be a closed [a, b]-

form finer than {Eij}. Clearly {Xi} is finer than {Ei}k. By Definition 7.1′, there exist
δki : Xi → (0,+∞) and ∆k : ∪iIs(Xi)→ P(R), ∆k(x) ∈ S(x) such that

|s(fk;πk)− Ik| <
ε

2
,

whenever πk ⊂ βk = β({Xi}; {δki }; ∆k) is a division of [a, b]. Let δi : Xi → (0,+∞),
δi(x) = min{δ1i (x), δ2i (x)}, and let ∆ : ∪iIs(Xi) → P(R), ∆(x) = ∆1(x) ∩ ∆(x) ∈ S(x)
(because S is filtering). Let π ⊂ β = β({Xi}; {δi}; ∆) be a division of [a, b] (this is possible
by Lemma 4.2′). Clearly π is a βk division. Hence˛̨

s(f1 + f2;π)− (I1 + I2)
˛̨
<
˛̨
s(f1;π)− I1

˛̨
+
˛̨
s(f2;π)− I2

˛̨
< ε .

Thus f1 + f2 is [SR]-integrable to I1 + I2 on [a, b].

Lemma 7.2′ (A Cauchy criterion). Let S = {S(x)})x ∈ R be a local system S∞,∞-filtering
on [a, b], and let f : R→ R. The following assertions are equivalent:

(i) f ∈ [SR] integrable on [a, b];

(ii) for ε > 0 there exist a closed [a, b]-form {Eεi }, δεi : Eεi → (0,+∞), for A ⊇ ∪∞i=1Is(Eεi )
there is a ∆A,ε and for B ⊃ A, B countable, there is a ∆B,ε such that˛̨

s(f, π1)− s(f ;π2)
˛̨
< ε ,

whenever π1, π2 ⊂ β
`
{Eεi }, {δεi},∆A,ε ∨∆B,ε

´
.

Proof. (i) ⇒ (ii) This is obvious.

(ii) ⇒ (i) For 1
k

let {E
1
k
i } be a closed [a, b]-form, δ

1
k : E

1
k
i → (0,+∞) be given by (ii).

Let Ak be countable, Ak ⊇ ∪∞i=1Is(E
1
k
i ) and Bk ⊃ Ak, Bk countable. Let Ao = ∪∞i=1Ak

and Bo = ∪∞i=1Bk.Again by (ii), for Ao there is a ∆Ao,
1
k

and for Bo there is a ∆Bo,
1
k

such

that ˛̨
s(f ;π′k)− s(f ;π′′k )

˛̨
<

1

k
,

whenever π′k, π
′′
k ⊂ βk = β

`
{E

1
k
i }, {δ

1
k
i },∆Ao,

1
k
∨∆Bo,

1
k

´
are divisions of [a, b]. Let πk ⊂

β∗k = β
`
{E

1
k
i }, {δ

1
k
i },∆Ak,

1
k

´
⊂ βk be a fixed division of [a, b], where ∆Ak,

1
k

= ∆Ao,
1
k
/Ak.

Let ε > 0 and let kε be a positive integer such that1/kε < ε/2. Let kε ≤ m < n. Let

πmn ⊂ βmn = β
“
{E

1
m
i ∩ E

1
n
j }, {δmnij},∆Ao,

1
m
∩∆Ao,

1
n

”
be a division od [a, b] (see Lemma 4.2′). Then πmn ⊂ βm and πmn ⊂ βn. But πm ⊂ βm
and πn ⊂ βn, so˛̨

s(f ;πm)− s(f ;πmn)
˛̨
<

1

m
and

˛̨
s(f ;πn)− s(f ;πmn)

˛̨
<

1

n

imply that ˛̨
s(f ;πm)− s(f ;πn)

˛̨
<

1

m
+

1

n
< ε , .
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hence {s(f ;πk)}k is a Cauchy sequence. Let I = limk→∞ s(f ;πk). Fix m ≥ kε. Then˛̨
s(f ;πm)− I

˛̨
<

1

m
.

Now we show that I satisfies the conditions in Definition 7.1′. Let ∆Bo,
1
k

= ∆Bo,
1
k
/Bk

and let α ⊂ β∗∗m = β
“
{E

1
k
i }, {δ

1
k
i },∆Ak,

1
k
∨∆Bk,

1
k

”
⊂ βm be a division of [a, b]. Then

˛̨
s(f ;α)− I

˛̨
≤
˛̨
s(f ;α)− s(f ;πm)

˛̨
+
˛̨
s(f ;πm)− I

˛̨
<

1

m
+

1

m
< ε .

Lemma 7.3′. Let S = {S(x)})x ∈ R be a local system S∞,∞-filtering. Let f : R→ R.

(i) If a < c < b, f is [SR] integrable on [a, c] = [a1, b1] to I1, and f is [SR] integrable
on [c, b] = [a2, b2] to I2, then f is [SR] integrable on [a, b] to I1 + I2.

(ii) If a ≤ c < d ≤ b and f is [SR] integrable on [a, b] then f is ]SR] integrable on [c, d].

Proof. (i) Let ε > 0. For ε/2 let {Ek,
ε
2

i } be a closed [ak, bk]-form, δ
k, ε2
i : E

k, ε2
i → (0,+∞)

be given by Definition 7.1′, k = 1, 2. Clearly {Ek,
ε
2

i }i,k is a closed [a, b]-form. Let A ⊃
∪2
k=1 ∪

∞
i=1 Is

`
E
k, ε2
i

´
be a countable set and B ⊃ A another countable set. Let Ak =

A ∩ [ak, bk], Bk = B ∩ [ak, bk], k = 1, 2. Clearly Bk ⊃ Ak ⊃ ∪∞i=1Is(E
k, ε2
i ). Again by

Definition 7.1′, there exist ∆Ak,
ε
2

and ∆Bk,
ε
2

such that˛̨
s(f ;π′k)− s(f ;π′′k )

˛̨
<
ε

2
, k = 1, 2 (14)

whenever π′k, π
′′
k ⊂ βk = β

`
{Ek,

ε
2

i }, {δk,
ε
2

i },∆Ak,
ε
2
∨∆Bk,

ε
2

´
are divisions of [a, b]. Let

∆A,ε(x) =

8>>>>>>>>>><>>>>>>>>>>:

∆A1,
ε
2

(a) ∩ (−∞, c) if x = a

∆A1,
ε
2

(x) ∩ (a, c) if x ∈ A1 ∩ (a, c)

∆A2,
ε
2

(x) ∩ (c, b) if x ∈ A2 ∩ (c, b)`
∆A1,

ε
2

(c) ∩ (a, c]
´
∪
`
∆A2,

ε
2

(c) ∩ [c, b)
´

if x = c

∆A2,
ε
2

(b) ∩ (c,+∞) if x = b .

Let

δ1,εi (x) =

8><>:
min

˘
δ
1, ε2
i (x), c− x

¯
if x ∈ E1, ε2

i ∩ [a, c)

δ
1, ε2
i (c) if x = c ∈ E1, ε2

i

and

δ2,εi (x) =

8><>:
min

˘
δ
2, ε2
i (x), x− c

¯
if x ∈ E2, ε2

i ∩ (c, b]

δ
2, ε2
i (c) if x = c ∈ E2, ε2

i .

For B, ∆B,ε(x) is defined similarly with ∆A,ε(x).

Let Ek,εi = E
k, ε2
i . Let π ⊂ β = β

`
{Ek,εi }i,k, {δ

k,ε
i }i,k,∆A,ε ∨ ∆B,ε

´
be a division of

[a, b], and let
`
〈x, y〉, x

´
∈ π. Then we have:
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1) x < c ⇒ y < c ⇒ 〈x, y〉 ⊂ [a, c) ⇒
`
〈x, y〉, x

´
∈ β1;

2) x > c ⇒ y > c ⇒ 〈x, y〉 ⊂ (c, b] ⇒
`
〈x, y〉, x

´
∈ β2;

3) x = c. Let c1 = sup(〈x,y〉,x)∈π
x<c

{x, y} and c2 = inf(〈x,y〉,x)∈π
x>c

{x, y} . Then
`
[c1, c], c

´
and`

[c, c2], c
´

belong to π. Note that
`
[c1, c], c

´
∈ β1 and

`
[c, c2], c

´
∈ β2.

Let πk = π ∩ [ak, bk], k = 1, 2. Since π = π1 ∪ π2, by (14) we have˛̨
s(f ;π)− (I1 + I2)

˛̨
≤
˛̨
s(f ;π1)− I1

˛̨
+
˛̨
s(f ;π2)− I2

˛̨
< ε .

It follows that f is [SR] integrable on [a, b] to I1 + I2.
(ii) Consider a < c < d < b, [a, c] = [a1, b1], [c, d] = [a2, b2], [d, b] = [a3, b3]. Suppose

that f is [SR] integrable to I on [a, b]. For ε > 0 there exist a closed [a, b]-form {Ei},
δi : Ei → (0,+∞), for A ⊇ ∪∞i=1Is(Ei), A countable, there is a ∆A,ε, and for B ⊃ A, B
countable, there is a ∆B,ε such that

˛̨
s(f ;π)−I

˛̨
< ε , whenever π ⊂ β = β

`
{Ei}, {δi},∆A,ε∨

∆B,ε

´
is a division of [a, b]. Let Eik = [ak, bk] ∩ Ei, k = 1, 2, 3. Then {Eik} is a closed

[ak, bk]-form, k = 1, 2, 3. Let δik : Eik → (0,+∞), δik(x) = δi|Eik . Let [ak, bk] ⊇ Ak ⊃
∪∞i=1Is(Eik), k = 1, 2, 3, Ak countable, and let [ak, bk] ⊇ B2 ⊃ A2 be another countable set.
Let A = A1∪A2∪A3 and B = A1∪B2∪A3. Clearly A ⊃ ∪∞i=1Is(Ei). Let ∆Ak,ε = ∆A,ε/Ak,
k = 1, 2, 3 and ∆B2,ε = ∆B,ε/B2. Let

π′2, π
′′
2 ⊂ β2 = β

`
{Ei2}, {δi2},∆A2,ε ∨∆B2,ε

´
⊂ β

be a division of [a2, b2], and let πk ⊂ βk = β
`
{Eik}, {δik},∆Ak,ε

´
⊂ β be a division of

[ak, bk], k = 1, 3. Then π1 ∪ π′2 ∪ π3 and π1 ∪ π′′2 ∪ π3 are divisions of [a, b]. It follows that˛̨
s(f ;π′2)− s(f ;π′′2 )

˛̨
=
˛̨
s(f ;π1 ∪ π′2 ∪ π3)− s(f ;π1 ∪ π′′2 ∪ π3)

˛̨
<

<
˛̨
s(f ;π1 ∪ π′2 ∪ π3)− I

˛̨
+
˛̨
s(f ;π1 ∪ π′′2 ∪ π3)− I

˛̨
< 2ε .

By Lemma 7.2′, f is [SR] integrable on [a2, b2] = [c, d].

Lemma 7.4′ (A quasi Saks-Henstock Lemma). Let S = {S(x)})x ∈ R be a local system
S∞,∞-filtering on [a, b]. Let f : R→ R be [SR] integrable to I on [a, b]. Let F : R→ R,

F (x) =

8>>><>>>:
0 if x ≤ a

[SR]
R x
a f(t) dt if x ∈ (a, b)

I if x ≥ b

Let {Ei} be a closed [a, b]-form, and let δi : Ei → (0,+∞) be given for ε > 0 and I. Let
Ao be a fixed countable subset of [a, b], Ao ⊇ ∪∞i=1Is(Ei), and let B be another countable
subset of [a, b] containing Ao. Let ∆Ao,ε and ∆B,ε be such that˛̨

s(f ;π)− I
˛̨
< ε ,

whenever π ⊂ β = β
`
{{Ei}, {δi},∆Ao,ε ∨∆B,ε

´
is a division of [a, b]. Then we have:

(i)
˛̨
s(f ;α)− S(F ;π)

˛̨
< 3ε

2
whenever α ⊂ β∗ = β

`
{Ei}, {δi},∆Ao,ε

´
is a finite packing;

(ii)
P`
〈x,y〉,x

´
∈α

˛̨
f(x)(y− x)− (F (y)−F (x))

˛̨
< 3ε whenever α ⊂ β∗ is a finite packing.

Proof. (i) Let α ⊂ β∗ be a finite packing. If α is a division of [a, b] then we have nothing
to prove. Suppose that [a, b]− σ(α) 6= ∅. Let (ck, dk), k = 1, 2, . . . , n be the components of
the open set (a, b) \ σ(α). By Lemma 7.3′ we have

[SR]

Z dk

ck

f(t) dt = F (dk)− F (ck) = Ik .
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For ε
2n

and Ik, let {Pki } be a closed [ck, dk]-form, k = 1, 2, . . . , n, and ηki : Pki → (0,+∞)

be given by Definition 7.1′. Let Eki = [ck, dk] ∩ Ei, k = 1, 2, . . . , n, δki : Eki → (0,+∞),

δki = δi|Eki
. Let Bk be a countable subset of [ck, dk] containing ∪i,jIs(Pki ∩ Ekj ). Again by

Definition 7.1′, for Bk and ε
2n

there is a ∆Bk,
ε

2n
such that˛̨

s(f ;πk)− Ik
˛̨
<

ε

2n
,

whenever πk ⊂ β
`
{Pki }, {ηki },∆Bk,

ε
2n

´
is a division of [ck, dk]. Let B = Ao ∪

`
∪nk=1Bk

´
and let ∆B,ε be such that ˛̨

s(f ;π)− I
˛̨
< ε ,

whenever π ⊂ β = β
`
{Ei}, {δi},∆A,ε ∨∆B,ε

´
is a division of [a, b]. Let

π∗k ⊂ β
“
{Pki ∩ Ekj }, {δkij}, (∆B,ε)|Bk ∩∆Bk,

ε
2n

”
be a division of [ck, dk] (see Lemma 7.2′). Clearly α ∪

`
∪nk=1π

∗
k

´
⊂ β is a division of [a, b].

Hence ˛̨
s(f ;α ∪ (∪nk=1π

∗
k))− I

˛̨
< ε and

˛̨
s(f ;π∗k)− Ik

˛̨
<

ε

2n
.

Since I = S(F ;α) +
Pn
k=1 S(F ;π∗k) = S(F ;α) +

Pn
k=1 Ik , it follows that

˛̨
s(f ;α)− S(F ;α)

˛̨
=
˛̨̨
s
`
f ;α ∪ (∪nk=1π

∗
k)
´
− I −

nX
k=1

`
s(f ;π∗k)− Ik

´˛̨̨
≤

≤
˛̨̨
s
`
f ;α ∪ (∪nk=1π

∗
k)
´
− I
˛̨̨

+
nX
k=1

˛̨
s(f ;π∗k)− Ik

˛̨
< ε+ n ·

ε

2n
=

3ε

2
.

(ii) This follows by definitions using (i).
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