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A STUDY OF SOME GENERAL
INTEGRALS THAT CONTAINS THE WIDE
DENJOY INTEGRAL

Abstract

In this paper, using Thomson’s local systems, we introduce some
very general integrals, each containing the wide Denjoy integral: the
[S1S2D]-integral (of Lusin type); the [S1S2V]-integral (of variational
type); the [S1S2W]-integral (of Ward type); the [S1S2R]-integral (of
Riemann type); We prove that in certain conditions the integrals [SiS2V)]
and [S1S2W] are equivalent (it is shown that the first integral satisfies
a Saks-Henstock type lemma). For the [S1S2R]-integral we only show
that it satisfies a quasi Saks Henstock type lemma (see Lemma 7.4).
Finally, if S; = S and Sz = S, we obtain that the integrals [S,”S, V],
[SFS; W] and [S] S, D] are equivalent (in fact the [S) S, DJ-integral is
exactly the wide Denjoy integral). But the equivalence of the three inte-
grals with the [S,”S, R]-integral follows only if we assume the additional
condition that the primitives of the [SS S, R]-integral are continuous
(see Theorem 11.1)

1 Introduction

It is well known that the Denjoy-Perron integral has a Riemann type definition.
This was discovered independently by Henstock and Kurzweil, and it is called
the Henstock-Kurzweil integral. Also the Denjoy-Perron integral allows char-
acterizations of variational and of Ward type (these characterizations are due
to Henstock). A very important fact in the theory of the Henstock-Kurzweil
integral is the Saks-Henstock Lemma. Since 1968, Henstock suggested (see [5,
p. 222]) that it is possible to obtain a Riemann type definition for the wide
Denjoy integral. Starting from this suggestion and from the fact that an ex-
plicit theorem wasn’t stated in Henstock’s book, Lee and Soedijono introduced
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a Riemann type integral, called the AH-integral, about which they claimed
that it was equivalent with the S-Ridder integral (note that the S-Ridder in-
tegral was also studied by Kubota, but he called it the AD- integral). Indeed,
by [12, Theorem 4.1] it follows that the AD integral is contained in the AH
integral and the two integrals are equal. But that the converse is also true
doesn’t seem to follow from their Theorem 4.2. To prove this theorem they
need to show the following facts:

1) F is approximately continuous on [a, b];
2 ( ) = f(z) a.e. on [a,b];
3) F € VBG on [a,b];

) F
)
4) F satisfies Lusin’s condition (N) on [a, b];
5) F € [VBG] on [a, b];

6)

[VBG] N (N) = [ACG] for approximately continuous functions on [a, b],

where F(z) = (AH) [ f(t)dt, z € [a,b).

To show 1)-4) they use essentially a Saks-Henstock type lemma for the AH
integral, claiming that this lemma is easy to prove (I wasn’t able to do so).
With or without a Saks-Henstock type lemma, I wasn’t able to prove 1).

The items 2), 3) and 4) are true, but with different proofs (for 2) see Lemma
7.5; for 3) see Lemma 7.6; for 4) see Corollary 7.1).

In 4) there is also another error (it seems that the authors used the following
statement, that is not true: if {[F(a;), F(b;)]}; is a finite set of nonover-
lapping intervals then {[a;,b;]}; is also a set of nonoverlapping intervals).
The proof of 5) is not clear (because, if a function F satisfies the “strong Lusin
condition” then it isn’t clear if F'is VB on any subset Z with |Z] = 0; but it
is true that F' is VBG on Z, see Theorem 5.1; moreover, if a function is VB
on a set A and on a set B, then it is not necessarily VB on AU B).
Statement 6) is not true. Indeed, Sarkhel and Kar introduced the (PAC)
condition that is characterized as follows: A function F is (PAC) on a closed
set E if and only if F € [VBG] N (N) on E (The generalized Banach-Zarecki
theorem [19, Theorem 3.6]). In the same paper the authors constructed a
function F : [a,b] — R with the following properties: F is approximately
continuous, F € (PAC), but F ¢ ACG. Tt follows that the function F' from
above is approximately continuous, [V BG] and (N) on [a, b], but not [ACG].
Note however that VBG N [CG] N (N) = [ACG] (and this follows indeed by
the Banach-Zarecki theorem [15, p. 227]).

In this paper, using Thomson’s local systems, we introduce some very
general integrals, each containing the wide Denjoy integral:
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the [S1S2D)-integral (of Lusin type);

the [S1S82V]-integral (of variational type);

the [S1S2W]-integral (of Ward type);

the [S1S2R]-integral (of Riemann type);

We prove that in certain conditions, the integrals [S1S;V] and [S;S2W)] are
equivalent (it is shown that the first integral satisfies a Saks-Henstock type
lemma). For the [S1S2R]-integral we only show that it satisfies a quasi Saks
Henstock type lemma (see Lemma 7.4).

Finally, if $; = 8§ and So = S, we obtain that the integrals [S,S, V],
[SFS, W] and [S;fS, D] are equivalent (in fact the [S;S, DJ-integral is exactly
the wide Denjoy integral). But the equivalence of the three integrals with the
[SF S, R]-integral follows only if we assume the additional condition, that the
primitives of the [S}S, R]-integral are continuous (see Theorem 11.1).

2 Preliminaries

We shall use the following well known classes of functions: C (continuous
functions), D (Darboux functions), B; (Baire one functions), AC, VB, [ACG],
[ACG], ACG (the ACG functions are not supposed to be continuous), V BG,
[CG] (or BY) [VBG], (N) (Lusin’s condition) , To, N~°° (see for example [15]
or [1]). We denote by (x,y) the closed interval with the endpoints = and y,
where z,y € R.

Definition 2.1 (Thomson). [21, p. 3] A family S = {S(z)}.cr is said to be
a local system if each S(z) is a collection of sets with the following properties:

(i) {2} ¢ S(a);
(ii) If o, € S(z) then x € o3

(iii) If o, € S(x) and o, C A then A € S(x);

(iv) If o, € S(z) and 6 > 0 then o, N (z — §,z + §) € S(z).

Definition 2.2. Let §; = {S1(x) }zer and Sz = {S2(x) }zer be local systems
and let x € R, A C R.

e (Thomson, [21, p. 5]). We define the local system S; A Sy = {(S1 A
82) () }uer by (S1AS2)(x) = S1(x) NSa(x) (it is easy to verify that this
is a local system).
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(Thomson, [21, p. 37]). S; is said to be bilateral at « if o, has = as a
bilateral accumulation point, whenever o, € S;(z). & is bilateral on A
if it is bilateral at each point of A.

(Thomson, [21, p. 18]). Let Soo = {Soc(x) : & € R} denote the local
system defined at each point x as S (2) = {0 : o contains  and has
x as an accumulation point }. We can define right and left versions
of this, by writing: S (z) = {0 : o contains  and has = as a right
accumulation point } and S (z) = {0 : o contains z and has z as a left
accumulation point }.

Let Soo.00 = SE A S, Clearly Soo oo(2) = {0 : o contains x and has z
as a bilateral accumulation point }.

Sy is said to be Sy-filtering at z if o, N o, € So(x) whenever o, 0, €
S1(x). S is said to be So-filtering on A if it is so on each point of A.

(Thomson, [21, p. 10]). S is said to be filtering at = if it is S-filtering
at x.

(Thomson, [21, p. 5]). We will write S; < Sy on A, if at every point
x € A we have S1(z) C Sa(x).

If §; < 8& and S; < S then we define the following local system:
(S1;S2) = {(S1;82)(x) }oer, where (S1;82)(z) = {S : = € S and there
exist 0 > 0, A € S;(z) and B € S3(z) such that ((z—9d,z)NB)U((z,z+
d)NA)CS}.

Remark 2.1. If S is S oo-filtering then it is a bilateral local system.

Definition 2.3. Let S = {S(x)},er be alocal system. Let F': [a,b] — R and
t € [a,b].

F is said to be SC (S-continuous) at t if for every € > 0 there exists
o € S(t) such that |F(z) — F(t)| < €, whenever x € oy N [a,b]. F is said
to be SC on a set A C [a,b] if it is so at each point t € A.

F is said to be S-upper (respectively lower) semi-continuous at ¢ if for
every € > 0 there exists oy € S(t) such that F'(t) — F(x) < € (respectively
F(t) — F(z) > —e), whenever x € o, N [a,b]. F is said to be S-upper
(respectively lower) semi-continuous on a set A C [a, b] if it is so at each
point t € A.

Remark 2.2. With the above notations we have:
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(i) If Fis SC at t € [a,b] then F is both, S-upper semi-continuous and
S-lower semi-continuous at ¢. If S is a filtering local system the converse
is also true.

(ii) Definition 2.3 is a slight modification of Thomson’s definitions (31.1) and
(31.3) of [21, pp. 70-T71].

Definition 2.4. Let S = {S(x)}.er be a bilateral local system, and let F :
[a,b] — R.

e F is said to be right (respectively left) SC at a point x € [a,b) (respec-
tively x € (a,b]), if for every € > 0 there exists 0, € S(x) such that
|F(t) — F(x)| < €, whenever ¢ € o, N [z,b) (respectively ¢t € o, N (a, z]).
F is said to be right (respectively left) SC on a set A C [a,b) (respec-
tively A C (a,b]), if it is so at each point © € A. If F is right SC on [a, )
and left SC on (a,b], we say that F' is bilateral SC on [a, b].

e [ is said to be right (respectively left) S- upper semi-continuous at
a point = € [a,b) (respectively x € (a,b]), if for every ¢ > 0 there
exists o, € S(x) such that F(t) — F(z) < ¢, whenever t € o, N [z,b)
(respectively t € o, N (a,z]). F is said to be right (respectively left)
S-upper semi-continuous on a set A C [a,b) (respectively A C (a,b]), if
it is so at each point x € A.

e [ is said to be right (respectively left) S- lower semi-continuous at a
point = € [a,b) (respectively x € (a,b]), if for every e > 0 there exists
oy € S(z) such that F(t) — F(x) > —e, whenever t € o, N [x,b) (respec-
tively ¢t € o, N (a,z]). F is said to be right (respectively left) S-lower
semi-continuous on a set A C [a,b) (respectively A C (a, b)), if it is so at
each point = € A.

e F is said to be SC; at t € [a, b] if for every e > 0 there exists oy € S(t)
such that F(z) < F(t) 4+ € for ¢ € oy N [a,t], and F(t) —e < F(y) for
y € o¢ N [t,b]. F issaid to be SCq at ¢ if —F is SC; at t. F is said to be
SC; (respectively SC4) on a set A if it is so at each point of A.

Lemma 2.1. Let §; = {S1(2)}aer and So = {Sa2(x)}zer be local systems
such that 8y < 8& on [a,b) and Sy < S on (a,b]. Let F : [a,b] — R and
x € [a,b].

(i) The following assertions are equivalent:

a) F is (81;82)C at x;
b) F is left SoC at x if © € (a,b], and F is right S1C at x if x € [a,b).
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(ii) The following assertions are equivalent:

a) F is (81;82)C; at x;

b) F is left Sa-upper semi-continuous at x if © € (a,b], and F is right
Sy -lower semi-continuous at x if x € [a,b).

Proor. Evident. O
Remark 2.3. Let F : [a,b] — R.

(i) F is right S lower semicontinuous at a point = € [a,b) if and only if F
is 8& lower semicontinuous at z.

(ii) F is left S lower semicontinuous at a point z € [a,b) if and only if F'
is S lower semicontinuous at x.

(iii) F is lower internal (this condition is due to Garg, see [1, p. 33]) if and
only if F is (81;85)C; on [a,b]. (see (i), (ii) and Lemma 2.1, (ii)).

Lemma 2.2. Let §; = {S1(2)}aer and So = {Sa2(x)}zer be local systems
such that S < 8& on [a,b) and Sy < S on (a,b]. Let F,G : [a,b] — R
and ¢ € (a,b). Let Fy : [a,c] — R, Fi(z) = F(z), and let Fy : [¢,b] — R,
Fy(z) = F(x).

(i) If S1 = Sz and F is S§;1C at « € [a,b] then F is (S1;82)C at x;

(ii) Suppose that Sy = S is filtering on [a,b]. Then §1C = (S1;82)C on
[a,b].

(iii) F1 € (81;82)C (resp. (S81;82)C;) on la,c] and Fy € (S1;82)C (resp.
(81;82)C;) on [c,b] if and only if F is (S1;82)C (resp. (S1;82)C;) on
[a, b].

(z'v) (Sl;SQ)C C (Sl;SQ)Ci n (Sl;SQ)Cd on [a,b].
(U) BinN (Sl;SQ)Ci Cc D_B; on [a,b].
(Ui) BN (81;82)C C Bin (81;82)61' n (Sl;Sg)Cd C DBy on [a,b].

(vii) Suppose that Sy is SE -filtering on [a,b) and Sy is S5 -filtering on (a,b).
Then on [a,b] we have
o (S81;82)Ci + (81582)Ci C (8%;85)Cis
. (Bl N (81; SQ)CZ) + (Bl N (81,52)61) C BN (SOJ;,S;O)CIL = D_By;
e (81;8:2)C + (81;82)C C (8L:;83)C;
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° (Blﬂ(Sl;SQ)C)-‘y-(Blﬂ(Sl;SQ)C) - Blﬂ(8+~8_)C = DB;.

[ooh} o0

PROOF. See Theorem 2.5.1, (i), (iv) of [1] and Remark 2.3, (iii). O

Lemma 2.3. Let F : [a,b] — R. If F € [ACG] N (8%;85)Ci on [a,b] and

F, (x) > 0a.e. on [a,b] then F is increasing on [a,b].

PrROOF. We have [ACG] C [VBG] C Ty (see Theorem 2.11.1, (vi) and The-
orem 2.18.9 of [1]) and [ACG] C N~ (see for example Theorem 2.20.1 and
Lemma 2.21.1 of [1]). Let @ be a perfect subset of [a,b]. Since F' € [V BG],
there exists a portion (a,8) N Q # O of @ such that F € VB on it (see
Theorem 1.9.1, (ii) of [1]). Then F/q is continuous nearly everywhere on
(o, 3) N @, hence F' € By on [a,b] (see Theorem 2.2.1 of [1]). By Lemma
22, F e D_BiT, NN~ on [a,b]. Now Corollary 4.3.1. of [1] completes our
proof. O

Corollary 2.1. Let F : [a,b] — R. If F € [ACG] N (8L£;8,)C on [a,b] and

F, (x) =0a.e. on [a,b] then F is constant on [a,b].

3 Examples of Local Systems

We recall the following local systems.
o S ={S}(x)}ser, where S)f(z) = {U : U is a right neighborhood of x}.
o S, = {8, (z)}zer, where S; (z) = {U : U is a left neighborhood of x}.
o St =1{S5 (2)}ser, where S} (z) ={S : z € S and d'. (S;z) = 1}.
o S, =1{S.,(2)}oer, where Sy (z) ={S : z € S and d’_(S;z) = 1}.

o For a € (0,1) let S& = {81 (x)}rer, where SF(z) = {S : z € S and
d'\ (S;z) = a}.

e For o € (0,1) let S, = {S, () }zer, where S, (z) = {S : =z € S and

' (S;z) > a}.
o Stoo =18} 0.0(®)}ecr, where S () = {A : z € A and there is a

measurable set E C A such that d*(E,z) =1 and dy(FE,z) > 0};

® Spoo = 1Sp00(T)}zer, where o () = {A : x € A and there is a

S
measurable set F C A such that d~(F,z) =1 and d_(E, z) > 0};
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o St = {8 o(x)}acr, where S (z) = {A : 2 € A and there is a
measurable set £ C A such that EN P € Sf_ _(x) whenever P is a

n pro,o
measurable set in S, (7);

b 81;"0 - { pro( )}-TG]Rv where SpT‘O o( ) =
measurable set £ C A such that EN P

measurable set in S, ,();

{A : z € A and there is a
S

Spro,0(T) Whenever P is a

(Here di and d' are the interior right respectively left densities of the set S
at x.)

Remark 3.1. The local systems S, S;°, S, S, ST and S, were defined

ap’ Cap’
by Thomson in [21, pp. 18, 22]. The local systems S} ., So.0 0, St and

pro,o’ “pro,0r Cpro

S, were used by Filipczak in [3] (p. 172; with different names), who gives

pro

credit for their introduction to Sarkhel and De. In fact in Sarkhel and De’s
terminology [18, pp. 30-32], a set A € S;f,(2) if and only if z € A and R\ A
is sparse at x on the right.

Remark 3.2. With the above notations we have:
(i) The local systems S, S;°, SF, and S, are filtering.
(i) If a > 1 then S is ST -filtering, and S; is Sx_-filtering.
(i) (85:87)C=C,
)

(iv) (S} ap) Sap)C = Cap, where C,, denotes the class of approximately contin-

uous functions.

(v) S and S,,, are filtering. (Indeed. Let P be a measurable set in
Shro.0(T), and let Ay, Ay € S, (x), A= A1NAy. Thenx € A and there

exists E; measurable, E; C A; such that BE; NP € Sf, (x), i = 1,2.

Let E = Ey N Ey. Then ENP = E;N(ExNP) e S, (x). Hence
A€ S,(x).)

(Vi) (803 Spro)C = Cpro, Where Cpro is the proximal continuity introduced
by Sarkhel and De in [18].

4 A Fundamental Lemma

Lemma 4.1. Let P be a perfect nowhere dense subset of [a,b], a,b € P, and
let § : P — (0,400). Then there exists a finite set A = {([y,z];z) : = €
{y,z} C P, x is a limit point of [y,z] N P and [y, z] C (z — 6(z),z + 6(x))},
such that U([y,z],:c)E.A[yv z] 2 P.
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PrOOF. Let {(a;,b;)}, i = 1,00 be the intervals contiguous to P, and let
N : [a,b] — (0, +00),

o(x) , if xzeP\UX{a;b}
n(x) = min{bigai,é(:r)} , if x€{a;bi} , 1=1,00
min{%,bi%} , if oz € (a,b;) , 1=1,00.

Let 7 be a n-fine partition of [a,b] (i.e., a = 2, < z1 < ... < x, = b and
t; € [wi—1, ;) C (t; —n(t;), t; + ni(t;)); that such a partition exists follows for
example by [1, p. 87). Let my = {(I,z) €7 : x € P} and mo = {(I,z) € 7 :
x ¢ P}. Clearly m = my Umg. If (I,2) € my then o ¢ P. Then there exists
some ¢ such that « € (a;,b;), hence z € I C (z —n(z),z +n(z)) C (a;,b;). It
follows that

U(I,E)EMI O P. (1)

Let (I,z) € m and let [y, z] be the smallest closed interval that contains 7N P.
We have three situations:

1) Suppose that z € P\ U2 {a;,b;}. Then z,y,z € Pand y < z < z. If
x € {y, z} then x is a limit point of [y, z] N P, and if « € (y, z) then [y,z] N P
and [z, z] N P have z as a limit point.

2) Suppose that 2 = a; for some i¢. Then z = a; and [y, a;] N P has a; as a
limit point.

3) Suppose that z = b; for some 7. Then y = b; and [b;, z] N P has b; as a
limit point.

By 1), 2), 3) and (1) it follows that there exists a finite set .4 with the
required properties. O]

Definition 4.1. Let Z be a real set.

e Let Pz be the collection of all sequences {Z,}, of sets whose union is
Z. If in addition each Z, is closed then we denote this collection by P .

o Let {Z,}, € Pz and 6, : Z,, — (0, +00). Let 8= B({Z,},{dn}) denote
the collection of all tag intervals ([z,y],t), t € {x,y} C Z, such that
x,y € Zp and y—x < 0, (t) whenever t € Z,. Let’s denote the collection
of all 3 by Bz. If the collection Py is replaced by Pz then we denote
this collection by Bz. (The collection Br was defined by Thomson in
[20, p. 115], but he called it C).

e Let B, denote the collection of all Bz, with |Z| = 0.
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e Let 3 € By for some real set Z, and let @ = {(Ix,tx)}}"; be a finite
subset of 8. m is said to be a (-partial partition of Z if the intervals
{Ix}x are nonoverlapping.

Definition 4.2. Let P be a real set. We denote by

o Ist(P)={z € P : xis aright isolated point of P};

o [s—(P)={x € P : zis aleft isolated point of P};

o [s(P)=1IsT(P)UIs (P).
Let {P,}, be a sequence of real sets. We denote by

o Ist({Pn}) = UpL 5™ (Po);

o Is~({Pn}) = UptiIs™ (P);

o Is({P,}) = U2 Is(P,) (this set is countable, see [15, p. 260]).
Definition 4.3. Let {P,}, € 5[%17] and let 0, : P, — (0,400). Let S =

{S1(x)}zer be a local system such that §; < SE on [a,b], and let So =
{S2(x)}zer be a local system such that S < S on [a,b]. For each z €
S

Ist (P, Nla,b)) let 03(57)1 € Si(x), and for each x € I's~ (P, N (a,b]) let Jg(f,)l
82 ({)3)
(i) Let o = a({P,},{0n}, 09(5{7)1, 02221) denote the collection of all tag intervals
([x,y],t), t € {z,y} C [a,b] such that:
e Fort=x¢ P,

* y € (t,t + d,(t)) N P, whenever t is a right accumulation point
for Py,;

x Yy € 0,5}73 whenever t € Is*(P, Na,b));
e Fort=ye€ P,

* ¢ € (t — 0,(t),t) N P, whenever ¢ is a left accumulation point
for Py;
*x X € O'Eiz whenever ¢ € Is~ (P, N (a,b]).

(ii) We denote the collection of all o by A(Pjq4); S1;S2)

(iii) Let A be a real set such that A D Is({P,}). Let a§1) € S1(t), with t €
ANla,b), and let 0752) € Sy(t), with t € AN(a,b]. Let B4 = ﬁA(at(l), 0,52))
denote the collection of all tag intervals ([x,y],t), t € {z,y} C [a,b] such
that:
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erx=tandy€ 0,51) whenever ¢ € AN [a, b);
e y=tandz € 0,52) whenever ¢t € AN (a, b].

(iv) We denote the collection of all B4 by B4(S1;S2).

(v) We denote by B(Pq4); S1,S2) = Blay) U(U{Ba(S1,S2) : Ais a countable
subset of [a,b] that contains I's({P,})}).

(vi) Let 8 € B(Pa,p; S1582) and let m = {(I, tx)}2, be a finite subset of
B. 7 is said to be a [-partial partition of [a,b] if the intervals {I}}
are nonoverlapping. If in addition U* I}, = [a, b] then 7 is said to be a
B-partition of [a, b].

Remark 4.1. With the notations of Definition 4.3 we have:
(i) B(Pja,); S1,82) D A(Plap); S1,S2).

(i1) Bia,p) UBrsp, 1) (ST S,) is the family PC, introduced by Henstock [21,
p. 115].
(iii) A(Pla,p); Sy Sapp) Was defined in [12]
Lemma 4.2 (Fundamental lemma). For each 8 € A(f[a’b]; S1;8s), there
exists a B-partition of [a,b] (see Definition 4.3). Particularly, the assertion is

true for every 8 € B(Plap); S15S2)

PROOF. We shall use the Romanovski Lemma (see for example [1, p. 10]). Let
A={(p,q) C (a,b) : [p1,q1] admits a G-partition whenever (p1,q1) C (p,q)}.

(i) If (p,q) € A and (q,r) € A then clearly (p,r) € A.

(ii) If (p,q) € A and (p1,41) C (p,q) then (p1,q1) € A (see the definition
of A.

(iii) Let (¢,d) C (a,b) such that (p,q) € A whenever [p,q] C (c,d). We
show that (c,d) € A. Let ¢ € P,. Let ¢1 € (¢,c+ dn(c)) NP, N (c,(c+d)/2)
if ¢ is a right accumulation point for P,, and let ¢; € ot N (c,(c+d)/2)
if ¢ is right isolated in [a,b) N P,. Then ([¢,¢1],¢) € B. Similarly we find
dy € ((¢+d)/2,d) such that ([d1,d],d) € 5. But (c1,d1) € A and [¢,d] =
[e,c1] U [er,dq] U [dy,d]. Therefore [c,d] admits a S-partition. Analogously we
obtain that [cg,ds] admits a S-partition, whenever (c2,ds) C (¢,d). Hence
(c,d) € A.

(iv) Let E C [a, b] be a perfect set such that all intervals contiguous to E are
contained in \A. We show that there exists (p,q) € A such that EN(p,q) # 0.
Since E = U2, (ENPFP,), by the Baire Category Theorem (see for example [1,
p. 10]) it follows that there exists a positive integer n and an interval (p, q)
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such that @ # (p,q) N E = (EN P,) N (p,q). We may suppose without loss
of generality that p,q € E and [p,q] N E is perfect. Applying Lemma 4.1 to
[p,q] N E and ¢,, there exists a finite set 7 = {([z,y],t) : ¢t € {z,y} C E,
t is a limit point of [z,y] N E, and {[z,y]} are nonoverlapping intervals }
and U((z,y].0ex(T,y] 2 E. Clearly 7 is a - partial partition of [a,b]. Since
» @) \ U([z,y],t)ex |2, y] consists of a finite number of intervals contiguous to E,
it follows that [p, ¢] admits a (- partition. Similarly it follows that each [p1, ¢1]
admits such a partition, whenever (p1,q1) C (p,q). Therefore (p,q) € A.
By (i)-(iv) and the Romanovski Lemma, it follows that (a,b) € A.
The second part follows by Remark 4.1, (i). O

Remark 4.2. Lemma 4.2 generalizes a result of Henstock [7, p. 56] as well
as Theorem 3.1 of Lee and Soedijono [12, p. 265].

5 A Characterization of ACG N C on a Real Compact Set

Definition 5.1. Let F': [a,b] — R and P C [a,b]. F is said to be Ng, on P if
it has the following property: for every e > 0 and every Z C P, |Z| = 0, there
exists a 3 = B({Z;},{d;}) € Bz € B,, such that } |F(y) — F(x)] <e,
whenever 7 is a B-partial partition of Z.

[z.y],t)em

Lemma 5.1. Let F1,F5: [a,b] = R and P C [a,b]. If F1,F> € N, on P and
a1, 00 € R then a1 Fy + axFy € N, on P.

ProOF. Clearly a1 Fy and asFs are N, on P, so it is sufficient to prove that
Fy+F, € Ng,on P. Let e >0and Z C P, |Z| =0. Since Fy, € N, k =

1,2, there exists B = 5k({Zi(k)}, {5§k)}) € Bz such that 3, 1 pyer [Fr(y) —
Fy(z)| < €/2, whenever 7 is a G-partial partition of Z. Let Z;; = z8n Z](2).

Then {Z;;}i; € Pz. Let &5 : Zi; — (0,00), 6;5(x) = min{éi(l)(x),éf)(x)}.
Then 5 = 3({Zi;},{di;}) € Bz. Let m be a B-partial partition of Z. Clearly ©
is also a (31 and a (>-partial partition of Z. It follows that Z([z,y])t)er [(Fy +
F)(y) — (F1 + FB2)(@)] < X (ypen 1Y) = FL@)] + X yy0ex [F2(4) —
Fy(z)| < e. Therefore Fy + F5 € N, on P. O

Lemma 5.2. Let F': [a,b] — R and Z C [a,b] such that |Z] = 0. If F € VBG
on Z and |F(Z)| > 0 then there exists Z, C Z such that F is bounded and
strictly monotone on Z,, and |F(Z,)| > 0.

PROOF. Since |F(Z)| > 0 and F € VBG on Z it follows that Z = U2, A;,
such that F' € VB on each A; and |F(A;)| > 0 for at least one A;. Therefore
we may suppose without loss of generality that F' € VB on Z. Let
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A={z€eZ: (F/Z)/(m) exists and is finite};
B={zeZ: (F/Z)/(x) does not exist, finite or infinite};
C={xeZ: (Fyz) (x)=+oco}.

Clearly Z = AUBUC. Let F : [a,b] — R such that F € VB on [a,b] and
F = F on Z (this is possible, see for example [1, p. 42]). Then F' (z) does not
exist on B. By Theorem 7.2 of [15, p. 230], |F(B)| = 0. (That |F(B)| =0
follows also directly from Theorem 4.4 of [15, p. 223].)

We show that F' is LG on A (a function F' is said to be LG on a set A if
A = U,A, and F is Lipschitz on each A, see [1]). Let 4, = {& € A :
\(F/Z)/(as)| < n}. Then A =U52,A,. For x € A, there exists (z) > 0 such
that |(F(y) — F(z))/(y—z)| < n, whenever y # z, y € ZN(x—0(z),z+(x)).
Let A, ; ={z €A, : 6(z) >1/j}and A, ;1 = A, ;N[a+ (k—1)/j,a+k/j],
j=12,..,k=0,£1,£2,.... Then A4, = U;(UsAd, k) Iz <y, z,y €
A jrthen 0 <y—2 < 1/j <min{é(z),d(y)}. It follows that |F(y) — F(z)| <
n - |y — x|, hence F is Lipschitz on A, ;. Therefore F'is LG on A. Since
LG C (N) (see for example Corollary 2.32.1, (iv) of [1]) and |A| = 0, it follows
that |F(A)| = 0.

But F(Z) = F(A) U F(B) U F(C), hence |F(C)| = |F(Z)| > 0. We may
suppose without loss of generality that C = {z € Z : (F/Z)/ = +o00}. Let
0 : C — (0,400) such that (F(y) — F(z))/(y —z) > 1, whenever y # z and
yeZN(x—9(x),z+6(x)). Let

Ci={zeC:dx)>1/i},i=1,2,..;
Ciy=Cinla+ (j—1)/i,a+j/il,i=12.,5=0%1,42 ..

Then C = U;C; = U; Uj C” Let x,y € C@j, r <. Then y—x < l/i <
min{d(z),d(y)}. It follows that F(y) — F(x) >y —x > 0, hence F is strictly
increasing on Cj;. Since F(C) = U2, U§‘:1 F(C;;) and |F(C)| > 0, it follows
that there exists some C;; such that |F'(C;;)| > 0. Let’s denote this C;; by
Z,. Since F'is VB on Z, C Z, F is bounded on Z,. Thus Z, has the required
properties. O

Theorem 5.1. Let F : [a,b] — R and P C [a,b]. If F is Ng, on P and
Z C P, |Z| =0 then

(i) F is VBG on Z;

(i) |F(Z)| =0, hence Ng, C (N).
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Proor. (i) Fore=1let 8 = B({Z;},{d:}) € Bz besuchthat 3, 1 yex [F(Y)
—F(x)| < 1 whenever 7 is a [-partial partition of Z. Let Z; ; = {x € Z; :
(5,(1’) > 1/]} and Zi,j,k = Zi,j N [a—l— (kj - 1)/j,a + k‘/]], ji=12..,k=
O, :|:1, ZEQ, .... Then Zz = UjZi,j = Uj(UkZi,j,k)~ Let {[057“671]}7 n = 1, 2, -
be a finite set of nonoverlapping closed intervals, with endpoints in Z; ; . Since
0 < Bn—ap <1/j <min{d;(an),d:(Bn)}, it follows that ([an, Bn], o) € 5,
hence Y P _ | |F(B,) — F(aw)| < 1. Therefore F is VBG on the set Z.

(ii) Suppose on the contrary that |F(Z)| > 0. By (i) and Lemma 5.2,
it follows that there exists Z, C Z such that F is strictly increasing (for
example) and bounded on Z,, and |F(Z,)| > 0. Let e = |F(Z,)|. For €/4 there
exists a 8 = B({Zi},{di}) € Bz, such that 3, 1 e [F(y) — F(z)] < €/4,
whenever 7 is a f-partial partition of Z,. Since F' is VB on Z,, it follows that
F)z, is continuous nearly everywhere on Z,. We may suppose without loss of
generality that Fz is continuous on Z, (because |F(Z,)| > 0). Since each
Z; contains countable many isolated points of Z; (see [15, p. 260]), we may
suppose without loss of generality that Z; contains no isolated points of Z;.
Let Y1 = Z1, Y1 = Z; \ (UjZ1Z;), i > 2. Then Z, = U2 Y; and V;, NY;, =0
for i1 # i9. Let t € Z,. Then there exists an unique 4 such that ¢t € Y;. Let

Ai = {{F(t), F(2)) } ((t.0),0)€8(Z1.60)

tey;
and A = {(F(z), F(y)}}“x’y)’x)w. Then A is a Vitali cover for F'(Z,) (indeed:
if z, € Z, then x € Z; for some 4, and for each

Yy E ((w —8i(z),z + 6;(2)) N Zi> \{z}#0

we have (F(z),F(y)) € A, F(x) # F(y); if y — z then F(y) — F(x)). Let
m C (8 be a finite subset such that

3

S 1FW) - F@) > SIF(Z)
(z,y),z)€m

and {(F(z), F(¥))}((z,y),2)ex contains only pairwise disjoint closed intervals
(by Vitali’s Covering Theorem — see for example [1, p. 10]). Since F' is strictly
increasing, m is a partition, so

SRz < Y IFW) - F@) < § = 1Pz,

(z,y),z)em

a contradiction. O
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Lemma 5.3. ([1, p. 12]) Let P be a closed subset of [a,b] and let F € C on
P. The following assertions are equivalent:

(i) F € VBG on P;

(i1) For every closed subset S of P there exists (o, 3) NS # O such that F is
VB on (a, ).

(iii) F € VBG on Z whenever Z C P and |Z| = 0.
Remark 5.1. (i) < (ii) in Lemma 5.3 follows also by [15, p. 223].

Lemma 5.4. Let F : [a,b] — R and P C [a,b]. If F € ACG on P then
F e Ng, on P.

PROOF. Let € > 0 and Z C P, |Z| = 0. Since F is ACG on P, F is ACG
on Z too. So there exists a sequence of sets {Z;}; such that Z = U$°, Z; and
F is AC on each Z;. For ¢/2¢ let n; > 0 be given by the fact that F is AC
on Z;, and let G; be an open set such that Z; C G; and |G;| < n;. Further,
let d; : Z; — (0,400) such that (z — d§;(x),x + d;(x)) C G, for every x € Z;;
let 8 = B({Z;},{d;}) and let m be a S-partial partition of Z. We denote by
m = {([z,y],t) € 7 : t € Z;}. Clearly x,y € Z; and [z,y] C G;, whenever
([x,y],t) € m;. It follows that

oo 00
€
Yo Fw-F@l=) Y, F@)-F@|<) 5=c
([zyl,t)em i=1 ([z,y],t)em; i=1

hence F' € N, on P. O

Theorem 5.2. Let P be a closed subset of [a,b] and let F € C on P. The
following assertions are equivalent:

(i) F € ACG on P;
(ii) F € Ng, on P.

PROOF. (i) = (ii) See Lemma 5.4

(ii) = (i) By Theorem 5.1, F'is (N) on P, and F'is VBG on every Z C P,
with |Z] = 0. By Lemma 5.3, it follows that F' is VBG on P. Therefore
FeVBGN(N)NC=ACGNC (see for example [1, p. 75]). O
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6 The Lusin Type [$:S52D] Integral

Definition 6.1. Let S; = {S1(z)}zer be a local system ST -filtering on [a, b),
and let Sy = {S2(x)}rer be a local system S -filtering on (a,b]. Let f :
[a,b] — R. fissaid to be [S;SeD]-integrable on [a, b], if there exists F : [a, b] —
R such that F is (S;;S2)C on [a, b] F € [ACG] on [a,b] and F,,(z) = f(z)a.c.
on [a,b]. We write [S1S2D] [ f(t) F(x) — F(a).

Lemma 6.1. The [S1S2D]-integral is well defined.
PROOF. Let F.G : [a,b] — R, F,G € [ACG] N (81;52)C on [a,b] such that

F(;p(x) =G, o) = f(z) a.e. on [a,b]. Then (F — G);p(x) = 0 a.e. on [a,b]
and FF—G € [ACG] N(8%;85)C on [a,b]. By Corollary 2.1, F — G is constant
on [a,b]. O

Remark 6.1. We have the following special cases for the [S;S>D]-integral:

e The [S}S, DJ-integral is in fact the wide Denjoy integral D. Therefore
any [S1S2D]-integral contains the D-integral.

e The [S},S,, Dl-integral is in fact the G-Ridder integral (that is also called

by Kubota the AD integral, see [14], [8]).

e For o, 3 € (1/2,1) we obtain the [S;Y“SED]—integral, that seems to be
new.

e The [S}. S, D]-integral is strictly contained in many of the integrals

pro=—pro

studied by Sarkhel, De and Kar in [18], [16], [17], [19].

Lemma 6.2. Let f : [a,b] — R be [S1SoD]-integrable on [a,b], and let ¢ €
(a,b). Then f is [S1S2D]-integrable on both [a,c] and [c,b], and we have

b c b
m&m/fMﬁ:m&m/fmﬁ+m&m/fMﬁ (2)

PROOF. Let F(z) = [$18:D f f(t) dt and let
F:la,c] = R, Fi(z) = F(z) if x € [a,c];
Fy:[e,b] = R, Fa(x) = F(z) if ¢ € [¢,b].

By Lemma 2.2, Fi,Fy € (S81;82)C on [a,c] respectively [c,b]. Then f is
[S1S82D]-integrable on [a, c] and on [c, b], and we have

[5:8:D] [ f(t) Fi(c) = Fi(a) = F(c) — F(a);
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[5185D)] [° f(t) dt = Fy(b) — Fa(c) = F(b) — F(c).
Now (2) follows immediately. O

Lemma 6.3. Let f : [a,b] — R be [S1S2D]-integrable on [a,c] and on [c,b],
where ¢ € (a,b). Then f is [S1S2D]-integrable on [a,b] and

[S182D] /bf(t) dt = [§182D] /Cf(t) dt + [§:82D] /bf(t) dt (3)

PROOF. Let F} : [a,d] — R, Fy € [ACG]N(S182)C such that (F1),,(z) = f(z)
a.e.on [a,c]. Let Fy : [¢,b] = R, F5 € [ACG] N (8182)C such that (Fg);p(l‘) =
f(x) a.e. on [¢,b]. Let F : [a,b] — R,

Fla) = { Fi(x) , € la,d
F2($)+F1(C)—F2(C) , T € [C,b}

Then F € [ACG] N (81;82)C on [a, b] (see Lemma 2.2) and F;p(x) = f(x) a.e.
on [a,b]. Hence f is [S1S2D]-integrable on [a, b] and we have (3). O

Lemma 6.4. Let fi, f> : [a,b] — R be [S1S2D]-integrable on [a,b], and let
ay,az € R If Sy is filtering on [a,b) and Sy is ﬁltemng on (a,b], then ay f1 +
g foy is [818227] integrable on [a,b] and [SngD] f (a1f1 + aofo)(t)dt = ay -

(515D f J1(t) dt + g - [5152D f fa(t)

PROOF. Since f; and fo are [S;SyD]-integrable on [a,b], there exist Fy, Fy :
[a, b] — R, belonging to [ACG]N(S1; S2)C on [a, b], such that (F1),,(z) = fi(z)
and (Fg);p(:n) = fa(z) a.e. on [a,b]. Clearly (a1 Fy + agFg);p(x) =a1fi(z) +
asfa(x) a.e. on [a,b], and a1 Fy + asFy € [ACG] on [a,b]. Then oy Fy + aoFy
is left S1C on (a,b] (since S; is filtering on (a,b]) and a1 Fy + aoFy is right
S2C on (a,b] (since Sy is filtering on [a,b)). By Lemma 2.1 it follows that
a1 F1 + asFy is (Sl,Sg)C on [a,b]. Thus a;f1 + asfs is [S1S2D]-integrable
on [a,b] and [S185:D] f (a1f1 + azfo)(t)dt = (alFl + aze)(b) = (aFy +

axFy)(a) = ay - [S152D f Ji(t) dt + oz - [S152D f fa(t) O
7 The Riemann Type [5;S2R] Integral
Definition 7.1. Let §; = {S1(z)}zcr be a local system St -filtering on [a, b),

and let Sy = {S2(2)}rer be a local system S -filtering on (a,b]. Let f :
[a,b] — R. f is said to be [S1S2R] integrable on [a, b], if there is a real number



68 VASILE ENE

I with the following property: for every € > 0 there exists 3 = B({ X}, {d:}) €
Bla,5 such that for every countable set A with A O Is({X;}) there exists

Ba = BA(% ,ag)) € B4(S1,82) so that |s(f,m) — I| < €¢/2 whenever 7 is a
(B U B4)-partition of [a, b].

Theorem 7.1. The number I in Definition 7.1 is unique, and we denote it
by [S1SoR] [F f(t)dt

PROOF. Suppose that there exist two numbers I; and I as in Definition 7.1.
For e > 0 and Iy, k = 1,2 let B = ﬁk({Xi(k)},{éi(k)}) be given by Defini-
tion 7.1. For A = Is({Xi(l)}) U Is({Xi(Z)}) let
85 = B3 (01, 0l) € Ba(81:82),
k = 1,2 be given by Definition 7.1. We define
o oV =M o e St (2);

Oz
o ol =" NP e S (a);
o 81y XiNX; — (0,400), ;j(z) = min{6" (), 6% (x)};
o B3 =Bs({XY N X}, {61;}) € Bawy;
o Ba=pa(0t", 0t?) € B(SL;S%);
e 8= (3U Ba;

By Lemma 4.2 there exists 7, an S-partition of [a,b]. Clearly 7 is also a
(Br U ﬂz(f))—partition of [a,b], k = 1,2. It follows that |s(f,7) — Ix| < e,
k =1,2, hence |I; — I5] < 2e. Since € is arbitrary we obtain that Iy = I,. O

Lemma 7.1. Let fi, fo : [a,b] — R be [S1SaR]-integrable on [a,b], and let
a1, € R, If 8 is filtering on [a,b) and Sy is ﬁltering on (a,b], then aq f1 +
Qs fo is [815273}— integrable on |[a, b] and [8182R] f (a1 f1 + agfo)(t)dt = aq -
81827?, f f1 dt—|—0&2 8182R f f2

PRrROOF. Let I = [§1SR f fit)dt and J = [S1S2R f f2(t)dt. Suppose that
aq,as # 0 and let € > 0.

For e/(2]|az|) let 81 = 51({X1‘(1)}) {51-(1)}) € By, be given by the fact that f;
is [S1S2R]-integrable on [a, b].
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For e/(2]a1|) let B2 = gl({Xi(Z)}, {(51-(2)}) € By, be given by the fact that f;
is [S1S2R]-integrable on [a, b].

Let X;; = X\ N X%, Then {Xi;};j € Play)-

Let 0y : Xij — (0,+00), &;(z) = min{6," (), 61" (x)}.

Let 8= B({Xi;},{0ij}) € Bia-

Clearly Is({X;;}) contains both, Is({Xi(l)}) and Is({XJ(.Q)}).
Let A be a countable subset of [a,b] that contains Is({X;;}).

For €/(2]|asl), let @(41) = ﬁg)(ag(cl’l),ag(cl’z)) € B4(81;82) be given by the fact
that f is [S1S2R]-integrable on [a, b].

For €/(2]|a1]), let @(42) = [31(42)(0;2’1), 03(02’2)) € B4(S1;S2) be given by the fact
that fa is [S1S2R]-integrable on [a, b].

Let o’il) = 09’1) N 09(52’1). Since & is filtering, ag(gl) € S1(x).

Let 03(02) = 03(01’2) N 03(3272). Since S is filtering, Ug) € Sy(x).
Let Ba = Ba(0t),0%) € Ba(S1;S2).

Let m be a (8 U 4)-partition of [a,b]. Then 7 is also a (81 U ﬁi\l))-partition
and a (02 U ﬂf))—partition of [a,b]. Then |s(ay f1 + asfo;m) — (ar] + axJ)| <
laa|-|s(fr;m) = I|+]|az|-|s(fa;m)—J| < €/2 + €/2 = €. Therefore ayI+asd =
[S1S2R] f:(alfl + az fo)(t)dt. 0

Lemma 7.2 (A Cauchy criterion). Let S = {S1(z)}zer be a local system
ST -filtering on [a,b), and let So = {Sa(x)}rer be a local system S -filtering
n (a,b]. Let f : [a,b] — R. The following assertions are equivalent:

(i) f is [S1S2R]-integrable on [a,b].

(i) For € > 0 there exists § = B({Xi},{0;}) € Blap (depending on €)
and for every pair of countable subsets Ay and Ay of [a,b] there exist
Ba, = Ba, (U;k’l),agk’z)) € Ba,(81;82) (depending only on €), such that
|s(f,m1) — s(f,m2)| < €, whenever my is a (6 U Ba,)-partition of [a,b],
k=1,2.
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PRrROOF. (i) = (ii) This is obvious.

(ii) = (i) For e = 1/k, k = 2, t00, let B = B({X}, {6%}) be given
by (ii). Let Ay = Is({XZ-(k)}). Forn >m > 2let Ay, ,, = AmUAnUIS({Xi(m) N
X;n)}). By (ii), for €, and the pair of sets A,, and A,,,, there exist

Ba,. = Ba, (0™, 0l™)) € Ba, (S1;8s)

and

By =B (olmn D o1y e By (81;8))

such that |s(f,7m1) — s(f, m2)| < € whenever 7 is a (5, U f4,, )-partition for
[a,b] and 7 is a (B, U ﬁglr)n _)-partition of [a, b].

Again by (ii), for €, and the pair of sets A, and Ay n, there exist B4, =
Ba, (ag(c"’”,a;”’”) € Ba, (81;82) and 61(4271 o= 542) ”(ag(cm’n’Q’l),U&m’n’z’m) €
Ba,, ., (S1;82) such that |s(f,71) —s(f, 772)[ < €p whenever 7 isa (B,ULBa,)-

partition for [a,b] and 72 is a (8, U 61(42; _)-partition of [a,b]. Let

g X ™ N X (0, +00), 67" (z) = min{s{™ (), 61" (2)};

i, %
6m,n = ﬁm,n({Xz(m) n Xj(n)}a {51(77_7,71)}) € B[a,b];
o_a(cm,n,l) _ O_;m,n,l,l) N O_;m,n,Q,l);

o) plmnl,2) o (mon,2.2),

fj’lm _ ij’l," (Uim,n,1)7o_§cm,n,2)> cB

ﬂ = ﬂm,n U Bffin

(SL:8%);

m,n

By Lemma 4.2 there exists 7 a S-partition of [a, b]. But 7 is also a G, Uﬁf:yl -

partition and a (8, U ﬁfin)—partition of [a,b]. Let m, be a (B U Ba,, )-
partition of [a, b] and let 7, be a (8, UB4, )-partition of [a,b]. Then |s(f, m,)—
s(f,m)| < e€m and |s(f, mn)—s(f, )| < €. It follows that [s(f, mm)—s(f, m)| <
1/m + 1/n < 2/m = 2¢,,. Therefore {s(f, mm)}m is a Cauchy sequence. Let’s
denote its limit by I. Then |s(f,mm) — I| < 2€,. Let € > 0 and m > 2 such
that 3/m < e. Let A be a countable subset of [a,b]. Then there exists S4 =
ﬂA(ag(gl),ag(pz)) € Ba(81;82) such that |s(f,7) — s(f, mm)| < 1/m whenever 7 is
a (B U Ba)-partition of [a,b]. It follows that |s(f,7) —I| < 1/m + 2/m <e.
Therefore f is (S1S2R)- integrable on [a, b]. O
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Lemma 7.3. Let S; = {S1(x)}zer be a local system ST -filtering on [a,b), and
let So = {S2(x) }rer be a local system S -filtering on (a,b]. Let f : [a,b] — R.

(1) If a < ¢ < b and f is [S1S2R]-integrable on [a,c] and on [c,b] then f is
[S1S2R]-integrable on [a,b] and we have

[S182R] [£ f(t)dt + (18R] [ f(t) dt = [S1S2R] [ f(t) dt.

(i) Ifa <c<d<band f is [S1S2R]-integrable on [a,b] then f is [S1S2R]-
integrable on [c, d).

PROOF. (i) Let I = [$18,R] [ f(t) dt and I = [$,8,R] [ f(¢) dt.
Consider € > 0.

For £ and I let B0 = BOUXD} {5V}) € Bla.g be given by Def. 7.1,

o

For § and I let B = ﬂ(Q)({Xl-(z)}, {652)}) € By, be given by Def. 7.1.

Let AM =Is({X{V}) and A® =Is({x*}).

Note that c € AN N A3, {Xi(l),XJ(-Q)}i,j € Pla,p) and s({x"M}u {X](-2)}) =
AM Yy A®@)

Let A be a countable subset of [a, b].

Let Ay = AM U (ANa,c]) and Ay = A@ U (AN e, b)).

Clearly A®) C A; and A® C A,. By Definition 7.1, for €/2 and Ay, k = 1,2
there exists 84, = [, (Ug(gk’l)mg(ck’m) € Ba, (S1;8Ss) such that |s(f,7) —IM| <
¢/2 whenever 7 is a (31 U B4, )-partition of [a,c], and |s(f,7) — I?)| < ¢/2
whenever 7 is a (32 U 34, )-partition of [c,b]. Let (551)* : Xi(l) — (0, +00) and
55—2)* : X](-Z) — (0, +00) be defined as follows:

5(1)*(33) B min{égl)(x), c—z} ifx<c
‘ B min{éi(l)(c),c —a} fz=c

5(2)*(96) _ min{5](-2) (x),c—z} fz>c
J min{(Sj(.l)(c), b—c} ifz=c
Let

1) oY n 2z —¢,c) € S1(x) ifz €la,c)N A
o =
v oY e 8 (x) if 2 € [e,b) N Ay
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5@ _ o e Sa(x) if € (a,c]N Ay
‘ o N (¢,22 —c) € Sa(x) if € (¢, ] N Az

Let Ba = Ba(0$",0%?) C Ba, U Ba,;

Let {X, }1 be a relabeling of the set {Xi(l)}i U {X]@)}j;

Let &, : X, — (0,+00), &, = 0\V* if X, = X", and 0, = 67" if X, = X*)
Bo = Bo{ X}, {6, }) € B L B,

6:60U6A~

Let m be a B-partition of [a,b]. Let ([x,y],t) € . If t < ¢ then y < ¢, and if
t > c then x > c. It follows that

C= U([z,g],t)eﬂ[ac,y] C[a,c¢) and D = U([ze]’t)eﬂ[x,y] C (e, b].
<c >c

Let . = supC and y. = inf D. We observe that ([z.,c],¢) and ([c, yc], c)
belong to 8. Let my = {(I,t) € # : t < ¢} and my = {([,t) € ® : t > c}.
Then 7 is a (8 U B4, )-partition of [a,c] and my is a (3% U B4, )-partition
of [¢,b]. We have |s(f,7) — I) — I?)| = |s(f, m1) — IV + s(f,m2) — [?] <
s(f, 1) — IM| + |s(f, m2) — IP] < e. Tt follows that f is [S;SoR]-integrable
on [a,b] and [S1SoR] [7 () dt = I 4 [,

(ii) Let a < c < d < b.

For € > 0 let 3 = 3({Xi},{6:}) € B,y be given by Lemma 7.2.

Let 81 = B1({Xi N e, d]} {di/x,n(ea})-

Let A A be a pair of countable subsets of [c, d].

Let 83 = B3({X: N [a, ]}, {di /x,0[a,e })-

Let A3 be a countable subset of [a, ¢] such that A3z D Is({X; N [a,c]}).
Let B4 = Ba({Xi N [d, 01}, {0i/x,n[a,01})-

Clearly
B2L1UBsU By . (4)

Let A4 be a countable subset of [d, b] such that A4 D Is({X; N[d,b]}).

Let A; = ADUA3UA,UTs({X;N[e,d]}) and Ay = AGUA3U A, UTs({X;N
[¢,d]}) (both contain Is({X;}).
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For Ay, k = 1,2 let i € Si(z), © € [a,b) N Ay and o2 ¢ Sa(x),
x € (a,b]N Ak be given by Lemma 7.2.

Let Ba, = fa, (08", 0"?) € Ba, (81,82), k =1,2.
Let 84 = 81 (08", 0{"?) € Ba, (S1:82), k= 1,2.
Let 84 = 80 (081, 0?) € Ba,(S1582), k = 1,2.
Let oV = oV NPV € 8t if o € (A3 U Ay) \ {b}.
Let 0f2) = o' ol € 82, if v € (A3 U Ay) \ {a}.
Let Ba, = Bay (08,08 € Ba, (S%; 5%).

Let B4, = Ba, (i, o) € BA,(84:5%).

Let Bam = Bam (057, 08?) € By (81582), k= 1,2.
Clearly fa, 2 Bam UBY UBY, & =1,2.

Let 71 be a (81 U B4 )-partition of [c, d].

Let g be a (81 U B4 )-partition of [c, d].

By Lemma 4.2 there exists 3, a (83 U Ba,)-partition of [a,c]. Clearly 73 is
both, a (63 U ﬂgg) partition and a (83 U 51(423)) partition of [a, c].

By Lemma 4.2 there exists 74, a (84 U Ba,)-partition of [d,b]. Clearly m4 is
both, a (84U ﬂgﬁ)—partition and a (B4 U 51(424)) partition of [d, b].

Let 7%) = 1, Ums Umy, k = 1,2. Then 71 and 7(®) are (U B4, )-partitions
of [a,b] (see (4)).

‘We have

[s(f, 7)) = s(f,mP)| <€, hence |s(f,m) —s(f,m2)| <e.
By Lemma 7.2 it follows that f is [S1SaR]-integrable on [c, d]. O

Lemma 7.4 (A quasi Saks-Henstock lemma). Let S; ={S1(2)}zer be a local
system S -filtering on [a,b), and let So = {Sa(z)}zer be a local system S -
filtering on (a,b]. Let f : [a,b] — R be [S1S2R]-integrable on [a,b]. Let
F :la,b] = R, F(a) =0, F(z) = [SiSR] [ f(t)dt, x € (a,b]. For every
€ > 0 there exists # = B({Xi},{6:}) € Bla,p), such that
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(1) |s(f,m) — S(F,m)| < e, whenever 7 is a B-partial partition of [a,b].

(it) 3w tyen |[f Oy —2) = (F(y) — F(2))| < 2¢ whenever 7 is a 3-partial
partition of [a,b].

PROOF. Let e > 0. For § and F'(b) let 8 = B({X;},{d;}) be given by Definition
7.1. Let 7 be a (-partial partition of [a, b].
(i) Let (cg,dr), k = 1,2,...,n be the components of the open set (a,b) \

(Ur,pyerI). By Lemma 7.3 we have [S1SoR] fi’“ f@)ydt = F(dg) — F(cg).
For each k = 1,2,...,n let f(*) = ﬁ(’f)({Yj(k)}, {6§k)}) € B, ,a,) be given by
Definition 7.1. Let AK®) = Is({ﬁfj(k)}), k=1,2,...n and let A, = UzzlA(k) U
Is({X;}). By Definition 7.1 it follows that for ¢/(2n), A®) and B*) there
exists B4 = Baw (02 (k1) (kl 2)) € By (81;8,) such that [s(f, 7 )—(F(dy)—

F(er))| < €/(2n) whenever 7 is a (B partition of [cg, d], Where Br = R U

Baw . For €/2, A, and (3 there exists 84, = (4, (0z -1 50 2)) € Ba,(51;82)
such that |s(f, 7 ) — F(b)| < €/2 whenever 7 is a [,- partltlon of [a, b], where

Bo=p0UpBa,. Let
o) = 60D (618 € S8 () i 2 € A 1 ey do)s
o = o ol € S (2), if w € AW 1 (ox, dy].
Clearly {X; N Yj(k)}(i,j) € Pleyan)- Let

50 X Y ® s (0,400), 8 (x) < min{d;(x), 6 (2)};

J

ar = a({Xn Y}, 60 6D o)) € AP, 4,085 8%)-
Let 7*) be an ay-partition of [cx,di], k = 1,2,...,n (see Lemma 4.2). Then
7) is also a - partition and a [,-partition of [ck,dk]. Then m, = wU
(Ur_,7®)) is a S,- partition of [a,b]. Since F(b) = S(F,T,), it follows that
5(f.70) — S(F.m,)| < ¢/2. We have [s(f.m) — S(Fym)+ 37y (Fldh) ~ Flex) —
s(f,7™))| < €/2, hence |s(f, ) — S(F,7)| < e.

(ii) Let m = {([z,y],t) € 7 : f(t)(y —z) > F(y) — F(x)} and 7p =
{(Jx,y],t) e m : f(t)(y—x) < F(y)—F(x)}. Then 7 = m Umg. By (i) we have
SUf 1) —S(F,m)| < € and [s(f,m2)—S(F,ms)] < €. Thus 30 o1 en LF(E) (-
x)— (F(y) — F(2))] < e+ €= 2e.

Corollary 7.1. Let S; = {S1(x)}.er be a local system ST -filtering on [a,b),
and let So = {Sa2(x)}zer be a local system S -filtering on (a,b]. Let f :
[a,b] — R be [S1SaR]-integrable on [a,b]. Let F : [a,b] — R, F(a) = 0,
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F(z) = [$18R] [ f(t)dt, x € (a,b]. Then F € Np, on [a,b], hence F € (N)
on [a,b].

PROOF. Let € > 0 and Z C [a,b], |Z| = 0. By Lemma 5.4.5 of [1], there
exists 0 : Z — (0, 4o00) such that |s(f;7)| < €, whenever 7 is a McShane d-fine
partial partition (i.e., if ([x,y],t) € 7 then [z,y] C (t —3(¢),t+0(t)) ) of [a, ],
with all tags in Z. By Lemma 7.4, (i), there exists = B({X;}s, {0:}s) € Bla )
such that |s(f,7) — S(F,7)| < €, whenever 7 is a B-partial partition of [a, b].
Let Z; = ZN X; and let 67 : Z; — (0,+00), 07 (x) = min{d(x),d;(x)}. Let
Bo = Bo({Z;},{6r}) € Bz and let 7, be a [,-partial partition of Z. Then 7,
is also a [S-partial partition of [a,b]. It follows that |S(F,m,)| < |s(f,7) —
S(F, )| + |s(f,7)| < 2€¢ (see Lemma 7.4). O

Lemma 7.5. Let Sy = {Si(z)}zer be a local system ST -filtering on [a,b),
and let So = {Sa2(x)}zer be a local system S -filtering on (a,b]. Let f :
[a,b] — R be [S1S2R]-integrable on [a,b]. Let F : [a,b] — R, F(a) = 0,
F(z) = [SSR] [ f(t)dt, x € (a,b]. Then F(;p(x) = f(x) a.e. on [a,b].

PROOF. Let A = {z € (a,b) : there exists a(xz) > 0 with the following
property: for every n(x) > 0, with (z—n(z), z+n(z)) C (a,b), and for every D,
with d'(Dy, x) = 1, there exists y € D, N (x—n(x), z+n(x)) such that | F(y) —
Fx)—f(x)(y—=z)| > a(z)(y—=x)}. Let A, = {z € (a,b) : a(z) > 1/n}. Then
A =UX A,. By Lemma 7.4 (ii), for € > 0, there exists 3 = S({X;}, {d:}) €
Ba,p) such that Y eyper FW) = F(x) — f(t)(y — )| <, whenever 7 is a
B-partial partition of [a,b]. Let A4, ;, = {z € 4, N X, : d(X;,xz) < 1}. By
the Lebesgue Density Theorem (see for example [1, p. 10]) it follows that
|Ani| = 0. Let B, = A, \ (U2, A, ;). Clearly |A,| = |By|. If x € B, and
x € X; for some ¢ then d(X;,x) = 1 (indeed, if d(X;,z) # 1 then z € A, ;, a
contradiction). For §;(z) > n(z) > 0 with (z — n(z),x + n(z)) C (a,b), there
exists y € X; N (z — n(x), x + n(x)) such that |F(y) — F(z) — f(x)(y — )| >
(1/n)|ly — z|. If y > x then ([x,y],z) € § and if y < = then ([y,z],z) € 3. Let
A={[z,y] : z € B,N{z,y} and ([z,y],2) € B}. Then A is a Vitali cover
of B, hence by Vitali’s Covering Theorem (see for example [1, p. 11]) there
exists 7, a S-partial partition of [a, b] such that [By,| < €+, 1 e (y—2) <
€+ 1Yyl yen [F(Y) — Fz) — f(2)(y — 2)| < e+ ne. Since € is arbitrary,
it follows that |B,,| = 0, hence |A| = 0. Therefore F(;p(x) = f(x) on (a,b) \ A.
Thus F(;p = f a.e. on [a, b]. O

Lemma 7.6. Let f : [a,b] — R, f € [S1S2R]-integrable on [a,b], and let
F(z) = [$18R] [T f(t)dt, x € [a,b]. Then F € VBG on [a,b].
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PROOF. For € = 1let § = B({X;},{6i}) € Bl be given by Definition 7.1.
Clearly U2, X; = [a,b]. Let

Xij={zeX;:0(x)>0b—-0a)/j},i=12,..;

Xz‘jk:Xijﬂ[a+(k71)b;—.“,a+kb;—,“],kzl,?,...,j;

Xijkm = {SC € Xijk : |f(£l?)| < m}, m = 1,2,....

Clearly [a,b] = Ui jxmXijkm. Let {[an,bs]}, n = 1,2,...,p be a finite set
of nonoverlapping intervals with endpoints in X;;xm. Then ([an,bn],a,) € 8.
By Lemma 7.4, Y7 _ |f(ay)(by, — a,) — (F(b,) — F(a,))| < 2. It follows
that 3771 [F(bn) — Flan)l < 3201 [f(an)(bn — an) — (F(bn) — F(an))| +

b f(an)|(bp — an) <2+ m(b—a), hence F € VB on X;jky,. Therefore F
is also VBG on [a, b]. O

Remark 7.1. To prove Lemma 7.5 and Lemma 7.6 we have followed the
technique used by Lee and Soedijono in Theorem 4.2 of [12], and our proof is
based on a quasi Saks- Henstock type lemma, i.e., Lemma 7.4 (see Section 1).
But we do not know if either of the two integrals, the AH integral and the
[S182R]-integral, satisfy a Saks-Henstock type lemma.

8 The Ward Type [S;S:WV] Integral

Definition 8.1. Let &1 = {S1(z)}.cr be a local system SI-filtering on [a, b),
and let Sy = {Sa2(z)}zer be a local system S -filtering on (a,b]. Let f :
[a,b] — R.

e We define the following classes of majorants:
[S1SW|(f;]a,b]) = {M : [a,b] = R : M(a) = 0; M € (S1;82)C; on
[a, b]; there exists a 3 = B({X;},{6:}) € Bja,p such that M(y) — M (z) >
f(®)(y — ), whenever ([z,y],t) € 5.

o We define the following class of minorants:
[S18:W](f;[a,b]) = {m: [a,b] = R : —m € [SiSyW|(—f;[a,b])}.

o If [$1S:W](f;[a,b]) # 0 then we denote by J;(z) (or simply J(z)),
x € [a,b] the lower bound of all M(z), M € [S1:S2W](f;[a,b]).

o If [SiSoWI(f;]a,b]) # 0 then we denote by J;(x) (or simply J(z)),
x € [a, b] the upper bound of all m(z), m € [S1SaW](f; [a, b]).
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o If [S1SaW](f;a,b]) x [S1SaW](f;]a,b]) # 0 and J(b) = J(b) then f is

said to be [S;SaW]-integrable on [a,b]. In this case we write J(b) =
I(0) = [$182W] [, f(t) dt.
Lemma 8.1. Let §1 = {S1(2) }oer and Sz = {S2(x) }zer be local systems such
that S < 8E on [a,b) and So < S on (a,b]. Let F, f : [a,b] — R and let
A ={ay,a2,a—3,...} be a countable subset of (a,b). If F' € (S1;52)C; on [a,b]

then for e > 0, there exist f4 = ﬂA(ag(gl),Uf)) € Ba(851;82) and H : [a,b] — R
such that:

(i) H(a)=0; H(b) < ¢;
(i) H is increasing on [a,b];
(iii) (F+H)(z)—(F+H)(t) > f(t)(x—t) whenever z € [t,b)No ", t € {a}UA

and (F + H)(t) — (F + H)(z) > f(t)(t — z) whenever = € (a,t] No\”,
te {b}UA.

(iv) F+ H € (81;82)C; on [a,b].

Moreover, if F € (S1;82)C on [a,b] then |F(y) — F(x)— f(t)(y—2)| < H(y) —
H(x), whenever([z,y],t) € ﬂA(U;), O’;E;Q)).

PROOF. Let € > 0. Since F € (S1;82)C; on [a,b] it follows that there exists
St e S1(a) such that

F(z) - Fla) > ——=

53 whenever x € S[(ll), T >a,

and for every a; there exists S,(lp € S1(a;) such that

F(z) — F(a;) > whenever xeS&), T>a—1i.

T 9i+3
Let Hy : [a,b] = R, Hy(a) =0,
€

€
Hy(z) = 2T Z 2i+3

a; <T

Clearly H; is increasing and Hy(b) = €/2. Let x > a. Then Hy(x) — Hi(a) >
€/2%, so

(F+ H)(x) = (F+ H1)(a) > 5 — = = == > | f(a)|(z —a),
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whenever

zeshn : 550+ ‘ )z:a(l) and = > a.

(a_ (If(a)[+1) (If(a) +1)-23 @
Let « > a;. Then Hy(x) — Hi(a;) > €/2972, so

€ € €

(F+H1)(.13) - (F+H1)(a]) > 2j+2 - 25+3 = 2j+3 > |f(a_])|($ _a’j)a

whenever

€ €

j —. 5
([f(ay)|+1)-27+3°% + (If(aj)] +1)- 2j+3> =0y,

CL'GS(S;)Q (aj—

and x > a;. Similarly, there exists 5152) € Sa(b) such that
F(y)— F(b) < 2—63 whenever y € S,EQ), y<b,
and for every a; there exists S,(lf) € Sa(a;) such that

F(y) — F(a;) < 21% whenever ye SP, y<a;.

Let Hy : [a,b] — R, Ha(a) =0,

Clearly Hs is increasing and Ha(b) = ¢/2. Let

(@) ._ g2 _ € €
% =% m<b (If(b)|+1)-23’b+(If(b)|+1)-23>

and

(2)::S(2)ﬂ(i— ‘ —a; + ‘ : >
Pen T M T (Gl )2 ()] 1) 2

Then (F' + H»)(t) — (F + Ha)(z) > f(t)(t — x) whenever z € (a,t] N a,fz),
te{b}UA.

The function H = H; + H, satisfies the required properties.

If F € (81;82)C on [a,b] then, for example, S,S}) may be chosen such that

|F(x) — F(a;)] < 2% whenever z € S&), x> a;.
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Then for z € a&), x > a; it follows that

|F () = F(ai) = flai)(z — a;)| <[F(z) = F(ai)| + [f(a:)|(z — a;) <

€ € €
<3 ta55 =5 S Hi(e) - Hi(w) < H(z) - H(ai).

O

Lemma 8.2. Let S = {S1(z) }zer be a local system ST -filtering on [a, b), and
let So = {S2(x) }zer be a local system S -filtering on (a,b]. Let f : [a,b] —

If [$18:W(f;[a, b]) x [SiSaWI(f; [a, B]) # 0 and (M, m) € [S:8:W(f;a, D
[S1S2W](f; [a,b]) then we have

(i) M —m is positive and increasing on [a,b], hence M(b) > m(b);
(i) M — J is positive and increasing on [a,b], hence M (b) > J(b);
(iii) J —m is positive and increasing on [a,b], hence J(b) > m(b);
(iv) J — J is positive and increasing on [a,b], hence J(b) > J(b).

PROOF. (i) Leta < ¢ < d < b. For M there exists a 31 = g0 ({x M1, {6V})
€ Bl such that M(y) — M(z) > f(t)(y — x), whenever ([z,y],t) € B, For
m there exists a 8@ = 8@ (X} {s) e Bia, such that m(y) —m(z) <
f)(y — x), whenever ([z,y],t) € 32

Let A= Is({X(l)ﬁXj(z)ﬂ[c, d)}i ;) and let € > 0. By Lemma 8.1, there exist

B = BP0 6FD) € Bo(S138y) and Hy, : [e,d] — R, k = 1,2, Hy(c) =
0, Hi(d) < e, Hy, 1ncreasing, such that M (y)—M (z)+Hq(y)—Hy(z) > f(t)(y—

), whenever ([, yl, 1) € 8% and m(y) —m(x) (Ha(y) — Ha(x)) < F(8)(y—2),
whenever ([z,y],t) € ﬂf). Let

3 XWX e d) — (0,4+00), 6 ;(x) = min{6}" (x), 0\ (2)}.
8=8({x"nx? e}, {6:;}) € B

Jg(gl) = crg(fl’l) n 0:&2’1), for z € [¢,d) N A.

o =" NP forx € (e, d] N A.

Ba=Balcl", o) € Ba(SL,55).
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By Lemma 4.2 there exists 7, a 3U B4-partition of [c,d]. If ([z,y],t) € BU B4
then ([z,y],t) € 3% U ﬁi‘k), k = 1,2. Tt follows that (M — m)(d) — (M —
m)(c) +2€e > (Hy + M)(d) — (Hy + M)(c) — ((m — Hs)(d) — (m — Hy)(c)) =
S oatren (1 + M) = (Hy + M) = 30 y1yen (1 — Ha)(y) — (m —
Hs)(®)) = 3 (o y1tyex () (y —x) = f(£)(y —2)) = 0. If € — 0 then we obtain
that M —m is increasing on [a, b]. Since M (a) = m(a) = 0, M —m is positive
on [a,b]. Clearly M(b) > m(b).

(ii) By (i) we have M(d) — M(c) > m(d) — m(c) > m(d) — J(c), hence
M(d) — M(c) > J(d) — J(c) whenever a < ¢ < d < b. It follows that M(d) —
J(d) > M(c) — J(c). Thus M — J is increasing and positive (since M(a) =
J(a) =0) on [a,b]. Clearly M(b) > J(b).

(iii) We have M (d) — J(c) > M(d) — M(c) > m(d) —m(c) (see (i)), hence
J(d) — J(c) > m(d) — m(c) whenever a < ¢ < d < b. Therefore J — m is
increasing and positive (since J(a) = m(a) = 0). Clearly J(b) > m(b).

(iv) We have M(d) — J(c) > M(d) — M(c) > J(d) — J(c) (see (ii)), hence
J(d) — J(c) > J(d) — J(c) whenever a < ¢ < d < b. Therefore J — J is
increasing and positive (since J(a) = J(a) = 0). Clearly J(b) > J(b). O

Lemma 8.3. Let S; = {S1(2) }zer be a local system S, -filtering on [a,b), and
let So = {S2(x) }zer be a local system S5 -filtering on (a b]. Let f :|a,b] — R.
The following assertions are equivalent:

(1) f is [S1S2W)] integrable on [a,b].

(i1) [S1S2W](f; [a, b]) X [S1S2WI(f; @, b]) # O and for every € > O there exists
(M,m) € [S1S2W](f; [a, b])] x [S1S2WV](f; [a, b]) such that M (b)—m(b) <

€.

PROOF. (i) = (ii) For € > 0 there exists a pair (M, m) € [S1S2W](f; [a, b]) x
[S1SaW](f; [a, b]) such that M (b) — €/2 < J(b) = J(b) < m(b) + €/2 (see the
definitions of J(b) and .J(b)), hence M (b) — m(b) < e.

(ii) = (i) By Lemma 8.2, (iv) we have 0 < J(b) — J(b) < M (b) —m(b) < e.
Since € is arbitrary, it follows that J(b) = J(b). O

Lemma 8.4. Let §; = {S1(x) }zer be a local system ST -filtering on [a,b), and
let So = {Sa2(x) }uer be a local system S -filtering on (a,b]. Let f :[a,b] — R
and ¢ € (a,b). If [ is [S1SaW)] integrable on [a,b] then f is [S1SaW] integrable
on [a,c] and on [c,b], and

(S1SW] / " Ft)dt = (S18W] / ") dt 4 [S1SW] / Crwyde. ()
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PRrROOF. By Lemma 8.3 it follows that [S1SaW|(f; [a, b]) x [S1SaW](f; [a, b]) #
() and for every € > 0 there exists (M, m) € [S1SaW|(f; [a, b]) x[S1S2WV](f; [a, b))
such that M (b) —m(b) < e.

Let My = M4, and m1 = my[qq. Let My = M) — M(c) and mg =
mjep] — m(c). Then

(M1, m1) € [S18W](f;[a, c]) x [S1SW](f;[a,c]) # 0. (6)

and

(M2, ms2) € [S1S2W(f; [e,b]) x [S18&W](f; e, b]) # 0. (7)

We prove for example (6) ((7) follows similarly). Clearly M € (S1;82)C; on
[a, c]. For M there exists 8 = B({X;},{d:}) € Bja,p) such that M(y) — M(x) >
f(t)(y—x), whenever ([z,y],t) € 8. Then 8, = B,({XiNla,cl}, {(:)/x,n[a,c})
€ Biq,q and §, C 3. Then M (y) — Mi(x) > f(t)(y — =), whenever ([z,y],t) €
Bo. Therefore M; € [S1S2W(f;]a,c]). Similarly, my € [S1SoW](f;]a, d]).
Thus we obtain that (6) is true.

By Lemma 8.2, (i) we have that My (c) —mi(c) < € and Mz(c) —ma(c) < e.
Therefore, by Lemma 8.3, it follows that f is [S;SeW]-integrable on [a, ¢] and
e, b].

We also have my(c) = m(c) < [SiSaW] [ f(t)dt < M(c) = Mi(c) and
ma(b) = m(b) — m(c) < [S1S2WV] fbf(t) dt < M(b) — M(c) = Ma(b). It
follows that m(b) < [SiSeW] [€ f(t)dt + [S1S2W] [ f(t)dt < M(b). But
m(b) < [S1S2WV] fb f(t)dt < M(b) and M(b) — m(b) < e. Since € is arbitrary

c

we obtain (5). O

Lemma 8.5. Let S; = {S1(z)}zer be a local system, ST -filtering on [a,b),
and let Sy = {Sa2(x)}zer be a local system, S_-filtering on (a,b]. Let f :
[a,b] — R and ¢ € (a,b). If f is [S1SoW]-integrable on [a,c] and on [c,b], then
[ is [S1SeW]-integrable on [a,b] and

[8182W] /b f(t) dt = [8182W] /C f(t) dt + [8182W] /b f(t) dt (8)

PRrROOF. For € > 0, let (M1,m1) € [S1S2W](f;[a,c]) x [S1S2W](f;]a,c]) # 0
with M (c) —mi(c) < €, and (Ma, mg) € [S1S2W](f; [c, b]) X [S1SaW](f; e, b])
# () with Ma(c) — ma(c) < € (see Lemma 8.3). Let
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and

m(z) = { mq(x) , € [a,c|

mi(c) + ma(z) , x€lcb].

For M let 31 = 51({X§1)},{5§1)}) € E[mc] be given by Definition 8.1, and
for My let B2 = ﬁg({XZ@)},{(SZ@)}) € B, be given by the same defini-
tion. Then {Xi(l)}i U {XZ-(Z)}i € Play- Let = 1 U By If ([z,9],t) € B8
then either ([z,y],t) € 51 or ([z,y],t) € B2. In both cases we have M(y) —
M(z) > f(t)(y — z). By Lemma 2.2, (iii), M € (S1;S82)C; on [a,b]. Therefore
M € [$:182W](f;]a,b]). Similarly we can show that m € [Si;SaW]|(f; [a, b]).
Since M (b) — m(b) < 2¢, by Lemma 8.3, it follows that f € [S1S2W] on
[a,b]. We also have mi(c) = m(c) < [SiSW] [ f(t)dt < M(c) = M(c)
and ma(b) = m(b) — m(c) < [S182W) fcb ft)dt < My(b) = M(b) — M(c).
It follows that m(b) < [SiSaW] [ f(t) dt + [S1SaW] [7 f(t)dt < M(b). But
m(b) < [§182W) f: F@)dt < M(b) and M(b) —m(b) < 2e. Since € is arbitrary
we obtain (8). O

Lemma 8.6. Let fi1, fa : [a,b] — R be [S1S2W]-integrable on [a,b], and let
a1,z € R, If Sy is filtering on [a,b) and Sy is filtering on (a,b], then aq f1 +
asfa is [S182W]- integrable on [a,b] and [S1S2W] fab(alfl + asfo)(t)dt =
g - [8182W] f: f1 (t) dt + Q9 -+ [8182W] fab f2 (t) dt.

PROOF. Let (M, m) S [81$2W}(f1; [a,b]) X [8182W](f1; [a bD 7é 0. fa>0
0

then (oM, am) € [S1S2W|(af1;[a,b]) x [S1SaW](af1; [a,b]; # (). Hence

afi is [§182 W] — integrable and

b b
(S18: W] / afi(t)dt = a - [S18:W] / Fu(t) dt )
If @ < 0 then (am,aM) € [S1S2W](af1;[a,b]) x [S1SaW](af1; [a,b]) # 0 and
(9) is valid.
It remains to prove that the lemma is true for oy = 1 = 1.

Let My € [S18aW)(fi; a,b]) £ 0, k = 1,2

For My let BF) = ﬁ(k)({Xi(k)},{éz(k)}) € Bja be given by Definition 8.1,
k=1,2.

Let X;; = Xl(l) ﬂXj(-z). Then {X@}@j € f[a,b]-
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Let 0y : Xij — (0,+00), §;(z) = min{6" (), 61" (x)}.
Let = B({Xi;} {0i}) € Ba-
Let ([z,y],t) € 8. Clearly ([z,y],t) also belongs to 8%, k = 1,2, so My (y) —
My (2) > fr(t)(y — z).
It follows that (M; + M2)(y) — (M1 4+ Ma)(x) > (f1(t) + f2(t))(y — x). Since
S is filtering on [a,b) and S, is filtering on (a, b], it follows that My + My €

LSl;SQ)CLon [a,b]. Hence My + My € [S1S2W](f1+ f2;]a,b]) and 7f1+f2 (b <
J 4, (b) + Jf,(b). Similarly we obtain that J (b) + Jp,(b) < Jy 14, (b). By

Lemma 8.2, (iv) we obtain that f; + fo € [S1S2W)] and [S1S2WV) ff(ﬁ +
F)(t)dt = [S1SW] [L fr(t) dt + [S18WV] [ fo(t) dt 0

9 The Variational Type [S1S;V]-Integral

Definition 9.1. Let §; = {S1(z)}zcr be a local system SI -filtering on [a, b),
and let S; = {Sa2(z)}zer be a local system S _-filtering on (a,b]. Let f :
[a,b] — R. f is said to be [S1S2V]-integrable on [a, b], if there exists H :
[a,b] — R, H € (81;82)C, with the following property: for every e > 0 there
exist f = B({X;},{6;}) € Bay and G : [a,b] — R, such that G(a) = 0, G(b) <
€, G is increasing on [a,b], and |H(y) — H(z) — f(t)(y — z)| < G(y) — G(x),
whenever ([z,y],t) € f. H is called the [S1S2V)] indefinite integral of f on
[a,b] and [S18,V] [* f(t) dt = H(b) — H(a).

Lemma 9.1. Let §; = {S1(2) }zer be a local system ST -filtering on [a,b), and
let So = {Sa2(x)}uer be a local system S3_-filtering on (a,b]. Let f : [a,b] —
R. If Hi,Hy : [a,b] — R are [$182V] indefinite integrals of f on |a,b] then
H,(b)— Hi(a) = Ha(b) — Ha(a). Therefore the [S1S2V)] integral is well defined.

PROOF. Let Hy : [a,b] — R, Hyx € (81;82)C, k = 1,2, satisfying the follow-
ing property: for € > 0 there exist %) = ﬂ(’“)({Xi(k)},{@(k)}) € By and
G®) : [a,b] — R such that G®)(a) = 0, G®(b) < ¢, G is increasing on
[a,b] and [H®) (y) — H®(z) — f(t)(y — x)] < GF)(y) — G®)(z), whenever
([, y],t) € 85, k =1,2. Let Xpnp = X0 N X Then {Xomptimm € Playy-
Let A =1s({X..n}). By Lemma 8.1, there exist ﬁff) = 61(416) (Jg(gk’l),aka’Q)) €
B4(S1;S2) and A% : [a,b] — R, h®)(a) = 0, h¥)(b) < €, h*) increasing,
such that [H®) (y) — H®(z) — f(t)(y — z)| < ¥ (y) — ) (), whenever
([, y],t) € BR | k =1,2. Let o = oY N e®Y and o, = o A g2,
Let 6mpn @ Xmn — (0,400), dpn(z) = min{ég)(x),&(f)(x)}. Let g =
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BH{Xmn}s {0mn}) € B[a,b] and 4 = 5,4(0;_,0;) € Ba(8%,8%). Then,
by Lemma 4.2 there exists m, a S U fa-partition of [a,b]. But 7 is also a

ﬁ(l)uﬁfj)- and a (B(Q)Uﬁf))—partition of [a, b]. Therefore |(Hy—Hz)(b)—(H1—
Hs)(a)| = |Z([w,y],t)eﬂ(H1 — Hs)(y) — (Hy — H2)(2)| = |Z([aj7y]7t)€7r(H1(y) -
Hy(z) = f(t)(y —x) — (Ha(y) — Ha(x) = f(O)(y — )| < X yen H1(Y) —
Hl(x)_f(t)(y_$)|+z([:p7y]7t)67r |Ha(y) — Ha(x)— f(t)(y—2)| < Z([m,y],t)eﬂmg
GO (3) =GO @)+ 41 e GO W) =G @)+ oy cnran 1 (1)
L 0) = SO +5 g emns o) Ha) = F ) (y—2)] £ GO0+
G@ (b) + KV (b) + R (b) < 4e. Since € is arbitrary, it follows that H(b) —
Hi(a) = Ha(b) — Ha(a). O

Lemma 9.2. Let S; = {S1(z)}zer be a local system, S -filtering on [a,b),
and let Sy = {Sa2(x)}zer be a local system, S_-filtering on (a,b]. Let f :
[a,b] = R and a < ¢ < b. If f is [S1S2V]-integrable on [a,b] then f is also
[S182V]-integrable on [a,c] and on [c,b], and

[51$2V] /C f(t) dt + [51$2V] /b f(t) dt = [8182]}] /b f(t) dt (10)

PROOF. Since f is [S1S2V] integrable on [a,b], there exists a function H :
[a,b] — R, H € (81;82)C satisfying the following property: for every € > 0,
there exist 3 = 3({Xi},{6:}) € Bja and G : [a,b] — R, such that G(a) = 0,
G(b) <, G is increasing on [a,b], and |H(y) — H(z) — f(t)(y — z)] < G(y) —
G(z), whenever ([z,y],t) € 5.
We define

XY = X;0[a,d and XP = X;0[e,b]; Clearly {XV}; € Pl and {XP}; €

Plep;

BY = BO XM {6:}) € Blaas

B2 = BOUXY,{6:}) € Blew;
Hi,Gi:la,d = R, Hi(z) = H(z), G1(z) = G(x).

Hy, Gy : [c,b] — R, Hy(z) = H(x), Ga(z) = G(z) — G(c).

By Lemma 2.2, (iii), Hy, Hy € (S1;82)C on |[a, c] respectively [c, b]. If ([z,y],t)
€ BN then ([x,y],t) € B, hence f is [S;SzV]-integrable on [a,c], and we
have [S1S2V] [ f(t)dt = H(c) — H(a). Similarly it follows that f is [S1S;V)]-
integrable on [c, b], and [S1S2V] fcb f(t)dt = H(b) — H(c).

Since [$182V] [7 f(t) dt = H(b) — H(a), we obtain (10). O
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Lemma 9.3. Let Sy = {S1(2)}zer be a local system, St -filtering on [a,b),
and let Sy = {Sa2(x)}zer be a local system, S_-filtering on (a,b]. Let f :
[a,b] = R and a < c <b. If f is [S1S2V]-integrable on [a,c] and [c,b] then f
is also [S182V]-integrable on [a,b] and

515V /Cf(t) dt + [S1S5V] /bf(t)dt: S1S2V] /bf(t) dt

PrOOF. Let I} = [a,c] and Iy = [¢,b]. Let Hy : I, — R, Hy € (S1;82)C,
such that for every e > 0, there exist 8, = ﬁk({Xi(k)}, {5l(k)}) € By, k=1,2,
and Gy, : I — (0,400) such that Gy is increasing, G1(a) = 0, G1(c) < e,
Ga(c) = 0, Ga(b) < € and |f(6)(y — ) — (Hi(y) — H(2))| < Gily) — Gr(a).
whenever ([z,y],t) € Bk, k= 1,2.

Let H : [a,b] — R,

H(x){Hl(w) , if x€la,(
Hy(c) + Hy(x) — Ha(c) , if x€]ed].

Let G : [a,b] — (0, 4+00),

{Gl(x) , if z€la,(]

= G0t . if wele.

Let § = (1 UBs. If ([z,y],t) € B then either ([z,y],t) € §1 or ([z,y],t) € Ba,
and clearly in both cases we have |f(t)(y—x) — (H(y) — H(2))| < G(y) —G(x).
Therefore f is [S1S2V]-integrable on [a,b] and [S1S2V] fab ft)dt = H(b) —
H(a) = H(b) — H(c) + H(c) — H(a) = Hy(b) — Ha(c) + Hi(c) — Hi(a) =
[S182V] [2 f(t) dt + [S1S2V) [£ f(2) dt. m

Lemma 9.4. Let f1,fo : [a,b] — R be [S1S2V]-integrable on [a,b], and let
ay, a0 € R If Sy is filtering on [a,b) and Sy is filtering on (a,b], then aq fi +
o fo is [S182V)]- integrable on [a,b] and [S1S2V) f:(ozlfl + asfo)(t)dt = a -

[S182V] [} fi(t) dt + az - [$i182V] [ folt) dt
PROOF. Let ay # 0.

For fy let Hy : [a,b] — R, k = 1,2, Hx € (81;82)C, with the following
property: for every e > 0 there exist %) = ﬂ(k)({Xi(k)}, {Jl(k)}) € E[a,b]a
and Gy, : [a,b] — R, such that G1(a) = 0, G1(b) < aa G2(a) =0,
Gz (b) < 3Tar]> Gk is increasing on [a,b], and |Hy(y) — Hi(z) — f(t)(y —

)| < Gi(y) — Gi(), whenever ([z,y],t) € %),
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Let Xij = Xl(l) ﬂXj(-2). Then {Xij}i,j € f[a,b]-
Let 0y : Xij — (0,+00), &;(2) = min{6") (), 61" (x)}.

Let 6 = ﬂ({X”}, {5”}) € E[a,b]-
Let G(z) = |a1|Gi(z) + |a2]|Gaz). Clearly G(a) = 0, G(b) < € and G is

increasing on [a, b].
Let ([z,9],t) € 8. Clearly ([x,y],t) also belongs to 3% k =1,2.

Then we have |(a1 Hy + asH2)(y) — (an H1 + asHz)(x) — (an f1 + aa fa) (t) (y —
z)| < |oa|-[Hi(y) — Hi(2) = f1(t)(y —2) |+ || |H2(y) — Ha(2) — f2(t) (y — )| <
la1|(G1(y) — Gi()) + |a2|(G2(y) — Ga(x)) = G(y) — G(z). But a1H; +
asHy € (81;8:)C on [a,b]. Tt follows that ay Hy + agHg is the [S182V)]-
indefinite integral of a4 f1 + i f2 on [a, b] and [8182V] f (a1 f1 4+ aafa)(t) dt=

- [S182V] ffl )dt + g - [S152V)] ffz O

10 The Relations Between the [S;S2R]-, the [S;S2WV]- and
the [5:S2V]-Integrals

Definition 10.1. Let S; = {S1(x)}.er be a local system, ST -filtering on
[a,b), and let Sz = {Sa2(x)}zer be a local system, S__-filtering on (a,b]. A
function f : [a,b] — R is said to be bi[S1S2V]-integrable on [a, b] if there exists
H:la,b] = R, H € (51;852)C; N (S1;82)Cy, satistying the following property:
for every € > 0 there exists ) = ﬁ(k)({Xi(k)}, {62@}) € By, k=1,2, and
Gy : [a,b] — [0,+00), with Gi(a) = 0, Gi(b) < €, G increasing on [a,b],
k = 1,2 such that H(y) — H(z) — f(t)(y — x) < G1(y) — G1(x), whenever
([#,9],) € ) and —H(y) + H(z) + f()(y — 2) < Ga(y) — G2() whenever
([, ], t) € BP). H is called the bi[S;S2V]-indefinite integral of f on [a, b] and
we write bi[S1SoV] [7 f(t) dt = H(b) — H(a).

Lemma 10.1. Let S = {S1(x)}rer be a local system, St -filtering on [a,b),
and let Sy = {Sa2(x)}zer be a local system, S -filtering on (a,b]. Let f :
[a,b] — R. Then we have:

(1) If f is [S1S2V]- integrable on [a,b] then f is also bi[S1S2V]-integrable
n [a,b], and the two integrals are equal. Moreover, if Sy is filtering
n la,b) and Sy is filtering on (a,b] then the [S1S2V]-integral and the
bi[S1S2V]-integral are equivalent.

(i) The following assertions are equivalent:
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a) f is bi[S182V]-integrable on [a, b];
b) [ is [S1SaW]-integrable on [a,b],

and the two integrals are equal.

(i11) If [ is [S1S2V]-integrable on [a,b] then f is also [S1S2W)]-integrable on
[a,b] and the two integrals are equal.

PROOF. (i) The first part is obvious. We show the second part. For € > 0 let
B = B({XM}, {6™}) € Bl be given by Definition 10.1.

Let Xij = Xl(l) ﬂXJ(-2); then {Xij}i,j S f[a,b}
Let 0y : Xij — (0,+00), §;(z) = min{6," (), 61" (x)}.

Let 6 = B({Xi;},{0:;}) € E[a,b]'

Let A be a countable subset of [a, b] that contains Is({X;;}); then Is({X;;})
D Is({XV}) UTs({x[7}).

Let BXC) = ﬂgk)(ag(ck’l),aik’m) € B4(81;82) and Gy, : [a,b] — (0,400) be
given by Definition 10.1, £k =1, 2.

Let oV = 6"V 0ol € 8 ().
Let 0(2) = 0;&1’2) N 0;2’2) € Sy(x).

Let B4 = BA(UQ: o )e Ba(S1;S2).

Let ([z,9],t) € BU Ba. Then ([z,y],t) € B*) Uﬁff), = 1,2. It follows that
H(y)—H(x) - f(t)(y —x) < G1(y) —Gi(a) and —H(y) + H(x) + f(t)(y — =) <
Ga(y) — Ga(a). Let G = Gy + Go. Then |H(y) — H(z) — f(t)(y — 2)|] <
G(y) — G().

(ii) a) = b) Let € > 0. By Definition 10.1, there exist H : [a,b] — R
and ) = g0 ({X; k)} {5(k }) € Bjq, with the following property: for every
countable subset A*) of [a,b] that contains Is({Xi(k)}), k = 1,2 there exist
Baw = Bam (05D, 68D) € By (81:82), k= 1,2 and Gy, : [a,b] — [0, +00),
with G (a) =0, Gk( ) < €, Gy, increasing on [a,b], k = 1,2, such that H(y) —
H(x)— ft)(y —x) < Gl(y) — G1(z), whenever ([z,y],t) € B U B,q) and
—H(y)+H(x)+ f(t)(y—2) < Ga(y) —Ga(x), whenever ([z,y],t) € BPUB, e .
Let M = H+ Go and m = H — G;. Then (M, m) € [S1SoW](f;]a,b]) x
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[S1SaW](f;[a,b]). Tt follows that J(b) < H(b) and J(b) > H(b). By Lemma
8.2, (iv), we obtain that J(b) > J(b), hence H(b) = [S1S:W] [* f(t) dt.

b) = a) Since f is [S1SaWV)- integrable on [a,b], we have J(b) = J(b)
(see Definition 8.1). By Lemma 8.2, (iv) it follows that J — J = 0 on [a, b].
Let H(z) = J(z) = J(z), € [a,b]. Clearly H(a) = 0. For ¢ > 0 let

(M,m) € [SiSaW)(f;[a,b]) x [S1S2W](f;[a,b]) # O such that H(b) —€/2 <
m(b) and M(b) < H(b) + ¢/2. By Definition 8.1, there exists a ) =
7)(k)({X§k)},{§£k)}) € E[%b], k = 1,2 with the following property: for ev-
ery countable subset A%*) of [a, b] that contains Is({Xi(k)}), k=1,2, thereis a
B = Ba (05D 68D) € By (S1385), k = 1,2, such that M(y)—M(z) >
F(®)(y — z) whenever ([z,y],t) € U Ba0) and m(y) —m(zx) < f(t)(y — =)
whenever ([z,y],t) € 83 U Bue. Let Gy = H—m and Go = M — H on
[a,b]. Then H(y) — H(z) — f(t)(y — ) < G1(y) — G1(z) whenever ([z,y],t) €
BY U By and f(t)(y — x) — (H(y) — H(x)) < Gay) — Ga(z), whenever
([z,y]. 1) € B U By

(iii) See (i) and (ii). O

Definition 10.2. Let F' : [a,b] — R and let P be a closed subset of [a,b],
¢ = inf(P), d = sup(P). Let {(ck,dr)}r be the intervals contiguous to P. We
define the function Fp : [¢,d] — R such that Fp(x) = F(x), z € P and Fp is
linear on each [cg, dy].

Lemma 10.2. Let F : [a,b] — R, let P be a closed subset of [a,b] and let A be
a measurable subset of P such that F € VB on P. Then Fp is derivable a.e.

on (inf P,sup P), F is approzimately derivable a.e. on A and Fp(z) = F,,(x)
a.e. on A.

PROOF. Fp is VB on [inf P,sup P] (see for example [1, p. 44]), hence Fp
is derivable a.e. on (inf P,sup P). Let P, = {z € P : d(P,z) = 1}. By
Lebesgue’s Density Theorem, P, is measurable and |P,| = |P|. It follows that
Fyo(z) = F, (z) a.e. on P,, hence Fp(z) = F, (z) a.e. on A. O
Theorem 10.1. Let S; = {S1(x)}rer be a local system, SE -filtering on [a,b),
and let Sy = {S2(x)}zer be a local system, S -filtering on (a,b]. Let f :
[a,b] — R. If f is [S182D]- integrable on [a,b] then f is also [S1S2V)]-integrable
on [a,b], and the two integrals are equal.

PROOF. Since f is [S1S2D]-integrable on [a,b], there exists a function F :
[a,b] — R such that F € [ACG] and F € (81;S;)C on [a,b]. Let {P;}; € Plqy
such that F' € AC on each P;. Let € > 0 and let A be a countable subset of
[a,b] that contains Is({P;}). Suppose that A = {aq,a2,...,a;,...}. Since F' €
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(81;82)C on [a, b], it follows that there exists 54 = ﬁA(le), ol ) € B4(S1;82)
such that |F(x) — F(a;)| < €/2° whenever z € (U((zi) N (a,a;]) U (o fj) N [a;,b)).
Let G1,Gs : [a,b] — R, G1(a) = Ga(a) =0

=Y O(F;[ai,b) Noll)) and Ga(x) = > O(F )Nol).

a; <z a; <z

(Here O(F; X ) denotes the oscillation of the function F on the set X.) Clearly
G1 and Gy are increasing on [a,b], G1(b) < € and G2(b) < e. Fix some q;.
Then

|F(2) = Flai)] < O(F; [aiz 2] N o)) < Gi(e) = Gi(ai) (11)

whenever x € [a;,b) N 0&), and
|F(z) = Flai)] < O(F; [z, ai] N o)) < Ga(ai) — Ga(x) (12)

whenever z € (a,a;] N a((L) Let S; = {z e P, : Fp .(z) = f(z)}. Then S; is
measurable and |S;| = | P;| (see Lemma 10.2). Let 5 S; — (0, 400) such that

[F(y) = F(z) = f(x)(y —2)| <

€
2(b—a)|y_x|7

whenever y € P,N (z — d;(x),z + 6;(x)). Let Gs(x) = e(xz —a)/(2(b—a)). For
€/2% let m; > 0 be given by the fact that F' € AC on P;. Let B; = P;\/S;. Then
|B;| = 0, hence there exists an open set G; such that B; C G; and |G;| < n;.
Let C = AU (U2, B;). Then |C| = 0. By the Tolstoff- Zahorski Theorem (see
for example Theorem 2.14.6 of [1]), there exists G4 : [a, b] — (0, +00) such that
Gy is increasing on [a,b], G4(a) = 0, G4(b) < € and G(z) = +00 whenever
x € C. Let § : C — (0,400) such that (G4(y) — Ga(z))/(y — x) > |f(2)]
whenever y € (x—0(x), z+d(x)). Let o = Ug(ck)ﬁ(a:—é(x),ac—l—é(a:)), k=12,
x € A. By (11) we obtain that |F(x)—F(a;)— f(a;)(x—a;)| < G1(z)—G1(a;)+
G4(z) — G4(a;), whenever x € [a;,b) N otM* and |F(x) — F(a;) — f(a;)(z —
a;)] < Ga(x) — Ga(a;) + Ga(x) — Ga(a;), whenever z € (a,a;] N % Let
0; : B; — (0, +00) such that §;(z) < §(x) and (z —d;(x), x4+ d;(x)) C G;). Let
Gs(z) = Y2, V(F; B;N[a,x]). Then G5(a) =0, G5(b) < > o, €/2' = €. We
have |F(y) — F(x) = f(z)(y— )| < V(F; BiN[z,y]) + Galy) — Ga(x) < Gs(y) —
Gs5(z) + G4(y) — G4(x), whenever x € B; and y € P, N (x — 6;(x), z + §;(x)).
Let G = Y0_, G; and let 8 = B({P,},{0:}) € Blay- It follows that |F(y) —
F(z) — f(t)(y — z)| < G(y) — G(x) whenever ([z,y],t) € SU Ba. Therefore
F is the [S1S2V]-indefinite integral of f on [a,b]. Hence [S1S2D f f@®

[$18:V] [P f(t)dt . O
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Lemma 10.3. Let 81 = {S1(x)}zer be a local system ST -filtering on [a,b),
and let So = {Sa2(x)}zer be a local system S -filtering on (a,b]. Let f :
[a,b] — R be [S1S52V]-integrable on [a,b].

(i) (Saks-Henstock type lemma) For ¢ > 0 there is a 8 = B({X:},{d:})
€ Bia,p with the following property: for every countable subset A of [a, ]

that contains Is({X;}) there is a B4 = 5,4(0;)703(52)) € B4(5182) such

that
>

([z,y],t)en

Bﬁﬁﬂ/%ﬂ@ﬂ—JﬁXy—@ <e,

whenever 7 is a (8 U Ba)-partial partition of [a,b].

(ii) f is [S1SaR]-integrable on [a,b], and the [S1S2V] and [S1S2R] integrals
are equal.

(iii) If F(z) = [S$1S8V] [ f(t) dt then F is (S1;82)C on [a, b].

PrOOF. (i) Since f is [S1S2V]-integrable on [a, b], there exists H : [a,b] — R
such that for every ¢ > 0 there exists a 3 = B({X;},{d:}) € Bop with the
following property: for every countable subset A of [a, b] that contains Is({X;})

there is a 84 = 6,4(031;),0;&2)) € B4(S81;82) and there exists an increasing
function G : [a, b] — [0, +00), such that G(a) = 0, G(b) < eand |H (y)—H(x)—
f@®)(y—=z)| < G(y) — G(z), whenever ([z,y],t) € BULBA. Let w be a (BU B4)-
partial partition of [a,b]. By Lemma 9.2, H(y) — H(z) = [S1S2V)] [ f(t) dt,

hence
>

([zyl,t)em

Y. Wy —2) - (Hy)-H@)| < > (Gly)-G(z) <Gb) <e.
[yl t)em ([z,y].t)em

(ii) With the notations of (i), let = be a (8 U B4)-partition of [a, b]. Then

fO)(y —z) = [S1S2V] /y f(t) dt‘ —

|s(f;m) = (H®) = H@)|=| Y (f()y—2) - H(y) + H(x))

([=yl,t)em

< Y f®W-2)-Hy)+H@I< Y (Gl -G@)<e.

([z.yl,t)em ([z.ylt)em
It follows that f is [S1S2R]-integrable on [a, b], and then

b b
S18:R)] / [ty dt = Hb) — H(a) = [5:5V] / F(tydt.
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(iii) Let x, € [a,b) and € > 0. Let § > 0 such that [f(z,)|- 0 < e. For e let
B = B({Xi},{0i}) € Bjay be given by (i). Let A = {z,} UIs({X;}. Then for

every « € U;i) € S1(z,), ¢ > x, we have |F(x) — F(z,)| < |F(z) — F(z,) —
F(@o)(m — )| + | f(mo)|(x — ) < 26. Tt follows that F is right S;-continuous
on [a,b). Similarly we obtain that F' is left Sy-continuous on (a,b]. By Lemma
2.1, (i), Fis (81;82)C on [a, b]. O

11 The Characterization of the D-Integral

Theorem 11.1. Let f : [a,b] — R. The following assertions are equivalent:
(i) [ is [SSS, D]-integrable (i.e., D-integrable) on [a,b];

(ii) f is [SFS; V]- integrable on [a,b];

(1i) f is [SF S, W]-integrable on |a,b].

(i) f is [SSS, R]-integrable on [a,b] and F is continuous on [a,b], where
F(z) =[SFS;R] ff f(t)dt.

Moreover, all the integrals are equal.

PRrROOF. (i) = (ii) and the equality of the integrals follow by Theorem 10.1.
(ii) < (iil) and the equality of the integrals follow by Lemma 10.1.
(ii) = (iv) and the equality of the integrals follow by Lemma 10.3.

(iv) = (i) By hypothesis F(z) = [SFS;R] [ f(t) dt is continuous on [a, b).
By Corollary 7.1, F € (N) on [a,b], and by Lemma 7.6, F' is VBG on [a, b].
Therefore F € CNVBGN (N) =CN ACG on [a,b] (see for example [1, p.
75]). Now, by Lemma 7.5, F(;p(x) = f(z) a.e. on [a,b]. It follows that f is
D-integrable on [a, b], and the two integrals are equal. O]

Remark 11.1. The fact that F' € ACG in the proof of Theorem 11.1, (iv) =
(i), can also be obtained as follows: by Corollary 7.1, F € Ng, on [a,b]; and
by Theorem 5.2, F € ACG on [a,b].

12 Query

Definition 12.1. Let S&; = {S1(z)}.er be a local system ST -filtering on
[a,b), and let So = {Sa(z)}rcr be a local system S__-filtering on (a,b]. A
function f : [a,b] — R is said to be strong [S151D] integrable on [a, b] if there
exists a function F : [a,b] — R with the following properties:

(i) F e (S1;82)C;
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(ii) F € [VBG)N(N);

(iii) F, (z) = f(z) a.e. on [a,].

ap
We write strong [S1S1D) f; f(t)dt = F(b) — F(a).

Remark 12.1. Note that Lemma 7.2 remains true if condition [ACG] is
replaced by [V BG| N(N), and Corollary 2.1 remains true if [ACG] is replaced
by [VBG]N(N). But [VBG]N(N) is a real linear space on [a, b] (see Corollary
3.1.1 and Theorem 3.6 of [19]). It follows that the above integral is well defined.

Question. How can the definitions of [S1S2V)], [S152W)] and [S1S2R] be mod-
ified such that each of them contain the strong [S1S2D]- integral?

Remark 12.2. Definition 12.1 can be extended by replacing condition (ii)
with “F € VBGN(N)NB;”. This is so because Lemma 7.2 still remains true
if [ACG] is replaced by VBG N (N) N By, Corollary 2.1 still remains true if
[ACG] is replaced by VBG N (N) N By, and VBG N (N) N By is a real linear
space (the proof of the latter is not easy, and it is shown by the author in [2]).

A special case of this new definition is an integral defined by Gordon in [4]
(Definition 3): (i) is replaced by “F € C,p”, and (ii) by “F' € VBG N (N)”.
However his argumentation about the integral being well defined is incomplete,
because he doesn’t take in consideration whether VBG N (N)NC, is a linear
space or not.

13 Appendix

* After this paper has been accepted for publication in the present journal, the author
withdrew it, having in mind a lot of revisions. The present paper contains a lot of them,
but his main intention was to give up the two local systems in the definitions of the general
integrals, and use instead only one. He had started to do so but never finished his work.
In what follows the revised statements (with proofs) will be given as well as the changed
definitions. The modified results will be labelled with the old numbers and a ‘prime’ sign.

Lemma 2.1’. Let S = {S(z)}zer be a bilateral local system satisfying the following prop-
erty for each x € R:

If o7,,0, € S(z) then (o), N (—oco,z]) U (o N[z, +0)) € S(x). (%)
Let F : [a,b] — R. Then we have:
(i) F is SC on [a,b] if and only if it is bilaterally SC on [a,b].

(it) F is SC; on [a,b] if and only if F is simultaneously right S-lower semi-continuous on
[a,b) and left S-upper semi-continuous on (a,b].

ProoOF. Evident. O

*Extracted by Gabriela Ene from the author’s notes.
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4" A Fundamental Lemma

Following the notations in [21] (pp. 5,6), we shall denote by Z the collection of all nonde-
generate, real compact intervals. A subset 3 of the product Z x R is said to be a covering
relation if x € I whenever (I,z) € 3 (see [22, p. 5]). If B is a covering relation and E a real
set then B(FE), B[E] and o(8) denote the following sets:

e B(E)={I,z) e : I CE}

e BIE|={(I,z) € B : x € E};

° O'(B) = U(I,I)EBI‘
A packing is a covering relation 8 with the property that for distinct pairs (I1,21) and
(I2,z2) the intervals Iy and Iz do not overlap. Evidently a packing is either finite or

countable infinite. Using the language of Henstock we call a finite packing 8 a division (a
B-division) of an interval [a,b] if o(8) = [a, b].

Definition 13.1. Let E be a real set and 6§ : E — (0,400). We denote by B(E;d) =
{({(z,y)) : x,y € E, x is an accumulation point for (z,y)NE, and (z,y) C (x—9(z),xz+(z)}.
Clearly B(E;¢) is a covering relation (possibly empty).
Definition 4.2’. Let P be a real set. We denote by

e Ist(P)={x € P : x is a right isolated point of P};

e Is~(P)={xz € P : xzis a left isolated point of P};

e Is(P) =Ist(P) UTs~ (P). This set is countable (see [15, p. 260]).
Definition 13.2. ([16]). A sequence {E,} of sets whose union is E is called an E-form

with parts Ej,. If, in addition, each part E, is closed in F (i-e., En = P, N E, where P, is
a closed set, so P, = E;) then the E-form is said to be closed.

Definition 13.3. Let {E;}; be a closed [a, b]-form, §; : E; — (0,+00), and A a set that
contains U$2,Is(E;). For each a € A let o, be a set having the point a as a bilateral
accumulation point. Let

B=BUE};{6:}: (0a)aca) =Ui218(Ei;8:) U (Vaca{((a,2),0) s @ € 00 \ {a}}).

Clearly S is a covering relation. It contains the AD full cover of Lee and Soedijono (see [12,
p. 265]), the cover U of Henstock (see [7, p. 56]), the covering relation called “composite
path derivation” defined by Thomson (see [20, p. 104]), and Henstock’s covering relation
PC ([20, p. 115)).

Lemma 4.1’. Let P be a perfect nowhere dense subset of [a,b], a,b € P, and let § : P —
(0,400). Then there exists a finite packing m contained in B(P;d) such that o(w) D P.

Proor. Let {(a;,b;)}, i =1, 00 be the intervals contiguous to P, and let n : [a, b] — (0, +00),

d(x) , if xeP\UX {asbi}
n(z) = min{%2% §(z)} , if @€ {a;bi} , i=1,00
min{%,biT_x} , if =z € (asbi) , i=100.

Let w be a 3([a,b],n) partition of [a,b] (that such a partition exists follows for example by
[1, p. 87]). Let m = {({ws,ys),2s)} 1=y and A = {i € {1,2,...,n} : int({xs,y:)) N P # 0}
(here int(X) denotes the interior of the set X). For x € P\ U2, {as, b}, it follows that
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x € (z;,y;) for some i € {1,2,...,n}. Clearly (x;,y;) N P is an infinite set, so i € A.
Therefore
P\ (Uiﬁ1{ai7bi}) C Uiea(mi, yi) -
It follows that
P =P\ (U2,{ai, bi}) C Uicalzi, yi) - (13)
If i € A then z; € P (because if z; € (aj,b;) for some j then y; € (z; —n(x;), i +n(x;)) C
(aj,b5), which implies that ¢ ¢ A, a contradiction).

Fix some ¢ € A. If ; € P\ (U?‘;l{a]-,bj}) then z; is an accumulation point for
(zi,y:) N P. Let z; € P such that (z;,y;) N P = (x;,2;) N P. Then ((wl,z1>,mz) € B(P;9).
If 2; = a; for some j then y; < x; (because if z; < y; then [x;,y;] C [aj + bjgaj ], soi ¢ A).
It follows that [y;,z;] N P has x; as an accumulation point. Let z; = inf[y;,z;] N P, hence
lyi, 23] N P = [z4,2:] 1 P. Consequently ((zi, 1], z:) € B(P; 5).

If z; = b; for some j, then y; > ;. Let z; = sup(P N [z;,y;]). Then ([z;, 2], ;) € B(P;6).

By (13), it follows easily that m = { ({2, 2),%:) } satisfies our lemma. O

i€ A

Lemma 4.2 (Fundamental lemma). For each 3 = B({E;}; {0:};(0a)aca), the interval
[a,b] has a B-division.

PRrROOF. We shall use the Romanovski Lemma (see for example [1, p. 10]). Let A = {(p,q) C
(a,b) : [p1,q1] has a B-division whenever (p1,491) C (p,q)}-

(i) If (p,q) € A and (g,r) € A then clearly (p,7) € A.

(ii) If (p,q) € A and (p1,¢1) C (p,q) then (p1,¢1) € A (see the definition of A).

(iii) Let (¢,d) C (a,b) such that (p,q) € A whenever [p,q] C (c¢,d). We show that
(c,d) € A. Let ¢ € En. Let c1 € (¢,c+ 0n(c)) N En N (c,(c+ d)/2) if ¢ is a right
accumulation point for Ey, and let ¢1 € 0. N (¢, (¢c+d)/2) if ¢ is right isolated in [a,b) N Ey.
Then ([c,c1],¢) € B. Similarly we find d1 € ((c + d)/2,d) such that ([d1,d],d) € 8. But
(c1,d1) € A and [¢,d] = [c,c1] U [e1,d1] U [d1,d]. Therefore [c,d] admits a (-division.
Analogously we obtain that [c2,d2] has a (-division, whenever (c2,d2) C (c,d). Hence
(c,d) € A.

(iv) Let E C [a, b] be a perfect set such that all intervals contiguous to E are contained in
A. We show that there exists (p, q) € A such that EN(p,q) # 0. Since E = U2, (ENEy),
by the Baire Category Theorem (see for example [1, p. 10]) it follows that there exists a
positive integer n and an interval (p, q) such that 0 # (p,q)NE = (ENE,)N(p,q). We may
suppose without loss of generality that p,q € E and [p,q] N E is perfect. Applying Lemma
4.1' to [p,q] N E and &y, there exists a finite packing 7 contained in B(E;dy) such that
o(m) D E. Clearly 7 is a finite packing contained in 5. Since [p, g] \ o(7) consists of a finite
number of intervals contiguous to E, it follows that [p,q] admits a B-division. Similarly
it follows that each [p1,qi1] admits such a division, whenever (p1,q1) C (p,q). Therefore
(p,q) € A.

By (i)-(iv) and the Romanovski Lemma, it follows that (a,b) € A. O

6’ The Lusin Type [SD] Integral

Definition 6.1’. Let S = {S(x)}.cr be a local system Soo, co-filtering. Let f : R — R, and
let E a bounded nonempty set, with a = inf £, b = sup E. f is said to be [SD]-integrable
on FE if there is a real number I and a function F' : R — R,

0 ifz<a
F(x) =
I ifz>b
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such that F is SC on [a,b], F € [ACG] on [a,b], and Fl;p(x) = xg(x) - f(z) a.e. on [a,b],
where X is the characteristic function of E. We write [SD] [ f(t)dt = I. F is said to be
the (unique) indefinite integral of f on E.

Lemma 6.2'. Let f : R — R be [SD]-integrable on [a,b] and let ¢ € (a,b). Then f is
[SD]-integrable on both [a,c| and [a,d], and we have

b c b
(D] / F(t)dt = [SD] / f(t)dt + [SD] / £t dt.

PrOOF. Let F : R — R be the indefinite [SD]-integral of f on [a,b]. Let Fy, Fy : R — R,
F(z) ifz € (—oo,(] 0 if z € (—o0, (]
Fi(z) = o Fa(z) =
F(c) ifz € [e,+o0) F(z) — F(c) ifz € [c,+00).
Then F) (respectively Fb) is the indefinite [SD]-integral of f on [a,c] (respectively [c, b])
and we have the relation from above. O

Lemma 6.3'. Let f : R — R be [SD]-integrable on [a,c] and on [c,b], where ¢ € (a,b).
Then f is [SD]-integrable on [a,b] and we have:

b c b
1SD) / F()dt = [SD) / F(t)dt + [SD) / Ft)dt.

PROOF. Let F (respectively F») be the indefinite [SD]-integral of f on [a, ¢] (respectively
[c,b]). Then F = Fy + F» is the indefinite [SD]-integral of f on [a,b] and we have the
relation from above. O

7' The Riemann Type [SR] Integral

Definition 7.1’. Let & = {S(z)})z € R be a local system Sso,oo-filtering. A function
f: R — R is said to be [SR] integrable on [a,b] to I € R if for € > 0 there exist a closed
[a,b]-form {E;}, 6; : B; — (0,+00), for A D U2, Is(E;) countable thereis Ay . : A — P(R),
A4 c(xz) € S(x), and for B D A, B countable there is a Ap . such that

ls(fie) = I| <,
whenever o C B({Ef}, {65}, Aa,e V Ape) is a division of [a, b].

Theorem 7.1’. The number I in Definition 7.1 is unique, and it will be denoted by
b
[SR] [ f(t)dt.

PROOF. Suppose that there exist two numbers I; and I3 as in Definition 7.1’. Let {E'f A
k = 1,2, be a closed [a, b]-form given for I}, and e. Let E;; = El1 ﬂE]?, 61’-“]- = E;; — (0,+00)
and A* : U; ;Is(E;;) — P(R), Ap(z) € S(z), be such that |s(f;7x) — I — k| < €, whenever
T, C Bk = ﬁ({E’ij};ij;Ak) is a division of [a,b]. Let d§;; : E;; — (0,400), d;(x) =
min{(sil]- (J:),(S?]-(J:)}, and let A : U; ;Is(E;;) — P(R), A(z) = A1(z) N Az(z) € Soo,00().
By Lemma 4.2' there exists 7 C 8 = B({E;;};{di;};A). Clearly # C 81 N P2. Hence
[s(f;m) — Ix| <€, k=1,2. It follows that |I; — I2| < 2e. Since € is arbitrary we obtain that
I = Is. |

Remark 13.1. If a € R and f is [SR]-integrable to I on [a,b] then af is [SR]-integrable
to al on [a,b].
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Lemma 7.1'. Let S be a filtering local system on [a,b]. Let fi, f2 : [a,b] — R be [SR]-
integrable to I respectively I2 on [a,b]. Then f1+ fo is [SR]-integrable on [a,b] to I1 + I>.

Proor. For £ > 0 and Iy, k = 1,2, let {EF} be a closed [a, b]-form given by Definition
7.1, Let E;j; = E} N E7. Then {E;;},,; is a closed [a, b]-form. Let {X;} be a closed [a, b]-
form finer than {E;;}. Clearly {X;} is finer than {E;}*. By Definition 7.1’, there exist
8k : X; — (0,+00) and AF : U;Is(X;) — P(R), Ak(z) € S(x) such that

€
[s(fr; ) — Ii| < 5

whenever 7, C B = B({X;}; {6F};Ay) is a division of [a,b]. Let §; : X; — (0,-+00),
8i(z) = min{6}(z),62(x)}, and let A : Uils(X;) — P(R), A(z) = Ar(z) N Ax) € S(z)
(because S is filtering). Let @ C 8 = B({X;}; {0:}; A) be a division of [a, b] (this is possible
by Lemma 4.2"). Clearly 7 is a B; division. Hence

[s(f1+ fo;m) — (I1 + I2)| < |s(fi;m) — I | + |s(fosm) — I2| <e.

Thus f1 + f2 is [SR]-integrable to I1 + I2 on [a,b]. O
Lemma 7.2’ (A Cauchy criterion). Let S = {S(z)})z € R be a local system Soo,o0 -filtering
on [a,b], and let f : R — R. The following assertions are equivalent:
(i) f € [SR] integrable on [a,b];
(i) for e > 0 there exist a closed [a,b]-form {ES}, 65 : ES — (0,+00), for A D U2 Is(EY)
there is a Ay and for B D A, B countable, there is a Ap  such that
|s(f,m1) — s(f;m2)| <e,
whenever w1, 72 C B{ES}, {05}, Aae VAB).

PROOF. (i) = (ii) This is obvious.
1 1
(ii) = (i) For % let {E}} be a closed [a, b]-form, 5F E} — (0,400) be given by (ii).
1
Let Ay be countable, Ay O U2, Is(E) and B D Ay, By countable. Let A, = U2, Ay,
and B, = U2, By.Again by (ii), for A, thereisa A, L and for B, there is a A such
that

1
o
/ " 1
s34 — (7| <+
1 1
whenever 7 C B, = B({EF}, {6F}, AAO,% \% ABO,%) are divisions of [a,b]. Let mp C

1 1
B =BHEF}{6F}, AA;C,%) C B be a fixed division of [a, b], where AAk’% = AAO,%/A,C.
Let € > 0 and let ke be a positive integer such thatl/ke < ¢/2. Let ke < m < n. Let

1 1
Tmn C ,an = 6({Eim n E]:’L }1 {5mnij},AAmL n AAC”L)

be a division od [a,b] (see Lemma 4.2'). Then mmn C Bm and mmn C Bn. But mm C Bm
and 7, C Bn, so

|5(f;mm) — s(fi mn)| < —  and [s(f;7n) — 5(fs mmn)| <
m n

imply that
1 1
[s(fimm) — s(f;mn)| < — + = <e,.
m n
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hence {s(f;7r)}x is a Cauchy sequence. Let I = limg_, o s(f; 7). Fix m > ke. Then

1
[s(fsmm) — 1] < —.
m
Now we show that I satisfies the conditions in Definition 7.1’. Let Ap. 1= Ap 1/By

and let a C B2 = ({Ek} (6}, Bapi Vg o 7) C Bm be a division of [a,b]. Then

07%
|s(f;i) = I| < |s(fs@) — s(fsmm)| + |s(Fs;mm) — 1| < Lilce
m m

Lemma 7.3'. Let S = {S(z)})z € R be a local system Seo,c0-filtering. Let f: R — R.

(i) If a < c<b, fis [SR] integrable on [a,c] = [a1,b1] to I1, and f is [SR] integrable
on [¢,b] = [az2,b2] to Iz, then f is [SR] integrable on [a,b] to I + I2.

(i) Ifa<c<d<band f is [SR] integrable on [a,b] then f is |SR] integrable on [c,d).

PROOF. (i) Let € > 0. For €/2 let {E ’2} be a closed [ak, bg]-form, 6 2 Ef’i — (0, 4+00)

be given by Definition 7.1, k = 1,2. Clearly {E 2 }ik is a closed [a, b]-form. Let A D
UZ_, U, Is(E 72) be a countable set and B D A another countable set. Let A, =
AN [ag,bel, By = BN fagbil, k = 1,2 Clearly By D A, D U, Is(EF'?). Again by
Definition 7.1’ there exist Ay, ¢ and AB < such that
'S ksg
|s(f;mh) — s(f; i |<5 k=1,2 (14)

k, k,& ce .
whenever 7,7y C 8, = B({E,; 2}, {6, 2}, AAké \v ABk,é) are divisions of [a,b]. Let

AAlé(a)ﬁ(—oo,c) ifr=a
AAl,%(m)ﬂ(a,c) ifz e Ay N(a,c)
Agpe(z) = AA%%(m)ﬂ(c,b) ifz e AanN(cb)

(AAl,g(C) N (a,d) U (AA2,%(C) Nle,bd)) ifz=c

AA2,%(b)ﬁ(c,+oo) ifz=0».
Let
¢ LS ) 1,5
mln{év (z),c—z} ifzeE;’?N[ac)
1,e 1
9 (z) = € 1. €
2(0) ifr=ceE;’?
d
an . 2,5 . 2,5
mln{éi 2(z),x — c} ifxe B2 N(cb
62 (x) =
61.2’5(0) if:rzceEj’é.

For B, Ap (z) is defined similarly with A 4 ().
Let M = B2 Let 7 C 3 = BUEF ik, {67 Vi k Aa,c V Ap,) be a division of
[a,b], and let ({z,y),z) € m. Then we have:
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1) z<c = y<c = (z,y) Cla,c) = ((:c,y)w) € b1;
2) z>c = y>c = (z,y) C (b = ((z,y),z) € B2
3) z=c. Let c1 =sup((, ,y> z)e,\.{x y} and c2 = mf((z,y z)eﬂ.{x y}. Then ([e1,c],c) and
([e; c2], ¢) belong to 7. Note that ([c1,c],c) € B1 and ([c 2], c) € Ba.
Let mp = m N [ag, bg], k = 1,2. Since m = 1 U w2, by (14) we have
[s(f;m) = (In + I2)| < [s(fsm) = In| + [s(fym2) — Iao| <e.
It follows that f is [SR] integrable on [a,b] to I1 + I>.

(ii) Consider a < ¢ < d < b, [a,c] = [a1,b1], [¢,d] = [a2,b2], [d,b] = [a3,b3]. Suppose
that f is [SR] integrable to I on [a,b]. For € > 0 there exist a closed [a,b]-form {E;},
0; : By — (0,400), for A D U2, Is(E;), A countable, there is a Ay, and for B D A, B
countable, there is a Apg . such that | (f;m I} < €, whenever m C 3 = ﬂ({E 1, {d:}, AA’E
AB,e) is a division of [a,b]. Let E;; = [ak,bg] N Ei, k =1,2,3. Then {F;;} is a closed
[ak,bk]—form, k=1,2,3. Let d;1 : Ejp — (0,+OO), dik(x) = §Z\E1k Let [ak,bk] D A D

° Is(Eix), k =1,2,3, A, countable, and let [ay, bx] 2 B2 D A2 be another countable set.
Let A = AjUA2UA3 and B = A1UB2UA3. Clearly A D US2,Is(E;). Let Aa, e = Aa,e/Ax,
k=1,2,3 and AB276 = AB,E/BQ. Let

my, 7y C B2 = B({Fia}, {6i2}, Any,c VAB, ) CB
be a division of [a2,b2], and let 1, C B = ﬁ({Elk} {0ir}, Aa,, E) C B be a division of
lak,bg], k =1,3. Then m U 7r2 Uz and 7y Unh Umg are divisions of [a, b]. It follows that
[s(f;m5) — s(f;m5)| = |s(fim Umy Ums) — s(fym Umhy Ums)| <
<|s(fimUmhUms) —I|+ |s(f;m Uny Ums) — I] < 2e.

By Lemma 7.2/, f is [SR] integrable on [a2, b2] = [c, d]. O
Lemma 7.4’ (A quasi Saks-Henstock Lemma). Let S = {S(z)})x € R be a local system
Soo,00-filtering on [a,b]. Let f:R — R be [SR] integrable to I on [a,b]. Let F': R — R,

0 ifer<a

F(z) = ¢ [SR] [T f(t)dt if z € (a,b)
I ife>b

Let {E;} be a closed [a,b]-form, and let &; : E; — (0,+00) be given for € > 0 and I. Let
A, be a fized countable subset of [a,b], Ao D U2 Is(E;), and let B be another countable
subset of [a,b] containing Ao. Let Ay,  and Ap  be such that

|s(f;7r) —I| <e€,
whenever m C 3= B({{E:},{6:},Aa,,e VAp) is a division of [a,b]. Then we have:
(i) |s(f;oz - S(F;T()‘ < ﬁ whenever a C B* = B({E:},{6:}, Aa,e) is a finite packing;
() 2

() O£|f(z y— ) — (F(y) — F(x))| < 3¢ whenever a C 8* is a finite packing.

PROOF. (i) Let oo C B* be a finite packing. If o is a division of [a,b] then we have nothing
to prove. Suppose that [a,b] — o(a) # 0. Let (ck,dr), k =1,2,...,n be the components of
the open set (a,b) \ o(a). By Lemma 7.3’ we have

dy,
SR [ (0 dt = (@) - Flew) = I
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For o~ and I, let {Pf} be a closed [cg, di]-form, k =1,2,...,n, and 771’-c : Pl-’c — (0, 4+00)
be given by Definition 7.1’. Let E¥ = [y, dx] N E;, k = 1,2,...,n, 6F : — (0, 400),
6 = 51‘Ek Let By be a countable subset of [cg, dk] containing UZ JIS(Pk n Ek) Again by
Definition 7.1’, for By, and 5 there is a ABk e such that

|s(fimk) — Ii| < i,

whenever m, C B({Pf},{nf},ABbZL) is a division of [ck,dy]. Let B = A, U (UZ:1Bk)
and let A . be such that
|s(f;7r) —I| <e€,

whenever m C = ﬂ({EZ}, {6:}, Aac Vv AB&) is a division of [a,b]. Let
i C B({PF N EF} A0k}, (Ap.dis, N A5, )
be a division of [, dj] (see Lemma 7.2"). Clearly a U (UP_;7}) C 8 is a division of [a, b].
Hence .
|s(f;a U (Up_17mg)) — I| <e and |s(f;7r,’;) — Ik| < P
n

Since I = S(F;a) + > 11 S(F;7) = S(F;a) + 331 I, it follows that

n
|(f7 ) FCM|—‘ fvaU(Uk: 17rk: Z fvﬂ—k)_lk}
< ’s(f;aU(UZ,lﬂ',’:)) —I‘ + i|s(f;7r2) —Ik‘ <e+n- £ _ %
- - =1 2n 2
(ii) This follows by definitions using (i). O
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