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ON THE FRACTIONAL PART OF THE
SEQUENCE {ξβn − a}

Abstract

Let {αn}∞n=0 denote a sequence of positive real numbers and let the
sequence {βn}∞n=0 be defined by β0 = 1 and βn+1 =

Qn
j=0 αj . For

0 ≤ a < 1, 0 < t < 1, and n, a nonnegative integer, the inequality
0 ≤ {ξβn − a} ≤ t is studied, where {x} denotes the fractional part of
x.

Let δ(a, k) = supm∈Z{a − (a + m)k} for each real number k, where
Z is the set of all integers. If αn ≥ 1 + δ(a, αn)/t, for each nonnegative
integer n, where 0 ≤ a < 1, 0 < t < 1, and b = a + t, then it is
proved that there exists a ξ ∈ [a + m, b + m], for each m ∈ Z, such
that 0 ≤ {ξβn − a} ≤ t holds for all nonnegative integers n. Further, if
tαnαn+1 − (1 + δ(a, αn))αn+1 − t − δ(a, αn+1) ≥ 0 for infinitely many
nonnegative integers n, then for each m ∈ Z, there exists a set of ξ ∈
[a + m, b + m] that has the cardinality of the continuum so that 0 ≤
{ξβn − a} ≤ t is true for all nonnegative integers n.

1 Introduction

In his paper “An unsolved problem on the powers of 3/2”, Mahler [12] defines
a real number α, α > 0, to be a Z-number if 0 ≤ {α( 3

2 )n} < 1/2, for all n ∈W ,
where {x} denotes the fractional part of x, and W is the set of nonnegative
integers. Although Mahler proves that the set of all Z-numbers is at most
countable, it is still unknown whether such Z-numbers exist. This problem is
now known as Mahler’s problem [15]. Some results related to this problem are
contained in references [3, 4, 5, 6, 9].

A related problem is the existence of ξ > 0 so that 0 ≤ {ξβn} ≤ t, for all
n ∈ W , given 0 < t < 1 and β > 1. Tijdeman [15] has shown that such a
ξ exists, for β > 2 and t ≥ 1/(β − 1). Further, Flatto [11] shows if β > 0 is
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rational (that is, β = p/q, (p, q) = 1, and p, q ∈ N), then ξ > 0 exists if β > 2
and t > (q − 1)/(q(β − 1)) = (q − 1)/(p− q).

In answer to a question of Erdős [10], Pollington [14] proved that if any
positive real sequence {βn}∞n=0 satisfies βn+1/βn ≥ α > 1, for all n ∈W , then
there is a set of real ξ of Hausdorff dimension 1 so that the sequence {ξβn} is
not dense on [0, 1). Boshernitzan [2] and Ajtai, Havas, and Komlós [1] have
shown that the fixed lower bound on the ratio of consecutive βn is necessary.
In lemma 1 of the latter, the authors show that for any sequence of real
αn > 1, αn → 1, there exists a sequence of positive integers {βn}∞n=0 such that
βn+1/βn ≥ αn, for all n, and for any irrational ξ, the sequence ξβn is uniformly
distributed (mod 1). For rational ξ = p/q, (p, q) = 1, then the sequence ξβn is
uniformly distributed (mod 1) over the set {0, 1/q, 2/q, . . . , (q − 1)/q}.

This motivates the question: “For what sequences {βn}∞n=0 will ξ > 0 exist
such that 0 ≤ {ξβn − a} ≤ t, for all n ∈W , where 0 ≤ a < 1 and 0 < t < 1?”
This paper identifies a class of sequences {βn}∞n=0 for which this is true.

2 Existence of a Set of ξ

Let {βn}∞n=0 be a positive, strictly increasing sequence of real numbers, and
{αn}∞n=0 be a positive sequence of real numbers such that αn = βn+1/βn, for
all n ∈W .

Let An =
⋃∞
m=−∞Q(m,n), with Q(m,n) = [(a+m)β−1

n , (b+m)β−1
n ], for

all n ∈ W and m ∈ Z, where Z is the set of all integers, and a, b are real
numbers such that a < b.

For a, k ∈ R, where R is the set of real numbers, define

δ(a, k) =

 1, if k is irrational,
(q − 1)/q + {a(q − p)}/q, if k = p/q, where p, q are relatively
prime integers, and q > 0.

It can be shown that δ(a, k) = supm∈Z{a − (a + m)k}. This fact is used
extensively in this paper. For example, δ(0, p/q) = (q − 1)/q, where p and q
are relatively prime positive integers.

Theorem 1. Let {βn}∞n=0 be a positive increasing sequence of real numbers
such that βn+1/βn = αn, for all n ∈ W . If 0 ≤ a < 1, 0 < t < 1, b = a + t,
and αn ≥ 1 + δ(a, αn)/t, for all n ∈ W , then for every m ∈ Z, there exists a
ξ ∈ [a+m, b+m], such that 0 ≤ {ξβn − a} ≤ t, for all n ∈W .

The following lemmas are needed to prove this theorem.
In what follows, a, b, and t are real numbers such that 0 ≤ a < 1,

0 < t < 1, and b = a+ t.
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Lemma 1. If αn > 0, for all n ∈ W, ξ ∈ R, then 0 ≤ {ξβn − a} ≤ t, for all
n ∈W , if and only if ξ ∈

⋂∞
n=0An.

Proof. Given αn > 0, for all n ∈ W , ξ ∈ R, 0 ≤ a < 1, and b = a + t, if
0 ≤ {ξβn−a} ≤ t, for all n ∈W , and j = bξβn−ac, then a+ j ≤ ξβn < b+ j,
that is, ξ ∈ Q(j, n), for all n ∈W . Hence, ξ ∈

⋂∞
n=0An. On the other hand, if

ξ ∈
⋂∞
n=0An, then for all n ∈W , there exists m ∈ Z so that ξ ∈ Q(m,n), that

is, a ≤ {ξβn−m} ≤ b. Thus, 0 ≤ {ξβn−a−m} ≤ t, implying m = bξβn−ac.
Hence, 0 ≤ {ξβn − a} ≤ t, for all n ∈ W . Notice that this lemma proves that
the set of all ξ that satisfy 0 ≤ {ξβn − a} ≤ t is a closed set, since it is equal
to the intersection of the closed sets An.

Define m′ = d(a + m)αn − ae ∈ Z, where n ∈ W . Here, dxe is the least
integer greater than x.

Lemma 2. If m ∈ Z, n ∈W , αn > 1+ δ(a,αn)
t , and m′ = d(a+m)αn−ae ∈ Z,

then Q(m′, n+ 1) ⊆ Q(m,n).

Proof. By definition of m′, (a+m)αn ≤ a+m′. Also,
a+m′ − δ(a, αn) ≤ (a+m)αn. Hence,

(a+m′ − δ(a, αn))β−1
n+1 ≤ (a+m)β−1

n ≤ (a+m′)β−1
n+1.

Let x ∈ Q(m′, n+ 1). Then x ≥ (a+m)β−1
n , and

x ≤ (b+m′)β−1
n+1 ≤ (δ(a, αn) + b− a)β−1

n+1 + (a+m′ − δ(a, αn))β−1
n+1.

So
x ≤ (δ(a, αn) + b− a)β−1

n+1 + (a+m)β−1
n ≤ (b+m)β−1

n .

Hence, x ∈ Q(m,n).
The theorem can now be proven.

Proof. Let αn ≥ 1+δ(a, αn)/t, for all n ∈W . Define the sequence {mn}∞n=0

where m0 is an arbitrary integer, and mn+1 = d(a−mn)αn−ae, for all n ∈W .
Also define the sequence {In}∞n=0 of closed bounded intervals In = Q(mn, n).
From Lemma 2, In+1 ⊆ In, for all n ∈W . Further, In ⊆ An, for all n ∈W .

Suppose Ij ⊆
⋂j
n=0An. Then Ij+1 ⊆ Ij ⊆

⋂j
n=0An and also Ij+1 ⊆

Aj+1. Thus Ij+1 ⊆
⋂j+1
n=0An. Since I0 ⊆ A0 =

⋂0
n=0An, by the principle of

induction, Ij ⊆
⋂j
n=0An, for all j ∈W .

By Cantor’s nested interval theorem, there exists a ξ ∈ R such that ξ ∈ Ij ,
for all j ∈ W . Hence, ξ ∈

⋂∞
n=0An, and by Lemma 1, 0 ≤ {ξβn − a} ≤ t, for

all n ∈W . In addition, ξ ∈ I0 = [a+m0, b+m0].

Theorems 1 and 2 of Tijdeman [15] are special cases of this theorem when
αn is constant for all n ∈W .
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3 Uncountability of the Set of ξ

Flatto [11] gives a condition for uncountability of the set of ξ that satisfies
0 ≤ {ξβn} ≤ t, for all n ∈ W . If β > 3 and 2/(β − 1) < t < 1, then for any
integer m, there exists such a set of ξ with cardinality of the continuum and
where ξ ∈ [m,m+ 1).

In what follows, an improvement of this theorem is given for certain se-
quences of positive real numbers {βn}∞n=0, where βn+1/βn ≥ α > 1, for all
n ∈W .

Theorem 2. Let {βn}∞n=0 be a positive increasing sequence of real numbers
such that αn = βn+1/βn, for all n ∈W . Given 0 ≤ a < 1, 0 < t < 1,
b = a+t, and αn ≥ 1+δ(a, αn)/t, for all n ∈W , if there is a strictly increasing
sequence of whole numbers {ki}∞i=0 such that

tαki
αki+1 − (1 + δ(a, αki

))αki+1 − t− δ(a, αki+1) ≥ 0,

then for any m ∈ Z, there exists a set of ξ with the cardinality of the continuum
so that ξ ∈ [a+m, b+m] and ξ satisfies 0 ≤ {ξβn − a} ≤ t, for all n ∈W .

To prove this theorem we need Lemma 3.

Lemma 3. Suppose m ∈ Z, n ∈W ,

tαnαn+1 − (1 + δ(a, αn)αn+1 − t− δ(a, αn+1) ≥ 0, (1)

αn ≥ 1 + δ(a, αn)/t, and αn+1 ≥ 1 + δ(a, αn+1)/t. If

m1 =d(a+m)αn − ae,
m2 =d(a+m1)αn+1 − ae,

and m
′

2 =d(a+m1 + 1)αn+1 − ae,

then

Q(m2, n+ 2) ⊆Q(m1, n+ 1),

Q(m
′

2, n+ 2) ⊆Q(m1 + 1, n+ 1),
Q(m2, n+ 2) ⊆Q(m,n),

and Q(m
′

2, n+ 2) ⊆Q(m,n).

Proof. By Lemma 2, Q(m1, n+ 1) ⊆ Q(m,n), Q(m2, n+ 2) ⊆ Q(m1, n+ 1),
and Q(m

′

2, n+ 2) ⊆ Q(m1, n+ 1). Thus, Q(m2, n+ 2) ⊆ Q(m,n).
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If x ∈ Q(m
′

2, n+ 2), then x ≥ (a+m
′

2)β−1
n+2. This implies that

x > (a+m2)β−1
n+2 ≥ (a+m)β−1

n .

On the other hand, x ≤ (b+m
′

2)β−1
n+2. If αn and αn+1 satisfy inequality (1),

then

(δ(a, αn) + 1)αn+1 + t+ δ(a, αn+1) ≤ (b+m)αnαn+1 − (a+m)αnαn+1.

This inequality yields

(b+m)αnαn+1 ≥[(a+m)αn + δ(a, αn) + 1]αn+1 + t+ δ(a, αn+1)
=[a+ d(a+m)αn − ae+ 1]αn+1 + t+ δ(a, αn+1)
=(a+m1 + 1)αn+1 + t+ δ(a, αn+1)
≥(a+m1 + 1)αn+1 + (b− a) + δ(a, αn+1)

≥a+ d(a+m1 + 1)αn+1 − ae+ (b− a) = b+m
′

2.

Thus, b + m
′

2 ≤ (b + m)αnαn+1, which implies that x ≤ (b + m)β−1
n . Hence,

x ∈ Q(m,n) and thus Q(m
′

2, n + 2) ⊆ Q(m,n), which completes the proof of
this lemma.

To prove Theorem 2, a ξ will be constructed satisfying 0 ≤ {ξβn − a} ≤ t,
for all n ∈ W , and that is related to some binary sequence. It will then be
shown that there is a one-to-one correspondence between these ξ and the set
of all binary sequences which have the cardinality of the continuum.
Proof. Let a, b, t, and the sequence {αn}∞n=0 have the properties described
in the statement of the theorem. Let the sequence {ki}∞n=0 be further re-
stricted by the condition ki+1− ki ≥ 2. Note that this restriction is justifiable
since any increasing sequence of integers has a subsequence where consecutive
terms differ by at least two. Finally, the inequality (1) holds for all ki, upon
substituting ki for n.

Let R = {ri}∞i=0 be a binary sequence; that is, ri ∈ {0, 1}, for all i ∈W .
Let {mn}∞n=0 be a sequence of integers, with m0 an arbitrary integer, and

mn+1 =

{
d(a+mn + rj)αn − ae, where j ∈W,n = kj + 1,
d(a+mn)αn − ae, otherwise.

A sequence of intervals of In can now be defined by In = Q(mn, n). Note that
given m0, a, and {αn}∞n=0, In is dependent only on the binary sequence R. So
In will be a function from the binary sequences to a set of compact intervals
in R. This is denoted by In(R) = Q(mn, n).

If n 6= kj + 1, for all j ∈ W , then mn+1 = d(a + mn)αn − ae. Hence,
αn ≥ 1 + δ(a, αn)/t implies that Q(mn+1, n+ 1) ⊆ Q(m,n), by Lemma 2, and
In+1(R) ⊆ In(R).
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If n = kj + 1 for some j ∈ W , then mn+1 = d(a + mn + rj)αn − ae and
tαn−1αn − (1 + δ(a, αn−1))αn − t − δ(a, αn) ≥ 0. Therefore, by Lemma 3,
Q(mn+1, n+ 1) ⊆ Q(m,n) and Q(mn+1, n+ 1) ⊆ Q(mn−1, n− 1), regardless
of the value of rj . Thus, In+1(R) ⊆ In(R) and In+1(R) ⊆ In−1(R). If l 6= kj ,
for all j ∈ W , and Il(R) ⊆

⋂l
n=0An, then Il+1(R) ⊆ Il(R) and Il+1(R) ⊆⋂l

n=0An. Also Il+1(R) ⊆ Al+1, and hence, Il+1(R) ⊆
⋂l
n=0An. If l = kj ,

for some j ∈ W , and Il−1(R) ⊆
⋂l−1
n=0An, then Il+1(R) ⊆

⋂l−1
n=0An. Further,

Il+1(R) ⊆ Il(R), which implies that Il+1(R) ⊆ Al. Since Il+1(R) ⊆ Al+1, it
follows that Il+1(R) ⊆

⋂l+1
n=0An. So by an argument similar to the one used

in Theorem 1, Il(R) ⊆
⋂l
n=0An, for all l 6= kj , j ∈ W . By Cantor’s nested

interval theorem, there exists a real ξ ∈ [m0+a,m0+b] such that ξ ∈
⋂∞
n=0An.

Thus by Lemma 1, 0 ≤ {ξβn − a} ≤ t is true, for all n ∈W .
Let S = {si}∞i=0, si ∈ {0, 1} be a second binary sequence distinct from R,

that is, there is some whole number n such that sn 6= rn. A new sequence of
integers {ln}∞n=0 can be constructed with l0 an arbitrary integer, and

ln+1 =

{
d(a+ ln + sj)αn − ae, where j ∈W,
d(a+ ln)αn − ae, otherwise.

There is a real ξ′ that is contained in all the sets In(S) and such that 0 ≤
{ξ′βn − a} ≤ t holds, for all n ∈W .

Since S 6= R, there exists a whole number p such that sp 6= rp and si = ri,
for 0 ≤ i ≤ p−1. This means that lkp

= mkp
and thus Q(lkp

, kp) = Q(mkp
, kp);

that is, Ikp(R) = Ikp(S).
However, sp 6= rp yields lkp+1 6= mkp+1, and hence,

Q(lkp+1, kp + 1)
⋂
Q(mkp+1, kp + 1) = ∅.

This implies that ξ 6= ξ′. Thus, for every binary sequence, there is a unique
ξ ∈ [a+m0, b+m0] so that 0 ≤ {ξβn−a} ≤ t, for all n ∈W . The set of infinite
binary sequences has the cardinality of the continuum and so must the set of
ξ that satisfies 0 ≤ {ξβn − a} ≤ t, for all n ∈ W , and ξ ∈ [a + m0, b + m0].
This proves the theorem.

A useful corollary follows from this theorem when βn = kn, for all n ∈W .
This corollary improves a result of Flatto [11].

Corollary 1. Given 0 ≤ a < 1, 0 < t < 1, b = a+ t, and if

k ≥
1 + δ(a, k) +

√
(1 + δ(a, k))2 + 4t(t+ δ(a, k))

2t
, (2)
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then for every integer m there is a set of ξ with the cardinality of the continuum
so that ξ ∈ [a+m, b+m], and ξ satisfies 0 ≤ {ξkn − a} ≤ t, for all n ∈W .

Proof. Note that k satisfies k ≥ 1 + δ(a, k)/t, and

tk2 − (1 + δ(a, k))k − t− δ(a, k) ≥ 0.

Let αn = k and βn = kn, for all n ∈ W . The hypotheses of Theorem 2 are
then met, and the corollary follows.
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