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ON THE FRACTIONAL PART OF THE
SEQUENCE {¢3, — a}

Abstract

Let {an }nzo denote a sequence of positive real numbers and let the
sequence {fn}nZo be defined by fo = 1 and Bnt1 = [[}_,a;. For
0<a<1 0<t< 1, and n, a nonnegative integer, the inequality
0 < {¢Bn — a} <t is studied, where {z} denotes the fractional part of
.

Let (a, k) = sup,,cz{a — (a + m)k} for each real number k, where
Z is the set of all integers. If a, > 14 d(a, an)/t, for each nonnegative
integer n, where 0 < a < 1,0 < t < 1, and b = a + ¢, then it is
proved that there exists a & € [a + m,b + m], for each m € Z, such
that 0 < {8, — a} <t holds for all nonnegative integers n. Further, if
tanant1 — (1 4+ 0(a, an))n+1 — t — 8(a, ant1) > 0 for infinitely many
nonnegative integers n, then for each m € Z, there exists a set of £ €
[a + m,b + m] that has the cardinality of the continuum so that 0 <
{8 — a} <t is true for all nonnegative integers n.

1 Introduction

In his paper “An unsolved problem on the powers of 3/2”, Mahler [12] defines
a real number a, o > 0, to be a Z-number if 0 < {a(3)"} < 1/2, for alln € W,
where {z} denotes the fractional part of z, and W is the set of nonnegative
integers. Although Mahler proves that the set of all Z-numbers is at most
countable, it is still unknown whether such Z-numbers exist. This problem is
now known as Mahler’s problem [15]. Some results related to this problem are
contained in references [3, 4, 5, 6, 9].

A related problem is the existence of £ > 0 so that 0 < {{6"} < ¢, for all
n € W, given 0 <t <1and S > 1. Tijdeman [15] has shown that such a
€ exists, for 8 > 2 and t > 1/(8 — 1). Further, Flatto [11] shows if 8 > 0 is
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rational (that is, 5 = p/q, (p,q) =1, and p,q € N), then £ > 0 exists if 8 > 2
and t > (¢ —1)/(¢(8—1)) = (¢ - 1)/(p—q).

In answer to a question of Erdds [10], Pollington [14] proved that if any
positive real sequence {8, }52, satisfies B,41/8, > @ > 1, for all n € W, then
there is a set of real £ of Hausdorfl dimension 1 so that the sequence {£03,,} is
not dense on [0,1). Boshernitzan [2] and Ajtai, Havas, and Komlés [1] have
shown that the fixed lower bound on the ratio of consecutive f3,, is necessary.
In lemma 1 of the latter, the authors show that for any sequence of real
an > 1, a,, — 1, there exists a sequence of positive integers {3, }52, such that
Bn+1/0Bn > an, for all n, and for any irrational £, the sequence £/3,, is uniformly
distributed (mod 1). For rational £ = p/q, (p,q) = 1, then the sequence £03,, is
uniformly distributed (mod 1) over the set {0,1/q,2/q,...,(¢—1)/q}.

This motivates the question: “For what sequences {8, }52, will £ > 0 exist
such that 0 < {6, —a} <t ,foralln € W, where 0 <a<1land 0<t<1?”
This paper identifies a class of sequences {3, }52, for which this is true.

2 Existence of a Set of ¢

Let {8,}52, be a positive, strictly increasing sequence of real numbers, and
{@n}22, be a positive sequence of real numbers such that «,, = S,+1/0n, for
alln e W.

Let A, =U,°___ Q(m,n), with Q(m,n) = [(a+m)B,*, (b+m)B, "], for
all n € W and m € Z, where Z is the set of all integers, and a,b are real
numbers such that a < b.

For a,k € R, where R is the set of real numbers, define

1,if k is irrational,

d(a, k) =4 (¢—1)/q+{al¢ —p)}/q,if k =p/q, where p, q are relatively
prime integers, and ¢ > 0.

It can be shown that d(a,k) = sup,,cz{a — (a + m)k}. This fact is used
extensively in this paper. For example, §(0,p/q) = (¢ — 1)/q, where p and ¢
are relatively prime positive integers.

Theorem 1. Let {3,}22, be a positive increasing sequence of real numbers
such that Bp1/Bn = an, foralln e W. If0<a<1,0<t <1, b=a+t,
and o, > 14 6(a,a)/t, for alln € W, then for every m € Z, there exists a
€ a4+ m,b+m], such that 0 < {&83, —a} <t, foralln e W.

The following lemmas are needed to prove this theorem.
In what follows, a,b, and t are real numbers such that 0 < a < 1,
0<t<1l,and b=a+t.
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Lemma 1. If ap, > 0, for alln € W, ¢ € R, then 0 < {£8, — a} < t, for all
neW, if and only if £ € (), —y An-

PrOOF. Given a,, > 0, foralln e W, £ e R, 0<a <1, and b = a+1, if
0<{¢B,—a} <t forallnc W, andj= |£3, —al, then a+j < &3, < b+,
that is, £ € Q(j,n), for all n € W. Hence, £ € (,— An. On the other hand, if
£ €Ny_oAn, then for all n € W, there exists m € Z so that £ € Q(m,n), that
is, a < {6, —m} <b. Thus, 0 < {6, —a—m} < t, implying m = |5, —a].
Hence, 0 < {£6,, — a} < t, for all n € W. Notice that this lemma proves that
the set of all ¢ that satisfy 0 < {£8,, — a} <t is a closed set, since it is equal
to the intersection of the closed sets A,,. O

Define m’ = [(a + m)a, — a] € Z, where n € W. Here, [z] is the least
integer greater than x.

Lemma 2. Ifme€Z,ne W, a, > 1+2%2%) andm’ = [(a+m)ay —a] € Z,

i
then Q(m’/,n+1) C Q(m,n).
PROOF. By definition of m’/, (a +m)a, < a+m’. Also,
a+m' —é(a,a,) < (a+m)a,. Hence,

(a+m' = d(a,0m))B41 < (a+m)B" < (a+m)B 1.
Let . € Q(m/,n+1). Then z > (a +m)3, !, and
v < (b+m)B < (00 an) +b—a)B 1y + (a+m' = (e, 0n))B, 4
So
< (8(a,00) +b—a)Bpy + (at+m)B" < (b+m)B "
Hence, z € Q(m,n). O
The theorem can now be proven.

PROOF. Let o, > 146(a, ap)/t, for all n € W. Define the sequence {m,,}52
where my is an arbitrary integer, and mp4+1 = [(a—my, )y, —al, for alln € W.
Also define the sequence {I,,}52, of closed bounded intervals I, = Q(my,,n).
From Lemma 2, I,41 C I, for all n € W. Further, I, C A,, for alln € W.

Suppose I; € (V. _yAn. Then I;1; C I; C (Y._y A, and also I;1; C
Ajyy. Thus Ijy; C (V4 A, Since Iy € Ag = o_, An, by the principle of
induction, I; C (), _, An, for all j € W.

By Cantor’s nested interval theorem, there exists a § € R such that { € I,
for all j € W. Hence, £ € (,—, An, and by Lemma 1, 0 < {£6,, — a} < t, for
all n € W. In addition, £ € Iy = [a 4+ mg, b + mg]. O

Theorems 1 and 2 of Tijdeman [15] are special cases of this theorem when
«, is constant for all n € W.
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3 Uncountability of the Set of &

Flatto [11] gives a condition for uncountability of the set of £ that satisfies
0<{¢p"} <t forallne W. If 3 >3and 2/(f—1) <t <1, then for any
integer m, there exists such a set of £ with cardinality of the continuum and
where £ € [m,m + 1).

In what follows, an improvement of this theorem is given for certain se-
quences of positive real numbers {8,}5%, where G,11/6, > a > 1, for all
neWw.

Theorem 2. Let {3,}52, be a positive increasing sequence of real numbers
such that a, = Bps1/Pn, for alln e W. Given 0 <a < 1,0 <t <1,
b=a+t, and o, > 145(a, o) /t, for alln € W, if there is a strictly increasing
sequence of whole numbers {k;}32, such that

tag, Q41 — (1 + 5(@, aki))aki+1 —t— 5(&, akri-l) >0,

then for any m € Z, there exists a set of & with the cardinality of the continuum
so that £ € [a4+ m,b+m] and £ satisfies 0 < {£63, —a} <t, for alln € W.

To prove this theorem we need Lemma 3.
Lemma 3. Suppose m € Z, n € W,
tanantr — (14 6(a, an)aner —t — d(a, apy1) >0, (1)
an > 14 6(a,an)/t, and api1 > 14 6(a,ang1)/t. If

my =[(a +m)a, —al,

=[(a+mi)ans1 —al,

then

PROOF. By Lemma 2, Q(myi,n+1) C Q(m,n), Q(ma,n+2) C Q(my,n+1),
and Q(my,n +2) € Q(my,n + 1). Thus, Q(ma,n +2) C Q(m,n).
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If 2 € Q(my,n +2), then = > (a + m;)ﬁ;ig. This implies that
x> (a+m2)fyis > (a+m)f; "
On the other hand, z < (b—i—m;)ﬁ;lz. If v, and a1 satisfy inequality (1),
then
(0(a,an) + Dansr +t+0(a, ani1) < (b+m)ananis — (a+m)ag 1.

This inequality yields

(b+ m)anany1 >[(a+m)ay, + 6(a, an) + a1 +t + 6(a, )
[+ [(a+m)a, —a] + apt1 +t+ 6(a, anr)

(a4+mq + Dayy1 +t+d(a, apgq)

(a+m1 + 1Dan + (b= a) + 6(a, antr)

a+ [(a+mi+Danss —al + (b—a) = b+ m.

v

%

Thus, b+ my < (b + m)anonms1, which implies that = < (b+m)3; . Hence,
z € Q(m,n) and thus Q(msy,n +2) C Q(m,n), which completes the proof of
this lemma. O

To prove Theorem 2, a ¢ will be constructed satisfying 0 < {£3, —a} < t,
for all n € W, and that is related to some binary sequence. It will then be
shown that there is a one-to-one correspondence between these £ and the set
of all binary sequences which have the cardinality of the continuum.

PROOF. Let a,b,t, and the sequence {a,}52, have the properties described
in the statement of the theorem. Let the sequence {k;}>2, be further re-
stricted by the condition k;+1 — k; > 2. Note that this restriction is justifiable
since any increasing sequence of integers has a subsequence where consecutive
terms differ by at least two. Finally, the inequality (1) holds for all k;, upon
substituting k; for n.

Let R = {r;}$2, be a binary sequence; that is, r; € {0,1}, for all i € W.

Let {m,}>2, be a sequence of integers, with mg an arbitrary integer, and

[(a+mn+7j)an —al, wherej e W,n=Fk;+1,
Mpa1 = /
o [(a+mp)a, —al, otherwise.

A sequence of intervals of I, can now be defined by I, = Q(m,,n). Note that
given my, a, and {a, }22, I, is dependent only on the binary sequence R. So
I, will be a function from the binary sequences to a set of compact intervals
in R. This is denoted by I,,(R) = Q(my, n).

If n # k; +1, for all j € W, then m,41 = [(a + my,)a, — a]. Hence,
apn > 14 6(a, o)/t implies that Q(my41,n+1) € Q(m,n), by Lemma 2, and
Lyt (R) C L(R).
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If n = k; + 1 for some j € W, then my,41 = [(a + my, + rj)oy, — a| and
tan—10n — (1 + 6(a,an—1))an, —t — 6(a,ap) > 0. Therefore, by Lemma 3,
Q(Mmps1,n+1) CQ(m,n) and Q(myy1,n+ 1) C Q(my_1,n — 1), regardless
of the value of r;. Thus, I,,11(R) C I,(R) and I,41(R) C I,_1(R). If | # k;,
for all j € W, and I;(R) C (,_y An, then I;11(R) C I;(R) and I;;,(R) C
Mo An. Also I;11(R) C Ajyy, and hence, I111(R) C (g An. If 1 = kj,
for some j € W, and I;_1(R) C ﬂil_:lo Ay, then I111(R) C ﬂiz_:lo A,,. Further,
I11+1(R) C I;(R), which implies that I;11(R) C A;. Since I;11(R) C Ay, it
follows that I;41(R) C ﬂH:lO A,. So by an argument similar to the one used

n
in Theorem 1, I;(R) C ﬂ’ln:() Ay, for all [ # kj,j € W. By Cantor’s nested
interval theorem, there exists a real £ € [mg+a, mo+b] such that £ € (7, Ay,.
Thus by Lemma 1, 0 < {£8,, — a} <t is true, for all n € W.
Let S = {s;}52,5:; € {0,1} be a second binary sequence distinct from R,
that is, there is some whole number n such that s, # r,. A new sequence of
integers {l,,}°2, can be constructed with ly an arbitrary integer, and

I ) (a+1,+s5)an —al], where j € W,
e [(a+ln)on —al, otherwise.

There is a real £’ that is contained in all the sets I,,(S) and such that 0 <
{¢'B, —a} <t holds, for all n € W.

Since S # R, there exists a whole number p such that s, # r, and s; = r;,
for 0 < i < p—1. This means that I, = my, and thus Q(ly,, kp) = Q(mg,, kp);
that is, Iy, (R) = Iy, (5).

However, s, # rp yields Iy, 11 # mg,+1, and hence,

Qi1 kp + 1) () QM 41,k + 1) = 0.

This implies that £ # £'. Thus, for every binary sequence, there is a unique
¢ € [a+mg,b+mg] so that 0 < {{8,—a} <t, foralln € W. The set of infinite
binary sequences has the cardinality of the continuum and so must the set of
¢ that satisfies 0 < {£f,, —a} < t, for all n € W, and £ € [a + mg,b + mg).
This proves the theorem. O

A useful corollary follows from this theorem when 3, = k™, for all n € W.
This corollary improves a result of Flatto [11].

Corollary 1. Given0<a<1,0<t<1l,b=a+t, and if

_ 1+6(a k) + V(L +68(a, k)2 +4t(t + (a, k))

k
2t ’
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then for every integer m there is a set of € with the cardinality of the continuum
so that £ € [a+m,b+m|, and & satisfies 0 < {€k™ —a} <, for alln € W.

PROOF. Note that k satisfies k > 1+ d(a, k)/t, and

th? — (1 + 6(a, k))k —t — 8(a, k) > 0.

Let a, = k and (3, = k™, for all n € W. The hypotheses of Theorem 2 are
then met, and the corollary follows.
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