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LOCAL AND GLOBAL MONOTONICITY

Abstract

We give characterizations of sets E C [0, 1] for which the local mono-
tonicity of each function f : [0,1] — R from a given class F, at all points
x € E, implies the global monotonicity of f on [0,1]. We consider as
F — the families of continuous functions, differentiable functions, abso-
lutely continuous functions, functions of class C™ (n = 1,2, ...,00), real
analytic functions and polynomials.

We shall consider real-valued functions defined on [0,1]. However, all our
results remain true when [0, 1] is replaced by any interval J. This remark will
be used without comments in some of our proofs. Let us recall the notions of
local monotonicity for real functions defined on [0, 1]. They can be found in
Bruckner’s monograph [1]. As we know, they were introduced by E. Borel.

A function f : [0,1] — R is called left non-decreasing (LND) at a point
x € (0,1] if

36>0vye(x—6,x)f(y) < f(:l))

Analogously we mean a right non-decreasing (RND) function at = € [0,1). A
function f : [0,1] — R is called non-decreasing (ND) at « € (0,1) if it is LND
and RND at z. The following theorem shows the connections between local
and global monotonicity of real functions.

Theorem 1. (J. Jachymski [3]) Let f : [0,1] — R. The following conditions
are equivalent:

(i) f is non-decreasing;

(1) Vaejo,1)(f is ND at x);
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(ii3) Vace(o 1)(f is LND at x) and
Vaepo,) (f is right lower-semicontinuous at x).
(
(

(iv) VIE 0,1)(f is RND at x) and
Vae(0,1)(f is left upper-semicontinuous at x).

PROOF. (i) = (i) obvious.

(i1) = (i) If f is RND at x, then f(z) < liminf,_,,+ f(y). This means
that f is right lower-semicontinuous at x.

(iii) = (i) Let 0 <c<d <1, M ={x < d: Ypaqf(t) < f(d)} and
m = inf M. We now show that m € M. Let {s,} be a sequence in M such
that s,, — m. We have

f(m) < liminf f(z) < liminf f(s,) < f(d)

z—mt

so m € M. Suppose that m > 0. Since f is LND at m, there exists § > 0 such
that f(¢) < f(m) for all t € (m—4,m) which together with m € M contradicts
the definition of m. Thus m = 0 which shows that f(c) < f(d).

(73) = (iv) goes similarly as (i7) = (iii).

(iv) = (1) goes similarly as (ii7) = (). O

By C(]0,1]) we denote the set of all continuous functions on [0, 1].
Corollary 1. Let f € C([0,1]). The following conditions are equivalent:
(1) Yae(o,1)(f is LND at x);
(i) f is non-decreasing.

Easy examples witness that in Theorem 1 we cannot weaken conditions
(7) and (429) for every function f : [0,1] — R in such a way that we consider
"Viep” instead of "V,c(oq)” for a proper subset E of [0,1]. The aim of this
paper is to study how small can be a set E C [0,1] to make implication
"(Veer(f is ND at x)) = f is non-decreasing” true for every function f from
a particular class. First we consider the class C([0, 1]).

Lemma 1. Let f : [0,1] — R and =z € (0,1). If f is continuous and ND at
any point of the set [0,1]\ {z}, then f is non-decreasing.

PROOF. By Theorem 1, f is non-decreasing in intervals [0, z) and (z, 1]. Since
f is continuous at z, we have

VicaVssa(f(1) < f(z) < f(5)). -

Lemma 2. Let f € C([0,1]). The following conditions are equivalent:
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(i) f is non-decreasing;
(i) Vucio1) (f is LND at x or f is RND at x).

PROOF. (i) = (i) is obvious.

(#4) = (i) Suppose that f is not non-decreasing. Then there exist numbers
ag and by such that 0 < ag < by < 1 and f(ag) > f(bo). The Darboux property
applied to f implies that there exist numbers ¢ and d such that ag < ¢ < d < by

and
2 b 2f(b
Flo) = flao) + f( 0)’ Fd) = f(ao) + 2 (bo)
3 3
and there exists g € (¢, d) such that f(g) = w. If g—c < d—g, then we
take a; = ¢ and by = g, otherwise a; = g and by =d. So 0 < by —a; < % <
bo—ag 1
2 =2
Proceeding inductively we get strictly increasing sequences {a,}, {f(b.)}
and strictly decreasing sequences {b, }, { f(a,)}. Furthermore 0 < b, —a, < 5=

for all n. Let z = lim,, .o a, = lim,,_,+ b,. Suppose for instance that f is
LND at x. Then

s5>0Vye(z—s,2)(f(y) < f(z)).

But for large enough n € N we have f(a,) > f(x) and a,, € (x — §, ). This is
a contradiction. Hence f is non-decreasing. O

Lemma 3. Let f € C([0,1]) and let E C [0, 1] be countable and Gs. If
Vaeoape(fis LND at x or f is RND at x),

then f is non-decreasing.

PROOF. Since F is countable and G, there exists an ordinal oo < wq such that
(x) E* =0 (the ath Cantor-Bendixson derivative of E is empty).
This is an easy exercise. See e.g. [4, 2.5.14]. We shall show inductively that f
is RND or LND at any point of the set E\ E? for 3 < a.

Let * € E'\ E'; i.e., z is an isolated point of E. There exists ¢ > 0 such
that EN (z — e,z 4+¢) = {x}. So

Vye(z—e,2)(f is LND at z or f is RND at z).
Applying Lemma 2 we obtain that f|_.,) is non-decreasing. Similarly
fl(z.wte) is non-decreasing. By Lemma 1, we get that f|,_. ,4c) is non-

decreasing. Hence, f is ND at x. From these observations we get

Vaeo\g1 (f is LND at z or f is RND at x).
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Let 8 < a.. Suppose that
Vy<pVaelo,\er (f is LND at @ or f is RND at x).

If § is a limit ordinal, then it follows that f is LND or RND at any point of
the set (J,_5([0,1) \ E7) = [0,1]\ ",z E” = [0,1] \ EA. If B is a successor
ordinal, then there exists & such that 3 = &€ 4+ 1. With isolated points of E¥,
we repeat the same reasoning as in the first step of induction.

By (x) we have

Vael0,1)(f is LND at 2 or f is RND at x).
The assertion follows from Lemma 2. O

Theorem 2. Let E C [0,1]. The following conditions are equivalent:

(1) Y¢ec(oa)[(Veer(f is LND at x or f is RND at x)) =
f is non-decreasing);

(i) The set [0,1]\ E does not contain a homeomorph of the Cantor set.
PROOF. (i1) = (i) Fix f € C([0,1]). Denote by QT the positive rationals. Let
A={x€]0,1]: fis LND at z or f is RND at x}.

Then
A=Az €[0,1]: 35,>0%ye@—s..0) [ (9) < [(2)}
Uiz € [0,1]: 35, >0Vye(@atsn) f(y) = f(2)}
={z €0,1]: Fseq+Vye@-s..00f(y) < f(2)}
U{z € [0,1] : Jseo+ Yye(@o+s.) f(y) = f(2)},

so A is F,. Since [0,1] \ A C [0,1] \ E, then [0,1] \ A does not contain a
homeomorph of the Cantor set. Hence [0,1]\ A is countable. By Lemma 3 we
conclude that f is non-decreasing.

(1) = (i1) Assume that [0, 1]\ E contains a homeomorph of the Cantor set,
say K. Let f:[0,1] — R be a Cantor-type function associated with the set K
such that f(0) = 1 and f(1) = 0. Since f is constant on each component of
[0,1] \ K, it is ND at any point of [0,1] \ K, but it is not non-decreasing. [J
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Lemma 4. Let f € C([0,1]) and let E C (0,1) be dense. If
Veer(f is ND at x),

then there exists a set U D E open in (0,1) such that for each component (a,b)
of U we have f(a) < f(b).

Proo¥. Put U = J,cp(z—0dz, v+0,) where 6, > 0 is a number obtained from
the definition of ND at the point . Let (a,b) be a component of U. Consider
two sequences {a,}, {b,} such that a < a, < b, < b, for all n € N and
a =limy,_,o0 an and b = lim,,_, o by,. Fix n € N. The family {(z — .,z + d,) :
x € EN(a,b)} is an open covering of [ay,, b,]. There exists a finite subcovering
{(zy =g, 2f +6p) : k=0,1,...,k,} such that 2y <zt < .. <z} and d} =
g7 . If necessary we remove each interval contained in any other interval in the
subcovering. For k = 0,1, ..., k, fix yp € (a}_,,a}_,+07_,)N(x} =06}, z}) such
that z}_; <yp <az. Then f(zp_,) < f(yp) < f(z}) for k=1, ..., k,. Hence
flzg—0y) < f(xf +03 ). Since lim,, oo (25 —07) = a, lim, oo (z} +03 ) =0,
and f is continuous we have f(a) < f(b). O

Let p stand for Lebesgue measure on R.

Lemma 5. Assume that F € C([0,1]) and F satisfies condition (N) of Luzin.
Let E C [0,1] be such that u([0,1]\ E) = 0. If

\
Voer(F is ND at x),

then F' is non-decreasing.

PROOF. Suppose that F' is not non-decreasing. There exist numbers a and b
such that 0 < a < b <1 and F(a) > F(b). By Lemma 4 applied to E N (a,b)
and [a,b] in place of E and [0, 1], there exists a sequence of pairwise disjoint
intervals (an,b,) C [a,b], n € N, such that F(a,) < F(b,) and u([a,b] \
U,,(an, b)) = 0. We shall prove that [F(b), F(a)] C F([a,b] \ U;—,(a;,b;)) for
all n.

The Darboux property of F' shows that for every y between F'(a) and
F(ay) there is x € (a,a1) such that F(z) = y, and for every y between F'(b)
and F'(by) there is z € (b1,b) such that F(z) = y. But F(a1) < F(b1) so
[F(b),F(a)] C F([a,b] \ (a1,b1)). Since (a;,b;) are pairwise disjoint intervals,
either (as,b2) C (a,a1) or (az,b2) C (b1,b). Assume that (az,b2) C (a,a1).
Similarly as above we show that for every y between F(a) and F(ay) there
is ¢ € (a,a1) \ (ag,b2) such that F(z) = y. So [F(b),F(a)] C F([a,b] \

U (ai b))



770 SzyMON GLAB

Proceeding inductively we have [F(b), F(a)] C F([a,b] \ U.—, (ai, b;)) for
all n. Since A4, = [0,1]\ U, (a;,b;), n € N, is decreasing sequence of compact
sets, we have [, F'(A,) = F((,, An). Consequently [F(b), F(a)] C F([a,b] \
U, (an,by)). But p([a, b]\U,,(an, bn)) = 0, so F' does not satisfy the condition
(N) of Luzin, a contradiction. O

Theorem 3. Assume that F is one of the following classes of functions on
[0,1]: continuous functions satisfying condition (N), absolutely continuous
functions, differentiable functions, Lipschitz functions. Let E C [0,1]. The
following conditions are equivalent:

(i) Veer|(Veer(F is ND at x)) = F is non-decreasing);
(i) The set [0,1]\ E does not contain any set of positive measure.

PROOF. (ii) = (i) Observe that the set A = {z € [0,1]: F is ND at z} is F,.
So A is measurable and p([0,1]\ A) = 0. Now (i) follows from Lemma 5; note
that functions from F satisfy (N) (see e.g. [2, Thm. 6.12, Lemma 6.14]).

(i) = () Suppose that [0,1] \ E contains a set of positive measure. So
[0,1] \ E contains a closed set D of positive measure. Then E C [0,1]\ D and
[0,1] \ D = |J,, Un, where U,, are pairwise disjoint intervals which are open
sets in [0, 1]. We shall construct a differentiable function F' satisfying Lipschitz
condition, which is ND at any point of [0,1] \ D but is not non-decreasing.
This will yield a contradiction.

Let H C D be aset of type F,, of points of density of D, with u(H) = u(D).
By [1, Thm. 6.5, p. 22], we can find an approximately continuous function
g : [0,1] — R which takes values from (0, 1] on H and which is 0 outside of H.

Put f =g — 1. Pick a real o such that fol f <a<1. Forzel0,1] put

F(z) = / "(Fy) - o) dy.

Then F is differentiable [2, Thm. 14.8] and F satisfies Lipschitz condition.
Additionally, F(0) =0, FI(1) < u([0,1]\D)—a < 0 and F |y, is non-decreasing
for every n. O

Theorem 4. Assume that F is one of the following classes of real functions on
[0,1]: functions of class C™ (n = 1,2,...,00), analytic functions, polynomials.
Let E C [0,1]. The following conditions are equivalent:

(i) Vier|(Voer(F is ND at x)) = F is non-decreasing);

(ii) the set E is dense in [0, 1].
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PROOF. (i7) = (i) It suffices to show that f'(z) > 0 for all z € (0,1).

Suppose that there exists a point x € (0,1) such that f'(z) < 0. There is
an open interval U = (z — 0, x + §) such that f'(y) < 0 for all y € U. Hence f
is decreasing on U and f cannot be ND at any point of U. This violates (ii),
since U N E = () is a contradiction.

(i) = (i1) Suppose that E is not dense. There exists an interval [a,b] C
[0,1] such that E N [a,b] = 0. Consider a function f : [0,1] — R defined as an
antiderivative of (z — a)(z — b). Then f is ND at all points of E but is not
non-decreasing. This is a contradiction. O
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