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THE RIESZ APPROACH TO THE
LEBESGUE INTEGRAL AND COMPLETE

FUNCTION SPACES

Abstract

This paper is a step by step account of the Riesz approach to the
Lebesgue integral. Besides, motivating the use of “almost everywhere”
tools, we eliminate unnecessary equivalences, and we give a simple rep-
resentation of a complete space of integrable functions, usually missing
from classical treatises.

1 Introduction

1.1 Aims and Motivations

The aim of this paper is to give a step by step account of the Riesz approach 1

to the Lebesgue integral. This approach is particularly useful 2 for several
reasons, both practical and theoretical:

• it allows us to define the Lebesgue integral directly by extending the
Cauchy or Riemann integral, thus allowing calculus students to derive
the Lebesgue integral by means of integrals that they are familiar with;
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1For the original expositions, see [7], [8].
2It is not the purpose of this paper to demonstrate that the Riesz approach is the main

route to the integral, but rather to show that this approach has several useful characteristics
compared with the classical measure-theoretic approach. Besides, there is a third approach:
the Riemann-like definition of the Kurzweil-Henstock integral. The Kurzweil-Henstock in-
tegral is even more general than Lebesgue’s, and because of its intuitive definition, an
increasing number of authors adopt it in their textbooks (see [1] and [5]) as a basic notion
of integral.
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• it shows that the passage of limit under the integral sign may be used as
the definition of the Lebesgue integral itself (see Extension 2.13 and 2.30);

• it provides different versions of the Monotone Convergence Theorem;
from an elementary setting to the final one, so that the role played
by newly introduced concepts can be seen at each step (see Monotone
Convergence Theorems 2.6.1, 2.6.2 and 2.6.3);

• it strongly motivates the use of the “almost everywhere” concept (see
Section 2.4, Remark 2.25, Lemma 2.32 and Section 3.3);

• it quickly reaches density and completeness results (see Section 2.7, 2.8
and 3.2);

• it can be set in an abstract framework that also provides Lp spaces, and
Radon measures 3.

The Riesz approach to the Lebesgue integral rests upon

1. the concept of a Riesz sequence (see Definition 2.5);

2. the basic property of Daniell continuity (see Definitions 2.7, 2.28 and
Theorem 2.29).

Those two ingredients are fundamental to the application of the Riesz
approach to more abstract frameworks.

1.2 Domains and Functions Spaces

In vector spaces of regular functions we are accustomed to defining pointwise
algebraic operations among functions all having the same domain of defini-
tion. This can occur because such functions attain finite values. However,
when dealing with integrable functions, it may happen that they diverge at
some point. Thus, pointwise vector operations are inconsistent for such func-
tions (see Appendix 5). Nevertheless, we can notice that certain functions 4

diverge on sets that are reasonably small (see Theorem 3.2). The “smallness”
of such sets (see Section 2.4) allows us to introduce the concept of “almost
everywhere true” properties. Thanks to this concept one can define new vec-
tor operations that are then fully consistent and still act pointwise (but now
“almost everywhere” and no more on a fixed domain). With respect to such
operations the space RI −RI (see Definitions 2.6 and 2.21) can be considered
as a vector space.

3See [15], [13]. In a subsequent writing we will consider Sobolev spaces.
4Those belonging to RI (see Section 2.1).
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1.3 About Completion

Usual treatments 5 extend the integral from a Riesz space R (see Defini-
tion 2.1) directly to the class which we will denote as RI− (see Definition 2.6
and 2.39), and then they show that the space of all Lebesgue integrable func-
tions L1 coincides with RI− − RI− (see also Section 3.2). However, this
construction misses important observations from the intermediate set RI . In
fact, in order to get a completion of R it is sufficient to consider RI − RI
(see Definition 2.21, Theorem 2.37 and Section 3.2). L1 and RI − RI are
isometrically isomorphic, but functions in the latter space are far more ex-
plicitly characterized than elements in L1. Since completing the seminormed
space (R, I(| · |)) is one of the main motivations for introducing the Lebesgue
integral, completeness of RI −RI is remarkable.

1.4 Structure of the Paper

This paper is divided into two main parts: an abstract setting and a motivating
guideline. The aim of the abstract setting is twofold:

• to show in full generality how simply and quickly the Riesz method
achieves powerful results and can be extended for applications to other
situations;

• to provide a template any instructor can fill choosing his (or her) favorite
concrete Riesz space R and integral I, depending on didactical needs.

The second part of this article attempts to describe the concrete back-
ground that lies behind the abstract approach. It briefly retraces some basic
motivations in the Riesz approach, and can be considered as a technical intro-
duction to the abstract setting. It follows the abstract setting only because
there are particular notions and results related to the previous general theory.
In this respect, one may prefer to read it first.

2 The Abstract Setting

2.1 Basic Pointwise Definitions

Definition 2.1. A class R = R(Ω) of real-valued functions all defined on a
set Ω is called a Riesz space on Ω if,

5See [2], [3], [4], [6].
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• it is a real vector space with respect to pointwise vector operations in
(R,+, ·):

(f + g)(x) := f(x) + g(x)
(r · f)(x) := r · f(x) ∀f, g ∈ R, ∀x ∈ Ω, ∀r ∈ R

• when f and g are in R, then also f ∨ g is in R,

where
(
f ∨ g

)
(x) := max{f(x), g(x)} ∀x ∈ Ω.

Example 2.2. Step functions and continuous functions with compact support
are typical Riesz spaces 6.

Definition 2.3. A functional J : A → R defined on a class of real valued
functions A will be called pointwise increasing if, given f, g ∈ A such that

f(x) ≤ g(x) ∀x ∈ Ω, then J(f) ≤ J(g).

Definition 2.4. A function f : Ω → R ∪ {+∞} will be called a positively
extended real function.

Definition 2.5. Let J : E → R be a functional defined on a class E = E(Ω) of
positively extended real functions all defined on the same set Ω. A sequence
(fn) in E will be called a Riesz sequence for (J, E) if it satisfies the two
following conditions:

i)fn(x) ≤ fn+1(x) ∀n ∈ N, ∀x ∈ Ω (1)

ii)J(fn) ≤ C C ∈ R, independent of n.

Here relation “≤” in i) extends the usual order relation on R in the follow-
ing way: ∀x ∈ R ∪ {+∞} x ≤ +∞.

Condition (i) implies that any Riesz sequence has always pointwise limit
(possibly +∞).

Definition 2.6. Let J : R → R be a functional on a Riesz space R = R(Ω);
Define the following class of positively extended real functions:

RJ:=
{
f :Ω→ R∪{+∞}; f is thepointwise limitof aRiesz sequence for (J,R)

}
.

6See Sections 3.1.2 and 3.1.3.
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Definition 2.7. A functional J : R → R on a Riesz space R = R(Ω) is called
pointwise Daniell continuous if, given a Riesz sequence (δn) for (J,R),
such that

lim
n
δn(x) = 0 ∀x ∈ Ω, then lim

n
J(δn) = 0.

Definition 2.8. By an integral on a Riesz space R = R(Ω) we mean a
pointwise increasing linear functional I : R → R that is pointwise Daniell
continuous.

Remark 2.9. integral over the Riesz space K(Ω) of continuous functions with
compact support is also called a Radon measure7.

If I is an integral on a Riesz space R, then I(| · |) is a seminorm and a
Riesz sequence is simply a particular Cauchy sequence with respect to that
seminorm:

Proposition 2.10. Let I be an integral on a Riesz space R. Let (φn) be an
increasing sequence of functions in R:

(φn) is a Cauchy sequence ⇐⇒ I(φn) ≤ C,
with respect to I(| · |) (C ∈ R independent of n).

Remark 2.11. Contrary to Riesz sequences, Cauchy sequences may not con-
verge at any point.

In the next section we will extend an integral I to each function in RI
thanks to the Daniell Continuity and the following

Proposition 2.12. Let I be an integral on a Riesz space R = R(Ω).
Let (δn) be a Riesz sequence for (I,R) such that lim

n
δn(x) ≥ 0 ∀x ∈ Ω,

then lim
n
I(δn) ≥ 0.

Proof of Proposition 2.12. Consider βn(x) = min{δn(x), 0} ≤ δn(x) ∀x ∈
Ω. (βn) is a Riesz sequence for (I,R) and lim

n
βn(x) = 0. By Daniell Continu-

ity and monotonicity of I we have that lim
n
I(δn) ≥ lim

n
I(βn) = 0.

We want to stress that, in the foregoing proposition, the pointwise limit of
(δn) may be infinite at some point in Ω.

7See [13].
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2.2 The First Extension

Extension 2.13. Let I be an integral on a Riesz space R = R(Ω). Corre-
sponding to any f ∈ RI , there exists a Riesz sequence (φn) for (I,R) such
that f(x) = lim

n
φn(x) ∀x ∈ Ω; define

Ī(f) := lim
n
I(φn).

Proposition 2.14. If I is an integral on a Riesz space R = R(Ω), then Ī is a
well defined functional on the class of positively extended real functions RI .

The well definiteness of Ī follows directly from the following

Proposition 2.15. Let I be an integral on a Riesz space R = R(Ω). If (φn)
and (ψn) are Riesz sequences for (I,R) such that

lim
n
φn(x) ≤ lim

n
ψn(x) ∀x ∈ Ω, then lim

n
I(φn) ≤ lim

n
I(ψn).

Proof of Proposition 2.15. For all fixed m the sequence

ψ1 − φm , ψ2 − φm , . . . , ψn − φm , . . .

is a Riesz sequence for (I,R). Besides, its pointwise limit is positive: let x ∈ Ω,
then

lim
n

(
ψn(x)− φm(x)

)
=
(

lim
n
ψn(x)

)
− φm(x) ≥

(
lim
n
φn(x)

)
− φm(x) ≥ 0.

The thesis then follows on applying Proposition 2.12.

2.3 Algebraic Operation within RI

The foregoing propositions have shown that the elements in RI may be con-
sidered as new integrable functions. Let us consider these objects closely.

Among elements f, g ∈ RI we can perform certain pointwise operations
such as

f ∨ g = max{f, g}, f ∧ g = min{f, g}, f + g and ρ · f (where ρ ≥ 0) ,

still obtaining elements in RI ; moreover the following holds

Proposition 2.16. Let I be an integral on a Riesz space R = R(Ω), then Ī
is additive on RI ; that is, if f, g ∈ RI , then

f + g ∈ RI and Ī(f + g) = Ī(f) + Ī(g).
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In particular, if f ∈ RI and φ ∈ R we have f − φ ∈ RI and Ī(f − φ) =
Ī(f) − I(φ). However, if f ∈ RI , −f does not necessarily belong to RI (see
Example 4.1). Nevertheless, one would like to also consider −f as integrable,
and −Ī(f) as its integral. Trying to perform pointwise the difference f − g a
problem arises, as this produces contradictions 8; that occurs since functions in
RI may attain the extended real value +∞. Such problems would be resolved
if one could exclusively manage real values. In this regard, let us associate to
each element f ∈ RI its domain as a real function

Ωf :=
{
x ∈ Ω : f(x) ∈ R

}
.

In the following section we will study such domains.

2.4 Full and Null Sets

If I is an integral on a Riesz space R = R(Ω, ) then, of course, Ωf = Ω for
each f ∈ R, but if f ∈ RI \ R, then Ωf could trivially be empty. However,
there is a simple condition that prevents any Ωf from ever being empty.

Proposition 2.17. Let I be an integral on a Riesz space R = R(Ω). If there
exists a function ψ ∈ R such that I(ψ) 6= 0, then for all f ∈ RI we have that
Ωf 6= ∅.

Proof of Proposition 2.17. To reach a contradiction, suppose that there
exists a particular g ∈ RI \R such that Ωg = ∅. That is to say that g(x) = +∞
∀x ∈ Ω and Ī(g) < +∞. In particular, this would imply that g + ψ = g.

Since Ī is well defined, additive and it attains only real values, we would
have the contradiction Ī(ψ) = I(ψ) = 0.

If I is not trivially zero, the domains of the new integrable functions share
much stronger properties than nonemptyness.

Proposition 2.18. Let I be an integral on a Riesz space R = R(Ω). If there
exists a function ψ ∈ R such that I(ψ) 6= 0, then

i) ∀f, g ∈ RI , Ωf ∩ Ωg 6= ∅

ii) given any sequence (fn) in RI , then
∞⋂
n=1

Ωfn 6= ∅.

8See Section 5.
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Proof. Part i) follows immediately observing that, given any f, g ∈ RI ,
Ωf ∩ Ωg is the domain of f + g that is still in RI by Proposition 2.16, and
thus it has a nonempty domain.

We show that
⋂∞
n=1 Ωfn contains the domain of a function h ∈ RI . By

hypothesis, we know that for each n ∈ N there exists a Riesz sequence (φ(n)
k )

for (I,R) such that lim
k
φ

(n)
k (x) = fn(x) for each x ∈ Ωfn and for each n ∈ N;

in particular we have that

∀k, n ∈ N, ∀x ∈ Ω φ
(n)
k (x) ≤ φ(n)

k+1(x)

∀n ∈ N ∃Cn > 0 ∀k ∈ N I(φ(n)
k ) ≤ Cn.

Fix a convergent series
∞∑
k=1

εk (having each εk > 0), and define

Φn(x) :=
ε1
C1
φ(1)
n (x) +

ε2
C2
φ(2)
n (x) + · · ·+ εn

Cn
φ(n)
n (x) =

n∑
k=1

εk
Ck

φ(k)
n (x).

(Φn) is a Riesz sequence for (I,R), indeed each Φn ∈ R, Φn ≤ Φn+1 and

I(Φn) =
n∑
k=1

εk
Ck

I(φ(k)
n ) ≤

n∑
k=1

εk < C.

Thus lim
n

Φn =: h ∈ RI and, by Proposition 2.17, Ωh 6= ∅.

Now we simply note that, if lim
n

Φn(x) < +∞, then necessarily x ∈
∞⋂
n=1

Ωfn ,

that is

Ωh ⊂
∞⋂
n=1

Ωfn .

The sets that are domains of some element in RI deserve the following

Definition 2.19. Let J : R → R be a functional on a Riesz space R = R(Ω).
A set F ⊂ Ω will be called a full set 9 for (J,R) if there exists some f ∈ RJ
such that F ⊃ Ωf . The complement of any full set (relative to Ω) will be
called a null set 10.

9To our knowledge the term ‘set of full measure’ originates from [10].
10This definition originates from Theorem 3.2 characterizing Lebesgue’s negligible sets on

R.
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Thus, Proposition 2.17 states that if I is a nontrivial integral on a Riesz
space R, then full sets for (I,R) are not empty, and Proposition 2.18 states
that countable intersections of such full sets are full sets.

Definition 2.20. Let J : R → R be a functional on a Riesz space R = R(Ω).
A property P (x) dealing with x ∈ Ω is said to be true almost everywhere
for (J,R) (a.e. for short), if the set

{
x ∈ Ω : P (x) is true

}
is a full set for

(J,R).

In the following we will see that, if the above functional J is an integral,
then properties holding almost everywhere play a central role in extending it.
In this regard, we show how certain sets of functions behave as vector spaces
with respect to slightly modified pointwise operations.

Definition 2.21. Let I be an integral on a Riesz space R = R(Ω). By
RI −RI we denote the set of functions l : Λ→ R such that

∃f, g ∈ RI :
{

Λ = Ωf ∩ Ωg
l(x) = f(x)− g(x) ∀x ∈ Λ.

We will indicate Λ also as Ωl.

Now define pointwise operations among functions l, l1 and l2 belonging to
RI −RI : (

l1 + l2
)
(x) := l1(x) + l2(x) ∀x ∈ Ωl1 ∩ Ωl2(

α · l
)
(x) := α · l(x) ∀x ∈ Ωl ∀α ∈ R; (2)

(
l1 ∨ l2

)
(x) := max{l1(x), l2(x)}(

l1 ∧ l2
)
(x) := min{l1(x), l2(x)} ∀x ∈ Ωl1 ∩ Ωl2 . (3)

It is now easy to verify the following

Proposition 2.22. Let I be an integral on a Riesz space R = R(Ω). If
l1, l2 ∈ RI −RI , then ∀α ∈ R the following real functions

l1 + αl2, l1 ∨ l2, l1 ∧ l2

still belong to RI −RI .

Let us point out a remark as simple as it is crucial:
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Remark 2.23. Let I be an integral on a Riesz space R = R(Ω) and define the
following two relations among elements f, g ∈ RI :

∀x ∈ Ωf ∩ Ωg
f � g ⇐⇒ {x : f(x) ≤ g(x)} = Ωf ∩ Ωg

f � g ⇐⇒ f ≤ g a.e.
⇐⇒ {x : f(x) ≤ g(x)} is a full set

We observe that only relation � is transitive.

Notations 2.24. If f � g and g � f , then we will write f ≡ g. That is,

f ≡ g ⇐⇒ f(x) = g(x) a.e

Remark 2.25. In this exposition we intentionally put relation ≡ in the back-
ground. We want to stress it is relation � that plays a fundamental role, not
≡. In fact, � will be useful in order to weaken the hypothesis in Proposi-
tion 2.15. Moreover, we will never use ≡ to identify functions, as we want
to deal with functions and not with equivalence classes. We will see in the
following how such resolution do not cause any harm; actually, it allows us to
better see where a.e. properties really play their role.

The operation +
(
as defined in (2)

)
is associative, commutative and the

zero function 0 ∈ R (everywhere defined on Ω ) is a neutral element: ∀l ∈
RI − RI l + 0 = l. Less obvious is the question about an opposite element
of l. In fact, we should find a function l̃ such that l+ l̃ = 0. The first difficulty
concerns domains: Ωl+l̃ ⊂ Ωl ⊂ Ω; indeed, it may well happen that Ωl 6= Ω.
In that case, identity l + l̃ = 0 could never hold pointwise on Ω. Nevertheless
each l ∈ RI has a natural unique opposite function: −l : Ωl → R. We assume
it as the definition of opposite element. We make this “inelegant” choice as we
prefer to work with functions rather than equivalence classes of functions 11.
We have just to be careful dealing with the cancellation rule; indeed, if l1 and
l2 are in RI −RI

l1 = l1 + l2 − l2 may be false, while

l1 ≡ l1 + l2 − l2 is always true, whatever is l2 .

Many properties resting on conditions holding everywhere on Ω still hold if one
requires just a.e. pointwise conditions. An example is given by the following
fundamental

11See also [14] p.xiii.
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Theorem 2.26. Let I be an integral on a Riesz space R = R(Ω), and let
f ∈ RI :

if f ≥ 0 a.e., then Ī(f) ≥ 0.

Proof. Let (φn) be a Riesz sequence for (I,R) such that f(x) = lim
n
φn(x)

∀x ∈ Ω. By hypothesis f ≥ 0 a.e., so there exists g ∈ RI such that

{x : f(x) ≥ 0} ⊃ Ωg. (4)

Let (ψn) be a Riesz sequence for (I,R) such that g(x) = lim
n
ψn(x) ∀x ∈ Ω.

So we have that, ∀x ∈ Ω

lim
n

(φn(x) + ψn(x)) = f(x) + g(x) ≥ g(x) = lim
n
ψn(x)

By Proposition 2.15 we have that

lim
n
I(φn + ψn) ≥ lim

n
I(ψn) = Ī(g)

; i.e., Ī(f +g) = Ī(f)+ Ī(g) ≥ Ī(g). As Ī(g) is finite, we obtain the thesis.

By simply remembering that if f ∈ RI and φ ∈ R, then f − φ ∈ RI and
Ī(f − φ) = Ī(f)− I(φ), we can reach the following general result:

Corollary 2.27. Let I be an integral on a Riesz space R = R(Ω), and let
f, g ∈ RI :

if f ≤ g a.e., then Ī(f) ≤ Ī(g).

Proof. Let (φn) and (ψn) be two Riesz sequences for (I,R) converging to
f and g respectively. If we consider m as fixed, then (ψn − φm) is a Riesz
sequence for (I,R) and

lim
n

(ψn − φm) = g − φm ≥ f − φm a.e.

Since f(x) − φm(x) ≥ 0 for each m ∈ N and each x ∈ Ω, we have that
g − φm ≥ 0 a.e., so

Ī(g − φm) = Ī(g)− I(φm) ≥ 0,

and that implies the thesis.

The foregoing results lead to an extension of pointwise Daniell continuity.
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Definition 2.28. A functional J : R → R defined on a Riesz space R = R(Ω)
is called Daniell continuous if, given a Riesz sequence (δn) for (J,R), such
that

lim
n
δn(x) = 0 a.e., then lim

n
J(δn) = 0.

The following crucial theorem states that Definition 2.7 and Definition 2.28
are, in a certain sense, equivalent.

Theorem 2.29. Let J be a pointwise increasing linear functional on a Riesz
space R = R(Ω), then

J is pointwise Daniell continuous ⇐⇒ J is Daniell continuous.

Proof. Part [⇐=] is immediate. Consider part [=⇒]. Let (δn) be a Riesz
sequence for (J,R) converging to zero on a full set (that is a.e.). Denoting
f = lim

n
δn, we have f ∈ RJ and f = 0 a.e. By hypothesis, J is an integral on

R, thus we can apply Corollary 2.27 and obtain our thesis.

The above theorem is fundamental; indeed it shows that pointwise Daniell
continuity of integrals is far more general than it appears. This theorem is
the main key for extending an integral to its proper setting. As a matter of
fact by using Theorem 2.29 we will accomplish the extension of Ī over all of
RI−RI . Indeed, as pointwise Daniell continuity has been used in conjunction
with Proposition 2.15 to extend integral I to Ī, we will proceed in a similar
manner to further extend Ī.

2.5 Second Extension

Extension 2.30. Let I be an integral on a Riesz space R = R(Ω). If l ∈
RI −RI , there exist f, g ∈ RI such that l = f − g;

¯̄I(l) := Ī(f)− Ī(g).

By using the foregoing propositions, one can verify the following:

Proposition 2.31. If I is an integral on a Riesz space R = R(Ω), then ¯̄I is
a well defined linear functional on the real vector space RI − RI such that,
given l1 and l2 in RI −RI

if l1 � l2, then ¯̄I(l1) ≤ ¯̄I(l2).
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2.6 Limit Theorems

Thus far we have obtained a space of real valued functions not necessarily
defined everywhere on Ω, and a linear increasing functional on such a space.

One could wonder, applying the same procedure that extended R and I,
if it could be possible to obtain new integrable functions from RI −RI and ¯̄I.

The next sections will show that this is not the case, by providing a series
of fundamental convergence theorems.

2.6.1 Monotone Convergence Theorems

Let I be an integral on a Riesz spaceR = R(Ω). As we have already noticed in
Section 2.3, RI is closed with respect to many pointwise algebraic operations;
in this section we will see closure properties for limiting processes.

We know that Ī extends I, so every Riesz sequence for (I,R) is also a
Riesz sequence for (Ī ,R); in short, that means RĪ = RI . As we have already
seen, elements in RI are positively extended real functions all defined on the
same set Ω, and Ī is a functional on RI ; we can thus define Riesz sequences
for (Ī ,RI) and, consequently,

(
RI
)Ī . The following theorem essentially states

that
(
RI
)Ī = RI . This result will prove to be the first simplified version of

the Monotone Convergence Theorem; that is why we treat it in detail.

Monotone Convergence Theorem 2.6.1. Let I be an integral on a Riesz
space R = R(Ω). Given a Riesz sequence (fn) for (Ī ,RI), then

• its pointwise limit f = lim
n
fn still belongs to RI ;

• the passage of limit under “integral” 12 sign holds; i.e.,

Ī(f) = lim
n
Ī(fn).

Proof of Monotone Convergence Theorem 2.6.1. Each fn is in RI ,
so it is the limit of some Riesz sequence (φn,k) of functions in R (increasing
with respect to k). Thus we can write f = lim

n
lim
k
φn,k. We want to find a

Riesz sequence for (I,R) pointwise converging to f . As we adopt a “diagonal”

12We put the word integral in quotation marks as RI is not a vector space.
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method, the following diagram will be useful:

φ1,1 ≤ φ1,2 ≤ φ1,3 ≤ φ1,4 ≤ · · · ≤ f1

≤ φ2,1 ≤ φ2,2 ≤ φ2,3 ≤ φ2,4 ≤ · · · ≤ f2

≤ φ3,1 ≤ φ3,2 ≤ φ3,3 ≤ φ3,4 ≤ · · · ≤ f3

≤ φ4,1 ≤ φ4,2 ≤ φ4,3 ≤ φ4,4 ≤ · · · ≤ f4

...
...

...
...

...

Denote ψn := max1≤i,j≤n{φi,j} = max1≤i≤n{φi,n}. Since R is a Riesz space,
each ψn is in R; besides (ψn) is increasing and

∀n ∈ N, ∀i(1 ≤ i ≤ n) and ∀x ∈ Ω, φi,n(x) ≤ ψn(x) ≤ fn(x). (5)

So, (ψn) is a Riesz sequence for (I,R). Letting n tend to infinity in (5),
we obtain

∀i ∈ N and ∀x ∈ Ω, lim
n
φi,n(x) = fi(x) ≤ lim

n
ψn(x) ≤ f(x). (6)

Relations (5) and (6) imply f(x) = lim
n
ψn(x) for each x ∈ Ω. From that we

get f ∈ RI and Ī(f) = lim
n
I(ψn). Also, (5) implies

lim
n
I(ψn) ≤ lim

n
Ī(fn) and I(φi,n) ≤ I(ψn). (7)

Finally, lim
n
I(φi,n) = Ī(fi) ≤ lim

n
I(ψn) and (7) give the final result.

The above Theorem implies that the pointwise increasing, additive, homo-
geneous functional Ī on RI cannot be further extended via Riesz sequences:
convergence of Riesz sequences is stable within RI . By slightly modifying the
above arguments, it is now easy to prove the following

Monotone Convergence Theorem 2.6.2. Let I be an integral on a Riesz
space R = R(Ω). Let (fn) be a sequence in RI such that

i) fn � fn+1 ∀n ∈ N

ii) Ī(fn) ≤ C C ∈ R, independent of n,

then,

1. the sequence converges almost everywhere;

2. there exists an element f in RI such that f ≡ lim
n
fn
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3. Ī(f) = lim
n
Ī(fn).

Sketch of the proof. Let (φn,k) and (ψn) be as in the foregoing proof.
Relation (5) becomes

φi,n ≤ ψn � fn.

This still implies that (ψn) is a Riesz sequence for (I,R) and that lim
n
ψn �

lim
n
fn. Relation (6) is reduced to

∀x ∈ Ω lim
n
φi,n(x) = fi(x) ≤ lim

n
ψn(x).

Thus lim
n
fn ≡ lim

n
ψn =: f ∈ RI . Part 3. of the thesis follows on applying

Corollary 2.27.

More delicate is to prove the corresponding Theorem for RI −RI :

Monotone Convergence Theorem 2.6.3. Let I an integral on a Riesz
space R = R(Ω) and let (ln) be a sequence in RI −RI such that

i) ln � ln+1 ∀n ∈ N

ii) ¯̄I(ln) ≤ C C ∈ R, independent of n,
(8)

then we have

1. the sequence converges almost everywhere;

2. there exists an element l in RI −RI such that l ≡ lim
n
ln

3. ¯̄I
(
l
)

= lim
n

¯̄I(ln).

In order to prove Theorem 2.6.3, we give the following

Lemma 2.32. Let I be an integral on a Riesz space R = R(Ω) and let l be
in RI −RI . Then, for all ε > 0 there exist two functions f ε and gε belonging
to RI such that

a) l = f ε − gε
b) gε(x) ≥ 0 ∀x ∈ Ω
c) Ī(gε) < ε.

Proof of Lemma 2.32. We know that if l ∈ RI −RI , then there exist two
elements f and g in RI such that l = f − g. Let (φn) and (ψn) be two Riesz
sequences in (R, I) such that

limn ψn(x) ∀x ∈ Ωg.
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Thus we have l(x) = lim
n
φn(x) − lim

n
ψn(x) ∀x ∈ Ωl := Ωf ∩ Ωg. In

particular, for all ε > 0 there exists Nε ∈ N such that, if n ≥ Nε, then

Ī(g − ψn) = Ī(g)− I(ψn) < ε.

Now, it suffices to put f ε := f − ψNε and gε := g − ψNε ; as a matter of fact

l(x) = f ε(x)− gε(x) ∀x ∈ Ωl, gε(x) ≥ 0 ∀x ∈ Ω, and Ī(gε) < ε.

Proof of Monotone Convergence Theorem 2.6.3. For all n ∈ N con-
sider two functions fn and gn in RI such that

ln(x) = fn(x)− gn(x) ∀x ∈ Ωln = Ωfn ∩ Ωgn .

In general,

• the sequences (fn) and (gn) may not be monotone;

• the sequences Ī(fn), Ī(gn) may not be bounded.

We observe that

ln ≡ l1 + (l2 − l1) + · · ·+ (ln − ln−1).

As each lk − lk−1 is in RI −RI , the preceding Lemma allow us to find f̃k and
g̃k in RI such that

g̃k(x) ≥ 0 ∀x ∈ Ω
Ī(g̃k) < 1

2k+1 .

Define
Fn := f1 + f̃2 + · · ·+ f̃n ∈ RI
Gn := g1 + g̃2 + · · ·+ g̃n ∈ RI .

We notice that

Gn(x) ≤ Gn+1(x) ∀n ∈ N ∀x ∈ Ω.

Since Ī is additive on RI , then

Ī(Gn) = Ī(g1) + Ī(g̃2) + · · ·+ Ī(g̃n) ≤ Ī(g1) + 1.

Thus (Gn) is a Riesz sequence for (Ī ,RI). By Monotone Convergence Theo-
rems 2.6.1 we have that there exists G in RI such that

G = lim
n
Gn and Ī(G) = lim

n
Ī(Gn) < +∞.
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Now observe that f̃k ≡ (lk − lk−1) + g̃k � 0, so we have

Fn ≡ ln +Gn and Fn � Fn+1 ∀n ∈ N.

By Corollary 2.27, we have that

Ī(Fn) ≤ Ī(Fn+1) ≤ C + Ī(G) ∀n ∈ N.

We can then apply Monotone Convergence Theorem 2.6.2 to sequence (Fn),
thus there exists F in RI such that

F ≡ lim
n
Fn and Ī(F ) = lim

n
Ī(Fn) < +∞.

If we define l := F −G, then l ∈ RI −RI and l ≡ limn ln. Finally, passage of
limit under integral sign ¯̄I is a direct consequence of definition of ¯̄I itself. As
a matter of fact

¯̄I(l) = Ī(F )− Ī(G) = lim
n

[
Ī(Fn)− Ī(Gn)

]
.

Since ln ≡ Fn−Gn, by monotonicity of ¯̄I, ¯̄I(ln) = ¯̄I(Fn−Gn) = Ī(Fn)−Ī(Gn),
and this ends the proof.

2.6.2 Dominated Convergence Theorem

Repeatedly applying Monotone Convergence Theorem 2.6.3 (Beppo Levi’s
Theorem), we obtain Lebesgue’s Dominated Convergence Theorem:

Theorem 2.33. Let I be an integral on a Riesz space R = R(Ω). Let (ln) be
a sequence in RI −RI such that

a) |ln| � h where h ∈ RI −RI and n ∈ N;
b) (ln) converges a.e.,

then, there exists l ∈ RI −RI such that l ≡ limn ln and ¯̄I(l) = lim
n

¯̄I(ln).

Proof of Theorem 2.33. For all n and k in N we have that

RI−RI3gn,k:= ln+k∧· · ·∧ln+1∧ln ≤ ln ≤ ln∨ln+1∨· · ·∨ln+k =:fn,k∈RI−RI .

Fix n ∈ N. The sequences (−gn,k) and (fn,k) are Riesz sequences for ( ¯̄I,RI −
RI). By the Monotone Convergence Theorem 2.6.3 there exist gn and fn in
RI −RI such that

gn ≡ lim
k
gn,k and fn ≡ lim

k
fn,k .
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Also,
gn � gn+1 � ln � fn+1 � fn ∀n ∈ N.

By hypothesis a), the sequences (gn) and (−fn) satisfy the hypothesis of The-
orem 2.6.3, so there exists l̃ and l̂ in RI −RI such that

l̃ ≡ lim
n
gn and l̂ ≡ lim

n
fn.

From hypothesis b) it follows that l̃ ≡ limn ln ≡ l̂, so ¯̄I(l̃) = ¯̄I(l̂) (notice we
are not saying lim

n
ln ∈ RI −RI). Now recall that

¯̄I(l̃)= lim
n

¯̄I(gn)= lim
n

lim
k

¯̄I(gn,k)≤ ¯̄I(li)≤ lim
n

lim
k

¯̄I(fn,k)= lim
n

¯̄I(fn)= lim
n

¯̄I(l̂).

This implies lim
n

¯̄I(ln) = ¯̄I(l̃) = ¯̄I(l̂). To end the proof it suffices to choose l = l̃

or l = l̂.

2.7 Density Results

Proposition 2.34. Let I be an integral on a Riesz space R = R(Ω); if l ∈
RI − RI , then there exists a Cauchy sequence (γn) in (R, I(| · |)) such that
l(x) = lim

n
γn(x) ∀x ∈ Ωl.

Proof. We know that l ∈ RI − RI if and only if there exist two Riesz
sequences (φn) and (ψn) in R such that

l(x) = lim
n
φn(x)− lim

n
ψn(x) ∀x ∈ Ωl .

From Proposition 2.10 we know that every Riesz sequence for (I,R) is a
Cauchy sequence in

(
R, I(| · |)

)
. Putting γn := φn − ψn, we have that (γn),

being a sum of two Cauchy sequences in
(
R, I(|·|)

)
, is itself a Cauchy sequence

in
(
R, I(| · |)

)
.

Proposition 2.35. Let I be an integral on a Riesz space R = R(Ω). If (γn)
is a Cauchy sequence in (R, I(| · |)), then there exists a subsequence (γnk) and
an element l of RI −RI such that

i) lim
k
γnk ≡ l and ii) lim

n

¯̄I(|l − γn|) = 0.

Proof of i). Since (γn) is a Cauchy sequence in
(
R, I(| · |)

)
, we can extract

from it a subsequence (γnk) such that the number series
∞∑
k=1

I
(
|γnk+1 − γnk |

)
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converges. This means that the following sequences

σN := |γn1 |+
N−1∑
k=1

|γnk+1 − γnk |

φN =
(
γn1

)+ +
N−1∑
k=1

(
γnk+1 − γnk

)+
ψN =

(
γn1

)− +
N−1∑
k=1

(
γnk+1 − γnk

)−
are all Riesz sequences for (I,R) and φN −ψN = γN . We know they converge
respectively to some s, f, g ∈ RI . Now it suffice to note that ∀x ∈ Ωf ∩ Ωg

l(x) := f(x)− g(x) = lim
N

(φN (x)− ψN (x)) =

=lim
N

{
γ+
n1

(x)−γ−n1
(x) +

N−1∑
k=1

[(
γnk+1(x)− γnk(x)

)+− (γnk+1(x)− γnk(x)
)−]} =

= lim
N

[
γn1(x) +

N−1∑
k=1

(
γnk+1(x)− γnk(x)

)]
= lim

N
γnN (x).

Proof of ii). We start from the foregoing result:

lim
N
γnN ≡ l = f − g, where f, g ∈ RI

|l − γn| � |l − γnN |+ |γnN − γn| = |f − g − γnN |+ |γnN − γn|
� |f − φN |+ |g − ψN |+ |γnN − γn|.

So we have

¯̄I(|l − γn|) ≤ ¯̄I(|f − φN |) + ¯̄I(|g − ψN |) + I(|γnN − γn|)

= Ī(f)− I(φN ) + Ī(g)− I(ψN ) + I(|γnN − γn|).

Proposition 2.36. Let I be an integral on a Riesz space R = R(Ω), then R
is dense in

(
RI −RI , ¯̄I(| · |)

)
.

Proof. By Proposition 2.34, we can associate to each element l in RI −RI
a Cauchy sequence (γn) in (R, I(| · |)) such that l(x) = limn γn(x) ∀x ∈ Ωf
Finally, by Proposition 2.35 we have that lim

n

¯̄I(|l − γn|) = 0.



654 Paolo Roselli

2.8 Completeness

Theorem 2.37. (
RI −RI , ¯̄I(| · |)

)
is complete.

Proof. Let (ln) be a Cauchy sequence in
(
RI −RI , ¯̄I(| · |)

)
. Retracing the

same reasoning exhibited in Proposition 2.35, one can deduce the existence of a
subsequence (lnk) such that the real series

∑∞
k=1 Ī(|lnk+1 − lnk |) is convergent.

The three sequences

sN :=
N−1∑
k=1

|lnk+1 − lnk |

fN := l+n1
+
N−1∑
k=1

(
lnk+1 − lnk

)+
gN := l−n1

+
N−1∑
k=1

(
lnk+1 − lnk

)−
are all increasing sequences in (RI − RI , ¯̄I) whose integrals are uniformly
bounded. The Beppo Levi Theorem implies they converge almost everywhere.
Thus, the subsequence (lnk) converges almost everywhere. Indeed, lnN ≡
fN − gN . Moreover,

∣∣lnN ∣∣ ≤∑∞k=1 |lnk+1 − lnk |+ |ln1 | ∈ RI −RI . Lebesgue’s
Dominated Convergence Theorem implies that there exists a function l ∈
RI − RI such that limk lnk ≡ l; so limk

¯̄I(|l − lnk |) = 0. Finally, we simply
observe that ¯̄I(|l − ln|) ≤ ¯̄I(|l − lnk |) + ¯̄I(|lnk − ln|).

2.9 Functions Equal Almost Everywhere

At Section 2.4 in Notation 2.24 we introduced relation ≡. Then we noticed its
role was marginal in extending I if compared with relation �. Now it should
be evident how to apply Corollary 2.27 to extend ¯̄I to functions that are equal
almost everywhere to elements in RI −RI .

Definition 2.38. Let I be an integral on a Riesz space R(Ω). We define
F = F(I,R) as the class of real functions a.e. defined on Ω.

Definition 2.39. Let I be an integral on a Riesz space R(Ω). Let A ⊂
F(I,R), we define

A− :=
{
g ∈ F : g ≡ f for some f ∈ A

}
.
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Extension 2.40. Let I be an integral on a Riesz space R = R(Ω). Let f be
in RI −RI , if g ≡ f , then we define the integral of g as ¯̄I(f).

Contrary to the usual treatments of the Riesz approach, we delayed this
extension as far as possible to emphasize that we can get complete function
spaces and Limit Theorems without adding functions that lack a clear repre-
sentation.

3 Concrete Settings

3.1 Basic Function Spaces

3.1.1 Riemann Integrable Functions

Let I denote the set of functions f : R → R that are zero outside some
bounded interval, and are Riemann integrable on this interval, that is

f ∈ I ⇐⇒ ∃ [a, b] :

{ i) −∞ < a < b < +∞
ii) ∀x 6∈ [a, b] f(x) = 0
iii) f is Riemann integrable over [a, b].

In this case we will write ∫
f :=

∫ b

a

f(x) dx .

3.1.2 Step Functions

By a step function we mean any function φ : R → R that takes a finite
number of non-Zero real values c1, . . . , cm over bounded intervals (possibly
degenerate 13)Σ1 , . . . ,Σm respectively:

φ(x) =
m∑
k=1

ck · 1Σk(x) where 1A(x) =

{
1 if x ∈ A
0 otherwise.

We will let S denote the set of step functions. It is simple to verify that
S is a Riesz space and that the Riemann integral is a well defined pointwise
increasing linear functional on S. Less simple is to verify the Daniell continuity
of the Riemann integral: 14

13By a degenerate interval we mean a singleton or the empty set.
14See for instance [10].
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Lemma 3.1. Let (δn) be a Riesz sequence for
(∫
,S
)
, such that

lim
n
δn(x) = 0 ∀x ∈ R. Then, lim

n

∫
δn = 0.

3.1.3 Continuous Function with Compact Support

Another Riesz space, often used to construct the Lebesgue integral via the
Riesz method, is the space K(Ω) = Cc(Ω) of continuous functions with com-
pact support15 in an open set Ω ⊂ RN .

We simply note that (pointwise) Daniell continuity of the Riemann integral
on K(Ω) follows directly from Dini’s Theorem:

Dini’s Theorem. Let fn be a monotone sequence of continuous functions de-
fined on a compact set K. If the sequence converges pointwise to a continuous
function f , then it converges uniformly on K.

3.2 Complete Function Spaces

Consider the space S. It is well known that the (semi)normed space (S,
∫
|·|) is

not complete. We know equally that any (semi)normed space has an abstract
completion. However, such abstract completion, being a set of equivalence
classes of Cauchy sequences, is not a space of functions. Since many crucial
theorems used to prove existence of functions (in differential equations, calcu-
lus of variations, etc.) rest on completeness, we need to represent as functions
the elements of such completions.

Functional representation of complete spaces and extension of the Riemann
integral are closely connected problems. Indeed, we have to find a space of
functions Ŝ and an integral

∫̂
: Ŝ → R such that

1. S ⊂ Ŝ
2.

∫̂
extends

∫
3. S is dense in

(
Ŝ,
∫̂

(| · |)
)

4.
(
Ŝ,
∫̂

(| · |)
)

is complete.

(9)

The space L1(R) of all Lebesgue integrable functions has such properties.
While elements in S have a quite explicit representation, functions in L1(R)
are no more so apparent. In order to describe functions in L1(R) one usually

15See [4], [6] and [13].
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writes:

L1(R) =
{
u

a.e.= lim
n
γn ; where (γn) is a Cauchy sequence in

(
S,
∫
| · |
)}
.

Thus, contrary to what we might have expected, not every Cauchy sequence is
apt to represent elements in L1(R) as an almost everywhere limit. As a matter
of fact there exist Cauchy sequences in

(
S,
∫
| · |
)

that converge nowhere.
The classical Riesz approach allows a more explicit representation of func-

tions in L1(R):

L1(R)=
{
u

a.e.= lim
n
φn−lim

n
ψn ; where(φn), (ψn) are Riesz sequences for

(∫
,S
)}
.

Theorem 2.37 shows that the space S
R
− S

R
={

u = lim
n
φn − lim

n
ψn ; where (φn), (ψn) are Riesz sequences for

(∫
,S
)}

is a completion of
(
S,
∫
| · |
)

as well. This last result shows how simple it is
to extend the Riemann integral to obtain a complete space. As a matter of
fact the extended Riemann integral (i.e., the Lebesgue integral) of a function
u ∈ S

R
− S

R
is simply

∫
u := limn

∫
φn − limn

∫
ψn.

3.3 Null Sets with Respect to the Riemann Integral

The following theorem tells us that if we consider as Riesz space S, and as
integral the Riemann integral, null sets for

(∫
,S
)

are reasonably small sets.

Theorem 3.2. Let N be a subset of R. The following properties are equiva-
lent:

1. N is a null set for
(∫
,S
)
(see Definition 2.19)

2. Some Riesz sequence for
(∫
,S
)

diverges on N

3. Some Riesz sequence for
(∫
,S

R )
diverges on N

4. N is a Lebesgue null set.

Equivalence [1.⇔ 2.] holds by Definition 2.19. Equivalence [2.⇔ 3.] holds
by Monotone Convergence Theorem 2.6.1. Proof of [1. ⇐= 4.] can be found
in [12] on in [9].

4 Examples

In this section I will represent the Riemann integral.
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Example 4.1. Let C ⊂ [0, 1] be the Cantor set 16. Consider the function
f(x) = 1C(x). Then, f ∈ I (see Section 3.1), f ∈ SI − SI , and f 6∈ SI .

Indeed the following more general result holds:

Proposition 4.2. If A ⊂ R is any uncountable null set 17, then it cannot
exist in SI any function g such that:

g(x)

{
≤ 0 if x 6∈ C
> 0 otherwise.

(10)

Let A◦ denote the interior of A. We just recall an apparent lemma:

Lemma 4.3. Let φ ∈ S. If c ≥ 0, then{
φ > c

}◦ = ∅ ⇐⇒
{
φ > c

}
is finite or empty.

Proof of Proposition 4.2. Assume that the thesis is false, then there ex-
ists in RI a function g that satisfies (10). By construction there exists a Riesz
sequence (φn) in S such that g(x) = limn φn(x). Put

An :=
{
x : φn(x) > 0

}
.

Since (φn) is a Riesz sequence, An ⊂ An+1, and also

C =
{
x : lim

n
φn(x) > 0

}
=
∞⋃
n=1

An.

As every null set has empty interior, each An ⊂ C has empty interior. By
Lemma 4.3 it follows that every set An is finite or empty, but this contradicts
uncountability of C.

5 Order and Algebraic Extension of R

In this paragraph we will show why we cannot extend real vector space op-
erations on R to R ∪ {−∞,+∞} in a way that would be compatible with its
extended order structure.

The order ≤ relation on R is extended to R ∪ {−∞,+∞} in the following
way

∀x ∈ R −∞ ≤ x ≤ +∞. (11)

16For a classical definition see [6].
17As, for instance, the Cantor set.
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We begin trying to extend the sum. We want it still to be commutative and
associative. Besides we want 0 to be the neutral element. That is,

∀x ∈ R ∪ {−∞,+∞} x+ 0 = x.

We begin by attempting to assign a value to x+ (+∞) when x ∈ R. One can
intuitively guess: x+ (+∞) = +∞; i.e.,

∀x ∈ R x+ (+∞) = +∞. (12)

We will show that this is the only choice compatible with the property:

∀x, y, z ∈ R ∪ {−∞,+∞} x ≤ y =⇒ x+ z ≤ y + z. (13)

Indeed, suppose (12) is not true, that is ∃x̄ ∈ R such that x̄ + (+∞) 6= +∞.
Two choices are possible:

1. x̄ = −∞, or

2. ∃x̂ ∈ R such that x̄+ (+∞) = x̂.

Suppose x̄+ (+∞) = −∞. By (11) we know that −∞ ≤ x̄. Applying (13) we
have −∞+(−x̄) = x̄+(+∞)+(−x̄) = +∞ ≤ 0. Now consider the case where
∃x̂ ∈ R such that x̄ + (+∞) = x̂. By (11) we know that∀x ∈ R x ≤ +∞.
Applying (13) with z = x̄, we have that ∀x ∈ R x+ x̄ ≤ +∞+ x̄ = x̂. Thus,
we arrive at the contradiction: ∀x ∈ R x ≤ x̂− x̄ ∈ R.

So, for every x in R we are forced to choose x + (+∞) = +∞ and analo-
gously, x + (−∞) = −∞. Since (R,+) is an abelian group, now we have to
find an element c in R ∪ {−∞,+∞} such that c + (+∞) = 0. We have just
seen that such a c 6∈ R, so we have only two possibilities, either c = +∞ or
c = −∞.

Suppose +∞ + (+∞) = +∞. We have showed that ∀x ∈ R x + (+∞) =
+∞; that implies: ∀x ∈ R x + (+∞) + (+∞) = +∞ + (+∞); that is:
∀x ∈ R x = 0. Finally, one obtains the same contradiction assuming
+∞+ (−∞) = 0.
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