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Abstract

General notions of integration have been introduced by Saks [25, p.
254], Kartdk [14, p. 482], Kubota [17, p. 389] and Sarkhel [28, p. 299].
Kartdk’s T-integration was further studied by Kartdk and Mafl in [15],
and by Kubota in [18].

In this paper, starting from Kartak and Mafi’s definition, we intro-
duce another general integration (see Definition 3.2), that allows a very
general theorem of dominated convergence (see Theorem 3.1). Then we
present a general definition for primitives, and this definition contains
many of the known nonabsolutely convergent integrals: the Denjoy*-
integral, the a-Ridder integral, the wide Denjoy integral, the S-Ridder
integral, the Foran integral, the AF integral, the Gordon integral. Using
this integration and Theorem 3.1, we obtain a generalization of a result
on differential equations, of Bullen and Vyborny [5].

We further give a Banach-Steinhaus type theorem, a categoricity the-
orem, Riesz type theorems (as a particular case we obtain the Alexiewicz
Theorem [1]), and study the weak convergence for the T-integration.

1 Essentially Bounded Variation and the Bounded Slope
Variation

We denote by m(A) Lebesgue measure of A, whenever A C R is Lebesgue
measurable. For the definitions of VB, AC AC*G and Lusin’s condition (N),
see [25]. Let Xp denote the characteristic function of the set E.
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Definition 1.1 (Preiss). ([24] or [8, p. 35]). Let F : [a,b] — R. F is said to
be lower internal®, if F(z+) > F(x), whenever x € [a,b) and F(z+) exists,
and F(z—) < F(z), whenever = € (a,b] and F(z—) exists. F is said to be
upper internal* if —F is lower internal®. F is said to be internal® if it is
simultaneously upper and lower internal®.

Definition 1.2. ([23]). Let P C [a,b] be a set of positive measure, and let
f: P — R be a measurable function, finite a.e. .

e f is said to be essentially upper bounded if there exists a real number
M such that the set {z € P: f(z) > M} has measure zero.

e f is said to be essentially lower bounded if the function — f is essentially
upper bounded.

e f is said to be essentially bounded if it is simultaneously essentially
upper bounded and essentially lower bounded; i.e., there exists M > 0
such that the set {x € P :|f(x)| > M} is of measure zero.

e Let sup,,,(f; P) = inf{M : M is given by the fact that f is essentially
upper bounded} and sup,.,(f; P) = 400 if f is not essentially upper
bounded. Similarly we define inf.(f; P).

o Let Ocss(f; P) = supgs(f; P) — infess(f; P).
o Let Oss(f; X) =0, whenever X is a null subset of P.

e f is said to be of essentially bounded variation (short f € EV B) on P,
if there exists M > 0 such that ! Oess(f; [ai, b;] N P) < M when-
ever [a;,b;],4 = 1,2,...,n are nonoverlapping closed intervals with the
endpoints in P.

o Let EV(f; P) = inf{M : M is given by the fact that f € EV B on P},
and let EV(f; P) =+o0if f ¢ EVB on P.

o Let V(f; P) = inf{M : M is given by the fact that f € VB on P} and
let V(f; P)=+oc0if f ¢ VB on P.

Lemma 1.1. ([9)]). Let f : [a,b] — R be a measurable function. The following
assertions are equivalent:

(i) f € EVB on [a,b],

(ii) There exists f : [a,b] — R, such that feVB and f = f a.e. on [a,b].
Moreover EV (f;[a,b]) < V(f;[a,b]) < 2-EV(f;[a,b]).
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Lemma 1.2. Let P be a set of positive finite measure, and let g : P — R be
a measurable function, which is finite a.e. on P. If g is not essentially upper
(respectively lower) bounded on P then there exists a function f : P — R such
that:

(i) [ is summable on P;
(i) f-9>0 on P;
(ii) f - g is not summable on P.

PROOF. Suppose for example that g is not essentially upper bounded on P.
For o, 3 € R, we let Eo(g) = {x € P: g(x) > a}, Ef(g) ={r € P:a <
g(z) < B} and Ex(g) = {x € P : |g(z)] = 4o0}. Clearly |Ex(g)| = 0.
We show that there exists a strictly increasing sequence of positive integers
{n;}2,, such that

Bt (g) >0, i=1,2,.... 0
Let ny = 1. Then E,,, (g) has positive measure. Since

En(9)\ Exc(9) = UpZ,, 11 B, (9),

it follows that there exists ny > n; such that E)?(g) has positive measure and
|En,(g)] > 0 (because g is not essentially upper bounded on P). Continuing
in this way, we obtain (1). Let a; = |[ENiT!(g)| and let 3; be such that
ai-ni-ﬁizl/i,izl,l... . Let f: P—R,

Fz) = Bi, weENti(g), i=1,2,...
N 0, otherwise
(i) We have

CYRCIE SURIES SPLTED DELERS
i=1 g

i=1 i=1

Hence f is summable on P.

(ii) We have f(z)-g(x) > Bi-ni, ifx € Bt i =1,2,.. . and f(x)-g(x) =0
otherwise.

(iii) We have

BYRUNTIES SURINES SRR

Hence f - g is not summable on P. O
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Lemma 1.3 (Sargent). ([26]). Let g : [a,b] — R be an essentially bounded,
measurable function. If g ¢ EV B on [a,b] then there exists [a, §] C [a,b] and
a function f : (o, B] — R such that:

e f is Denjoy*-integrable (short D*-integrable) on [, [];

o cither f - g is summable on [a, x| whenever x € (a, 3), but

lim (£) / F(O)g() dt = +o0,

z—f

or f - g is summable on [z, 3] whenever x € («, 3), but

8
lim (E)/ f(®)g(t) dt = +o0.

r—x

PRrROOF. Let J, = [a,b]. Since g ¢ EV B on J,, it follows that ¢ ¢ EVB
on at least one of the intervals, [a, (a + b)/2] or [(a + b)/2,b]. Denote this
interval by J; = [a1, b1]. Continuing, we obtain a sequence of closed intervals
{Jn}tn, Jn = [an, by] such that b, — a, = (b —a)/2" and g € EV B on no J,.
Let {¢} = N2 Jn, J! = |an,c] and J, = [¢,b,]. Then there exist infinitely
many subscripts n such that g ¢ EV B on J] for example. We may suppose
without loss of generality that g € EVB on no J/, for non =0,1,.... Let
M = sup,..(g;[a,b]) and m = inf.s:(g;[a,b]). Because g ¢ EVB on [a,b],
M —m > 0. Since g ¢ EV B on J/, there exists a partition 7, of J! such that
Yren, Oess(g; 1) > 3(M —m). Let m, = 7, \ {c}. Then

D Ocsslg; I) > 2(M —m).

Ier)

Let I! be the last interval of the partition m,. Then I contains an interval

Jn, 380 g ¢ EVB on I (because g ¢ EVB on J, ). It follows that there

exists a partition m,, of I/ such that Y ;. Oecss(g;1) > 3(M — m). Let
ni

I,'l1 be the last interval of the partition m,,. Let 7T;11 = 7, \ {¢}. Then

Zleﬂ/ Ocss(g; 1) > 2(M —m). Continuing, we obtain a sequence of partitions
’ILl
{W;Lk}k such that » ;. Oecss(g;1) > 2(M — m), for each k. Let v, <
M
To < 3 < ... < c be the endpoints of all intervals contained in U,g“;oﬂ;k.
We obtain that > 7 | Oess (g; [mn,xn+1]) = 4o0. Let [a,] = [#1,c]. Let

M, = sup,,, (g; [xn,xn+1]) and m,, = infess(g; [xn,xn+1]). Now the proof
continues as in [20, p. 78], (see also [6, p. 46]).



ON THE T-INTEGRATION OF KARTAK AND MARI 519

Corresponding to each n, there exist distinct measurable subsets X,, and
Y, of [Xy,@py1] such that | X, | = |Y,| = 6, > 0, g(z) > (3/4)M,, + (1/4)m,
for x € X,,, and g(z) < (1/4)M,, + (3/4)m,, for z € Y,,. Let
1
Pn = n
On - D oimg (M — mj)

and
pn  forze X, n=12 ...
f@)=Q —p, forzeY, n=12...
0 elsewhere

Clearly f is summable on each [z,,z,11] and (L) f;ﬂ"“ f(t)dt = 0. For
U € (Tn, Tnt1] we have

‘(ﬁ) / f(®) dt’ <(£) /:“|f(t>| dt < 2ppd, — 0, 1 — oo.

Let
0 for z = «
F(z) =< (L) ffn f@®)dt for x € [xy, Tni1], n=1,2,...
0 forx =0

Clearly f is D*-integrable on [«, f]. Since f is summable on [2,, Zp4+1] and g
is essentially bounded, it follows that f - g is summable on [z, z,11] and

© [ " gty di = (£) [ swaar+ @) [ rogod

=pyp - (L) /X g(t) dt — pp(L) /Y g(t)dt

Since Y7, (M, —m,,) = 400, it follows that > | r,, = +oo (see for example
[20, p. 79]). We have

=Tn.

(©) / g e < (- m)-(2) / RCI o
< Qpn§n(M — m) — 0.

Let v = (£) ;""" f(t)g(t) dt. Then

o0 o0
Z’ynzz:rn:—&—oo. (3)
n=1 n=1
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Let G: [a, B) — R,
/ fg(t)dt, = € [xpn,Tpni1], n=1,2,... .
We observe that
n—1
x) = Z% / f@®)glt)dt on [z, xni1], n>2.
i=1

By (2) and (3) it follows now that lim, g G(z) = +o0. O

Definition 1.3. ([9]). A function F' : [a,b] — R is said to be of bounded slope
variation (short F' € BSV) on a subset P of [a,b], if there exists M > 0 such
that

" | F(by;) — Flas;)  F(ba—1) — F(asi—
Z (b2s) (a2)_ (b2i—1) (a2 1)<M,
— bo; — G2; bai—1 — agi—1
whenever a; < by < as < by < ... < a9, < by, are points in P. Let

SV(F;P) = inf{M : M is given by the fact that F € BSV on P}. If
F ¢ BSV on P. let SV(F;P) =

Theorem 1.1. ([9]). With the above notations we have the following results:

(i) Let f : a,b] = R, f € EVB and let F(z) = (L) [ f(t)dt. Then
F € BSV on [a,b] and SV (F;a,b]) < EV(f [a, b])

(ii) Let F : [a,b] — R, F € BSV and let

F*(x) = F'(x) where F is derivable
0 elsewhere

Then F satisfies the Lipschitz condition, F* € EV B on [a,b], and
EV(F*;[a,b]) < SV (F;a,b]).

Remark 1.1.

(i) If f is essentially bounded on [a,b], then F(z) = (L) [T f(t)dt is a
Lipschitz function on [a, b] and F' = fae..

(ii) If F : [a,b] = R 1s a Llpschltz functlon then F™* is essentially bounded
on [a,b] and F(x L) [T F*(t)dt (for F* see Theorem 1.1).
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2 The T-integration of Kartak and Maii

Definition 2.1 (Kartdk and Mafi). ([15], [14], [18], [19]). Let T be a func-
tional by which there corresponds to each closed interval J C I a linear space
K(T,J) of real valued measurable functions defined on J, and to each function
f of K(T,J) a real number T(f,J). A functional T is called an integration
(respectively a wide integration) on I if the following conditions are fulfilled:

(a) The functional T'(f,J) is linear on (T, J).
(b) If f € K(T,J), J CJ,then f e K(T,J ).
(

c) If f is Lebesgue integrable (respectively f is Lebesgue integrable and es-
sentially bounded) on J, then f € K(T,J) and T(f,J) = (L) [, f.

(d) If J; and Jy are abutting intervals and if f € K(T,Jy) N K(T, J2), then
f S IC(T, J1 U Jg) and 71(.](‘7 Ji U JQ) = jj(f7 Jl) + T(f, JQ)

(e) If feK(T,J), f>0, then f is Lebesgue integrable on J.

(f) If f € K(T,J), J = [a, ], then F(z) = T(f, [, z]) is continuous on J,
where F'(a) = 0.

Let T' be an integration (respectively a wide integration) on I. A function
fin K(T,J) is said to be T-integrable (respectively wide T-integrable) on J.
Given two integrals (respectively wide integrals) T and T5 on I, Tb includes
Ty, written Ty C T, if f € K(Ts,J) and Ty (f,J) = To(f,J), whenever f €
K(Ty,J) and J C I.

Lemma 2.1 (Kartdk and Mail). ([15, p. 746]). There exist an integration
T, a function f € K(T,I) and g € AC on the closed interval I such that

Lemma 2.1 leads us to the following definition.

Definition 2.2. Let T be a wide integration on I = [a,b], satisfying the
following conditions:

(i) f-g € K(T,I), whenever f € K(T,I) and g € VB,
(ii) T(f - g.1) = F(b)g(b) — (RS) [, F(x)dg(x), where F(z) = T(f, [a, ),

x € [a,b], F(a) = 0, whenever f € K(T,I) and g € VB (here (RS)
denotes the Riemann Stieltjes integral). Let (f|g) = T(f - g,1).

We shall not make distinction between f and g belonging to K(7T,1I) if f =
g a.e. . We define the following real normed spaces:
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o (K(T.0)[I-1l), where ||| = [|Flsc = sup{|F(x)| : = € [a,0]};

e (VB,|-|lvs), where |lg|lvs = |g(b)] + V(g [a,b]). (This is in fact a
Banach space).

Example 2.1. Some particular wide integrals which satisfy Definition 2.2 are:
1. the SF-integral (see [8, pp. 210-211]);
2. the Foran integral (see [10] or [8, p. 208]),
3. the Denjoy and Denjoy* integrals (see [6, pp. 31-34]),

4. the Lebesgue integral (because the product of a VB function and a
Lebesgue integrable function is still a Lebesgue integrable function),

5. the Lebesgue integral restricted to essentially bounded functions (be-
cause the product of a V B function and an essentially bounded function
is still an essentially bounded function).

3 A General Notion of Integration

Definition 3.1 (Sarkhel). ([28]) By f+A — R we mean a function with values
in R, whose domain contains almost all points of the set A such that f is finite
almost everywhere on A.

Let Leoomp = {f : R — R : supp(f) is compact and f is Lebesgue integrable}.
Starting from Definition 2.1, we introduce the following general integration.
Definition 3.2. Let A = {(f,I) : I is a compact interval, f=I — R, f is

measurable on I}. A mapping J : A, — R, A, C A is said to be an integral
if the following conditions are fulfilled:

(a) If (f,I) € A, [ is Lebesgue mtegrable on I, ( )€ A and o, 0 € R, then
(af + B9, 1) € A, and T (af + By, 1) fl tydt+3-J(g,1).

(b) (f,J) € A, whenever (f,I) € A, and J C I.

(¢) If (f,I) and (g, I) belong to A, and f > g a.e. on I then f — g is Lebesgue
integrable on [a, b].

(d) I (f,[a,b]) and (f,[b, c]) belong to A,, then (f, [a,]) € A, and J(f,[a,b])+
j(fv [b,c]) :j(f’ [CL,C]).
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Let J be an integral. Then f is said to be J-integrable on [a, ] if (f,[a,b]) €
A,. In this case the function F : [a,b] — R,

0 fx=a
””:{meum it = (a1

is called the indefinite J-integral of f on [a,b]. Clearly F is well defined and
J(f,[¢,d]) = F(d) — F(c) whenever [c,d] C [a,b] (see (b) and (d)). A function
G :a,b] — R of the form G(z) = F(z) + a, o € R is called a J-primitive of
fon[a,b]. Let (7) [7 f(t)dt :== T(f;[a,x]).

Lemma 3.1. Let J : A, — R be an integral as above. If fx[a,b] — R is
Lebesgue integrable on [a,b], then (f,[a,b]) € A, and

b b
ﬁ/f@ﬁ=W/f®ﬂ

PRrROOF. Let (g, [a,b]) € A,. By Definition 3.2, (a),

<wlhﬂwy /deO)/(M-

Hence (7) [0 f(t)dt = (L) [ f(t) dt. O

Definition 3.3. ([22, p. 151]). Let M = {f} be a family of Lebesgue
integrable functions defined on a set P. If for every € > 0 there exists a § > 0
such that |(£) [, f| < e for all f € M, whenever A C P, m(A) < 6 then the
functions of M are said to have equi-absolutely continuous integrals.

Lemma 3.2. Let {f,}n be a sequence of nonnegative Lebesgue integrable func-
tions, converging in measure to a function f defined on a measurable set P.
The following assertions are equivalent:

(i) f is Lebesgue integrable and limy, oo (L) [p fn = (£) [p [

(i) The functions of the sequence {fn}n have equi-absolutely continuous
integrals.

PROOF. (i) = (i) By Theorem 5 of [22, p. 157] we have lim,, oo (L) [, fn =
L) [, f whenever A is a measurable subset of P. Now (ii) follows by [22]
(Corollary 1, p. 156 of Theorem 3, p. 153).

(#9) = (i) See Vitali’s Theorem 2 of [22, p. 152]. O

Theorem 3.1. Let J be an integral as in Definition 3.2.
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(i) If [ is measurable and (|f|,I) € Ao, then f € Leomp-

(i) If (f,1) € A, and g = f a.e. then (9,1) € A, and (J) [, f =(T) [;9-

(i) If (f,1),(g,I) € Ay and f < g a.e., then () [, f < (T) [; 9
n

() If (g, 1), (h,I) € Ao, {fn}n is a sequence of measurable functions on R,
9 < fo < h, ae. and f, — f (fn converges in measure to f), then

(fn: D), (f.1) € Ao and (T) [ f =1limp—oo(T) [; fn-

(v) If (f,I) € Ao, g € Leomp and [ > g a.e., then f € Leomp and (J) [; f =
(L) [, f.

(vi) Let {fn}n be a sequence of functions on I having the following properties:

(1) (fn,I) € A, for each n,
(2) there exists g, with (g,1) € A,, such that f, > g a.e. for each n,

(3) {fn} converges in measure to f.

Then

(a) each fn —g € Leomp and (L) [[(fa—9) +(T) [;9=(T) [} fus
(b) (f,1) € A, if and only if f — g € Leomp;
(c) (f.1) € Ao and limy_oo(T) [} fn = (T) [; f if and only if the func-

tions of the sequence {fn, — g}n have equi-absolutely continuous in-
tegrals.

(vii) Let {(fn, D}n C Ao, i< fo<...<fon<...ae ,and f, — fae..
Then (f,I) € Ao if and only if limp oo () [; fn # +00. In this case we
have limy, oo () [; fn = (T) [; |-

(viii) Let g be a measurable function on I. If (fg,I) € A, whenever [ is a
Lebesgue integrable function on I,, then g is essentially bounded on I.

(iz) Suppose that F(z)=(J) [ f(t)dt is internal* on J, whenever (f,J) €
A, and J = [a,B]. Let g be a measurable function on I. If the J-
integral contains the D*-integral and (f - g,I) € A, whenever f € D*,
then g equals a VB function a.e. on I.

PROOF. (i) By Definition 3.2, (a), (0,1) € A,. Since |f| > 0 a.e. on I, by
Definition 3.2, (¢), | f| is Lebesgue integrable on I. Therefore so is f.

(ii) Since g — f = 0 a.e., it follows that g — f is Lebesgue integrable on I.
Because g = (¢ — f) + f and by Definition 3.2, (a) we obtain that (g,1) € A,
and (£) [(9— £) + (J) [, £ = (I) [, 9. Therefore (7) [, f = () , 5.



ON THE T-INTEGRATION OF KARTAK AND MARI 525

(iii) By Definition 3 2 ( ) we have that g — f is Lebesgue integrable on
and by Deﬁnition32 L) [(g=NH+(T) [, f=(T)[,9-But (L) [,(g
f) > 0. Hence ( flfg ) 79

(iv) By Deﬁnition 3.2, (c) we have that h — g is Lebesgue integrable on I.
But 0 < f, — g < h— g a.e. and each f, is measurable. It follows that each
fn—g is Lebesgue integrable and f,, —g — f—g (convergence in measure). By
the Lebesgue Dominated Convergence Theorem, f — g is Lebesgue integrable
and lim, oo (L) [;(fn —9) = (L) [;(f — g). Because f = (f — g) + g and by
Definition 3.2, (a) we obtain that (f, 1) € A,

©) [(h=0+ @) o= [ 1.
@ [r-0+@) [a=@) [ 1.1

Therefore lim,, o (J) f[ fo=1(J) f] I

(v) By Definition 3.2, (a), (g,I) € A,, and by Definition 3.2, (c), f — g is
Lebesgue integrable on I. It follows that f = (f —g)+g is Lebesgue integrable
on I and by Lemma 3.1, (7) [, f = (£) [, f

(vi) (a) This follows by Definition 3.2, (c), (a).

b) Since f, > g a.e. it follows that f > g a.e. . The assertion follows by
Definition 3.2, (a), (c).

¢) By (vi), (b) and (a) it follows that the statement (f,I) € A, and
lim, oo(JT) [; fn = (T )f f is equivalent to f — ¢ is Lebesgue integrable

and

and limy oo (L) [;(fn — L) [;(f —g). Now Lemma 3.2 completes the
proof.
(vii) By (iii) fl fn < )fI fnt1 for each n. Then lim, o (J) fI fn

exists (finite or inﬁnite) By Definition 3.2, (¢), (a), each f,, — f1 is Lebesgue
integrable on I and

) [ =) [ =10+ [ £

By the Beppo-Levi Theorem it follows that

nlgréo /fn— /f fi) + /fl

Therefore f — f; is Lebesgue integrable if and only if lim,, (L) fl(f
is finite, and since f = (f — f1) + f1, it follows that (f,I) € A, and

nlin;o (J) fn* /f
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If limp, oo (J) f; fn = +00 then f — fi is not Lebesgue integrable on I. But
f — f1 > 0a.e.; so by Definition 3.2, (a), (c), (f,I) ¢ A,.

(viii) Suppose on the contrary that g is not essentially bounded on I. By
Lemma 1.2 there exists a function f : I — R such that f is Lebesgue integrable,
fg > 0and fg is not Lebesgue integrable on I. Since fg > 0, by (v), it follows
that fg is Lebesgue integrable, a contradiction.

(ix) By (viii), g is essentially bounded. Suppose on the contrary that
g ¢ EVBon [a,b] (see Lemma 1.1). Then, by Lemma 1.3, there exist [, 3] C
[a,b] and a function f : [a, 8] — R such that f is D*-integrable on [, 8], fg
is Lebesgue integrable on [«, 2| for example, whenever = € («, ), and

lim (£ = .
tin(0) [ fg=+oc

By Definition 3.2, (c), we obtain that lim, _»g j(fg, [, x]) = +00 (see Lemma
3.1). This contradicts the hypothesis. O

Remark 3.1. Theorem 3.1, (viii) extends Theorem 12.8 of [20].

4 A Riesz Type Representation Theorem for T-integration

Lemma 4.1. In the conditions of Definition 2.2, let g € VB be fized. Let
L:K(T,I) =R, L(f) = (flg). Then:

(i) {:|g) is linear.
(@) [{flg)] < If1l - llgllva-
(i4i) L is a continuous linear functional and |L|| < ||g]lvB-

PRrOOF. (i) This follows by Definition 2.1, (a) and Definition 2.2, (i).
(ii) We have
b

(519)| = 77 9. a.8)| = [F®)0) ~ (RS) [ F(@) dy(a)

< |F®)| - [9®)] + 1 Flloo - V (g, [, 0])
< IFll - (lg®)] + Vg la b)) = 1l - lgllvs-
(iii) This follows by (i) and (ii). O

Lemma 4.2. Let (X,[| - [l1) and (Y,| - |2) be normed real spaces and let
() : X xY — R be such that:
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(1) {(-|y) is linear in the first variable, for each y € Y,
(2) [{aly)| < llzlly - lyllz, whenever z € X, y €Y.

If f: X — R is a continuous linear functional and if there exist y, € Y
and a dense subset X, of X such that f(x) = (x|y,) for each x € X,, then

f(@) = (xlyo) on X and || f|| < [lyol|2-
PROOF. Since X, = X, for z € X there exists a sequence {x,}, C X, such

that ||z, — z|l1 — 0, for n — oco. But |<xn|yo> — <x|y0>’ = |<xn — m|yo>‘ <
||177, - 1‘”1 : Hyo”?' Since f is continuous, f(‘ro) = hmn—>oo<xn|yo> = <"E|yo>'
Hence f(z) = (z]y,), for each x € X and || f]| < ||yol|2- O

Theorem 4.1. In the conditions of Definition 2.2, let L : K(T,I) — R be a
continuous linear functional. Then there exists g € VB such that

L(f) = (flg) =T(fg,I) and (4)
EV(g;I) < |ILI < |lgllve. (5)

PROOF. Let

S(I)={s:[a,b] » R: s is a step function of the form
n—1
s(t) = Z aiXt,_y ;) + anX[t,_, 1, for some positive integer n,
i=1
where each o; € R, a = tg < t1 <...<tn:b]}.

We show that S(I) = K(T,I). Let f € K(T,I). Then F(z) = T(f,[a,z]) is
continuous on [a,b]. Let a =z < z1 < ... <2y =b, &, —xi—1 = (b—a)/n for
each i =1,2,...,n. Let F,(z;) = F(z;), ¢ =0,1,...,n and let F, be linear
on each closed interval [z;_1,;]. Then F,, — F [unif] on [a, b]. Let

Ti—Ti_1
F(In)_F(wnfl)
Tp—Tn—1

() Fl@)—F(zi-1) forx € [z;_1,24),i=1,2,...,n—1
sp(z) =
for € [xnp—1,Zn]

Then s, € S(I) and ||s, — f|| = [|[Fn — Flloc — 0 (because F,, — F' [unif]).
Let G(t) = L(X[q,) and let a < a1 < b1 < az < by < ... < agy < by < b
Since L is linear and continuous, we have

G(b2i) — Glazi)  G(bai—1) — G(azi-1)

n

D

i1 bai — az; boi—1 — azi—1
:Z|L(%’)| = ZEiL(%‘) = L(Z 6901') < |IL[f - HZ €ii|| < L]l
i=1 i=1 i= i=1
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where ¢; = signL(p;) and

1 1
SOZI = bi : X(azi,bzi] -

—— X boi_1]-
2i—1,02i—1
2 — G2 boi—1 — agi—1 b

It follows that G € BSV and
SV (Gsla,b]) < [IL]. (6)
By Theorem 1.1, (ii) there exists ¢ = G* € EV B and
EV(g,a,b]) < SV (G;la,b)). (7)

Clearly

G(t) = (C) / g(x) dz = (L) / Xo)(@)g(2) dit = L(Xja.)

Since L is linear it follows that L(s) = (s|g) whenever s € S(I). Then L(f) =
(flg) for every f € K(T,I) and ||L|| < ||gllve (see Lemma 4.2). By (7) and
(6), EV (g3 [a,b]) < ||L|, hence EV (g;[a,8]) < L]l < llgllve- O

Remark 4.1. Particularly, if in Theorem 4.1, T stands for the D*-integral,
then we obtain the Alexiewicz Theorem (see [20, Theorem 12.7]; see also [1]).
5 Banach-Steinhaus Type Theorems for T-integration
Definition 5.1. ([20, p. 67]).

e A sequence {X,}, of sets in a normed real linear space X is said to be
an a-sequence if 0 € X3 and if for every n, x + y and =z — y belong to
Xp+41, whenever z,y € X,,.

e X is called an a-space if X = U2, X,,. where {X,,}, is an a-sequence
of closed sets each of which being nowhere dense in X.

e A normed real space is said to be a Sargent space or a (-space if it is
not an a-space.

Lemma 5.1. ([20, p. 70]). A normed real linear space X is a Sargent space
if and only if for every representation of the form X = U2 1 X,,, where {Xp}n
is an a-sequence, there is an X, for some n which is dense in a ball B of X.
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Lemma 5.2. Let T be a wide integration on I = [a,b] as in Definition 2.2
satisfying the Cauchy property

Iffe IC(T, [a,ﬂ])foreveryinterval[a,ﬁ]witha <e<a<f<d<b

and Jim T(f, [, B)) = A, thenf € K(T. [c, d))andT (£, [c,d]) = A. (©)
B—d

Then (K(T,1),| - |) is a Sargent space.

PROOF. The proof is similar to that of Example 11.3 of [20, pp. 68-69].
Condition (C) is necessary to show the convergence of the sequence { X}, in
the proof of Example 11.3. O

Theorem 5.1. (A Banach-Steinhaus type theorem for a Sargent space, [20,
Theorem 11.6]). Let T,, be a sequence of continuous linear operators from a
Sargent space X into a normed linear space Y. If supSe, || Tn(z)]] < 400 for
every © € X, then supS>, |T,| < +oo.

Theorem 5.2. (A Banach-Steinhaus type theorem for the T-integral). Let T
be an integration as in Lemma 5.2, containing the D*-integral. The following
assertions are equivalent:

(i) For every f € K(T,[a,b]) there exists a constant M(f) such that for all
n we have |T(fgn, [a,0])] < M(f);.

(ii) There exists ¢>0 such that sup,, |gn| <c and EV (gy,, [a,b]) <c for all n.

PRrROOF. (i) = (ii) Each function g, equals a V B function a.e. (see Theorem
3.1, (ix)). and is therefore essentially bounded. Let L,(f) = T(fgn, [a,b])
for f € IC(T, [a,b]). If f is Lebesgue integrable, then fg, is also Lebesgue

integrable. Hence L,,(f) = (£) f: fgn (see Definition 2.1, (c)). By the Banach-
Steinhaus Theorem (see [6, p. 45]) it follows that for some M; > 0 we have
SUD,ss |gn| < My, for all n =1,2,.... By Theorem 5.1 and Lemma 5.2, there
exists My > 0 such that ||L,|| < My for all n =1,2,... and by Theorem 4.1,
EV(gn,la,b]) < ||L,||. Therefore EV (g,;[a,b]) < My, for all n = 1,2,... .
Let ¢ = max{M;, Ms}.

(ii) = (i) For this implication, condition (C) is not needed. By Lemma
1.1, there exists G, : [a,b] — R, G,, € VB such that G,, = g, a.e. and

V(Gn,la,b]) < 6V(Gp, A) < 12EV (G, [a,b]) < 12¢

(where A is defined in the proof of Lemma 1.1). Since sup,,, |gn| < ¢, it follows
that sup |G, | < 13c. By Theorem 3.1, (ii) we have that

T(fgna [a, b]) = T(.fGn; [a, b]) .
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Now the proof follows applying Definition 2.2. O

Remark 5.1. Theorem 5.2 is an extension of Theorem 12.10 of [20] or of a
lemma of [6, p. 47].

6 The Categoricity of K(T;[a,b]) for Wide T-integration

Theorem 6.1. ([14, p. 511]). There exist an integration T (as in Definition
2.1) and a function f € K(T,[a,b]) such that the identity F = f a.e. does not
hold, where F(x) = T(f, [a, a:])

Lemma 6.1. ([12, p. 49]). Let (X,7) be a topological space and let X, be a
dense subset of X. Let 7, = 7/x,. If X, is of the second category in (X,7,),
then X, is of the second category in (X, 7).

Lemma 6.2 (Jarnik). ([4, p. 213]). Let (C([a,b]),|/||ls) and let A = {f :
[a,b] — R : f is continuous and f has every extended real number as a derived
number at every point}. Then C([a,b]) \ A is of the first category in C([a,b]).

Remark 6.1. For a wide T-integration let K(T, [a,b]) = {F : [a,b] = R :
there exists f € K(T,[a,b]) such that F(z) = T(f,[a,%]), V 2 € [a,b]} en-
dowed with the norm | - |ls. Then K(T, [a,b]) with the norm || - || given by
Definition 2.2 is isomorphic to (I@(T, [a, b)), | [ls0)-

Let C([a,b]) = {f : [a,b] — R : f is continuous on [a,b]}. Clearly
(K(T.[a,0]), ] - llsc) € (C([a,b]),]| - o) (see Definition 2.1, (f)). Since each
polynomial on [a,b] is a Lipschitz function, and because by the Weierstrass
theorem, each function f € C([a,b]) is the uniform limit of a sequence of poly-
nomials, it follows that I&(T, [a,b]) is dense in (C([a,b]), ][l ). Therefore the
completion of (K(T, [a,b]),]| - ||) is the Banach space (C([a,b]),]| - [ls)-

Theorem 6.2. Let T be a wide integration on [a,b] which satisfies the hy-
potheses of Lemma 5.2. If for each f € K(T,[a,b]) the equality F'(z) = f(x)
holds on a set of positive measure, where F(z) =T(f;[a,z]), € [a,b]), then
(K(T, [a,b]), || - 1|) is of the first category on itself.

PROOF. Suppose on the contrary that (K(T,[a,b]), | - |) is of the second cat-
egory on itself. Since IC(T, [a, b]) = I@(T, [a, b]) = C’([a, b]), by Lemma 6.1 it
follows that (l@(T, [a,b]), || - ||) is of the second category in (C([a,b]), | - |lo)-
By Lemma 6.2, l@(T, [a,b]) is of the first category. This contradicts the fact
that (C([a,b]), || - [|) is a Banach space. O




ON THE T-INTEGRATION OF KARTAK AND MARI 531

Theorem 6.3. For a wide T integration on [a,b] let L : (l%(T, [a,b]), || ]loc) —
R be a continuous linear functional. Then there exists g € VB on [a,b] such

that L(F) = (RS) f; F(t)dg(t), whenever F € K(T, [a,b]).

Proo¥. For F € K(T,[a,b]) there exists f € K(T,[a,b]) such that F(z) =
T(f;la,x]). Let L*(f) = L(F). Since ||f|| = ||F|l« and L is a continuous
linear functional, by Theorem 4.1, there exists G € V B such that

b b
L'(H) = F(8)-GO) - (RS) [ F(1)d6(0) = (RS) [ F(0)dg(t),

where g(x) = —G(x), x € [a,b) and g(b) = 0. So L(F) = (RS) f: F(t)dg(t).
O

Corollary 6.1. (The Riesz representation theorem, [20, Theorem 12.12]). Let
L:(C([a,b]),]* o) — R be a continuous linear functional. Then there exists

g € VB on [a,b] such that L(F) = (RS) f{f F(t) dg(t) whenever F € C([a,b]

PROOF. Since I&(T, [a,b]) is dense in C([a,b]), it follows that for each F' in
C([a,b]) there exists a sequence {F,}, C K(T,[a,b]) such that F,, — F [unif]
on [a,b]. Applying the uniform convergence theorem for the (RS)-integral we
obtain

b b
L(F) = lim L(F,) = lim (RS) / Fo(t) dg(t) = (RS) / Flydg(t). O

n—oo n—oo a

7 Weak Convergence in K (T, [a, b]) for Wide T-integration

Theorem 7.1. ([16, p. 259]). Let f, fn : [a,b] = R, n =1,2,... be such that
f, fn are continuous and |fn(a:)’ < M for some M, for every x € [a,b] and
eachn=1,2,.... Let g: [a,b)] > R, g € VB. If f,, — [ on [a,b], then

b b
RS) [ f@)dg(e) = im (RS) [ 1.(0)dg(0).

Theorem 7.2. Let T be a wide integration on [a,b] as in Definition 2.2. Let
frfne IC(T7 [a, b]), n=1,2,.... The following assertions are equivalent:

(i) fn — [ weakly on K(T,[a,b]),

(ii) Let F,(z) =T (fn,[a,2]) and F(z) =T(f,a,z]), z € [a,b].
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(1) |Fu(z)| < M for some M, for every x € [a,b] and eachn =1,2,...,
(2) F,(z) — F(x) for every x € [a,b].
PrOOF. Our proof follows the proof of Theorem 3, # 3, Chapter VIII of
[13]. Let L : K(T,[a,b]) — R be a continuous linear functional. By Theorem
4.1 there exists g, € VB on [a,b] such that L(f) = T(fgr,[a,b]), for every
f e K(T,a,b]).
(i) = (ii) We shall use the following classical result (see [7] or [13], Theorem
2, # 1 of Chapter VIII): z, — 2 weakly in a normed space if and only
if sup,, ||z,| < +oo and {f : f(z,) — f(z), = € [a,b]} is a dense set of
functionals in X*. Since f, — f weakly, we have || || = || Fn|loo < M for some
positive number M. So we have (ii), (1). For z € [a,b] let L, : K(T, [a,b]) —
R be a continuous linear functional defined by L,(f) = T(fX[a’I], [cub]) =
T(f,la,z]) = F(z). Since f,, — f weakly, we obtain (ii), (2).
(ii) = (i) It is suflicient to show that L(f,) — L(f). By Theorem 7.1,

|L(fn) - L(f)| = |T((fn - f)gL7 [a7 b])|
b
~ |(Fa = Y09 - (RS) [ (s - PO dont)] 0
’ 0
8 General Classes of Primitives

Let a € R, a, 5 € R, @ < (. Let’s denote by
e To.f :R—>R, T, f(z) :== f(x — a), whenever f: R — R,
o fop:R—=R,
fla) ifzr<a
faple) =9 flz) ifzela,pf]
fB) ifx>p
whenever f: R — R,
e fo:R—R,

o = {119 1<

whenever f: E— R and Q C E CR.

Definition 8.1. A family S C {f : R — R : supp(f) is compact} is said to
be a space of integrable functions if it satisfies the following conditions:
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1) LeomptS =S andR-S=S8ie,if f € Loomp, g €S, a € R, then f+ge€ S
and ag € S,

2) S is invariant to translations: i.e., T, f € S whenever f € S and a € R,

3) 8 Xy C S for any [a,b] CR;ie., if f €S then f-x,, €S,

a,b]
4) If f,g € Sand f—g > 0 a.e. on some closed interval [a, b] then (f—g)-x,

Ecompa

5) If f,g € S, supp(f) C [a,b] and supp(g) C [b,¢], then f+g € S.

€

a,b]

Definition 8.2. Let S be a space of integrable functions. A functional 7 :
S — R is said to be an integral if:

1) Z(af + Bg) = a(L) [ f(t)dt + BI(g), whenever f € Leomp, 9 € S and
Oé,ﬁ € Ra

2) Z(T,f) = Z(f) whenever a € R and f € S,

3) Z(f+9) = Z(f)+Z(g) whenever f,g € S, supp(f) C [a,b], supp(g) < [b, c].

Let f: E— R, Q C ECR, @ bounded. f is said to be Z-integrable on @ if
fq € S. We denote by (Z) [, f(t) dt =I(fq).

Definition 8.3. Let f : [a,b] — R be Z—integrable on [a,b], and let o € R.
The function G : [a,b] — R defined by G(z) = a+ (Z) f[a,z] f(t)dt is called an
Z-primitive of f on [a,b].

A function G : [a,b] — R is called an Z-primitive if there exists g : [a,b] —
R, such that g is Z-integrable on [a,b] and there exists o € R so that

G(x):a—l-(I)/[ “]g(t)dt.

Definition 8.4. Let ACr = {F : R — R : F € AC on each compact interval}.
A class G C {F : R — R: F is a measurable function approximately derivable
a.e.} is said to be a general class of primitives if it has the following properties:

1) ACk+G=GandR-G =0,

)
2) G is invariant to translations; i.e., T,F € G whenever F € G and a € R,
3) f FeGand o, €R, o < f3, then F, 5 € G,

)

4) If F € G and F(;p > 0 a.e. on some interval [a,b], then F is increasing on
[a, 0],
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5) Let F,Ge G. If F = F, for some [a,b] C R and G = G for some [b, c|,
then F + G € G.

Let g : R — R. A function F: R — R, F € G with Falp = g a.e. is said to
be a (G)- primitive of g on R. A function f : R — R with compact support is
said to be G-integrable if it admits G-primitives. The definite G-integral of f
will be denoted by

<@/f@w=F@—F@

R
where F' is a G-primitive of f such that supp(f) C [a,b].

In what follows we show that the G-integral is well defined.

Lemma 8.1. Let g : R — R which admits G-primitives. Suppose that F,G :
R — R are two G-primitives of g. Then F' — G is a constant on R.

PrOOF. By Definition 8.4, 4), it follows that F' — G is a constant on each
[a,b] C R. Since R = U2 ;[—n,n], we get that F' — G is a constant on R. [J

Lemma 8.2. The G-integral is well-defined.

PrOOF. Let f: R — R be a G-integrable function and F,G two G-primitives
of f. By Lemma 8.1, F — G is a constant on R. Let ¢ = infsupp(f), d =
sup supp(f) and [a, b] D [¢,d]. By Definition 8.4, 3), F. 4, G q belong to G and
they obviously are G-primitives of f. Hence, by Lemma 8.1 again, F' = F_ 4
and G = G4. It follows that F(b) — F(a) = G(b) — G(a). O

Definition 8.5. A function f : E — R is said to be G-integrable on a bounded
set Q C E, if the function fg is G-integrable. Then we write

<®Lﬂmm4m4m@m.

Theorem 8.1. Let Sg = {f : R — R : supp(f) is compact and f is G-
integrable}. Then Sg is a space of integrable functions.

PrOOF. We verify conditions 1)-5) of Definition 8.1.
1) Let f € Leomp, 9 € Sg and a € R. Clearly ag € Sg. Let a1 =
inf(supp(f)), b = sup(supp(f)) and F': R — R,

0 ifz<a
F(x) =< (L) [T f(t)dt if x € [a1,b]
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Then Ij" € ACg and F' = f a.e.on R. For g € Sg, there exists G € G such
that G, = g a.e. on R. By Definition 8.4, 1), it follows that F' + G € G and
(F+ G);p =f+gae onR.

2) Suppose that f € Sg. Then there exists F' € G such that Ft;p = f a.e.
on R. Let a € R. Then

(T.F),,(z) = (F(z —a)),, = F,(x —a) = f(z — a) = T, f(z) a.e. on R.

ap

By Definition 8.4, 2), it follows that T, f € Sg.
3) Suppose that f € Sg and [a,b] C R. Then there exists F' € G such that
F,, = f a.e. on R. By Definition 8.4, 3), it follows that F;,; € G and

(Fa,b);p = fX[q) a-e.on R,

SO fX[a7b] e Sg.

4) Suppose that f,g € Sg and f—g > 0 a.e. on some [a, b] C R. Then there
exists F,G € G such that F;p = f and G;p =g a.e. on R. But (F — G);p =
f—g>0a.e. on [a,b]. By Definition 8.4, 4), F — G is increasing on [a, b]; so
f — g is Lebesgue integrable on [a, b]. It follows that (f —g) - X, ,; € Leomp-

5) Suppose that f,g € Sg such that s/upp(f) C [a,bj and supp(g) C [b,¢].
Then there exist F,G € Sg such that F,, = f and G,, = g a.e. on R. By
Definition 8.4, 3), Fyp, Gp,c € Sg. Clearly

(Fa,b)/ap =[f and (Gb,c);p =ga.c. onR.

By Lemma 8.1, F' = Fy, ; and G = Gy, Hence by Definition 8.4, 5), F+G € G
and (F + G);p = f 4 g a.e. on R. Therefore f + g € Sg. O

Example 8.1 (Examples of general classes of primitives). Let
e C={F:R —R: F is continuous on R},
e Cyp = {F:R — R: F is approximately continuous on R},
o Cpro ={F :R—R: F is proximally continuous on R}.

The definition of the proximal continuity is somewhat technical, and it was
introduced by Sarkhel and De in [29]. We don’t give this definition here, but
we mention that Cp,, is a real linear space contained in the class of Darboux
Baire one functions and C - Cpro = Cpro. That Cgp is contained in the class
Darboux Baire one is well known, and of course C - Cqp, = Cqp.

Let
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e AC*Gr ={F :R—R: Fis AC*G on each compact interval [a, ]},
o ACGr={F:R—R: Fis ACG on each compact interval [a, ]},

e Jg = {F : R — R : F satisfies Foran’s condition F on each compact
interval [a, b]}.

We have the following examples of G-integrals:
e G =CNAC*Gyg is the Denjoy*-integral,
o G =Cqp NAC*GR is the a-Ridder integral,
o G = Cpro NAC*GR seems to be new,
e G =CnN ACGR is the wide Denjoy-integral,
o G =C4 NACGR is the S-Ridder integral,
® G =Cpro N ACGR seems to be new,
e G =C N Fp is the Foran integral,
o G =Cqp N Fp is called the AF-integral (see [11]),
o G =C, NVBGN(N) is the Gordon integral,
o G =CproNVBGN (N) seems to be new.

9 A Generalization of a Result on Differential Equations
of Bullen and Vyborny

Definition 9.1. Let I, = [t, — v, to + @0 and J, = [0 — Bo, o + Bo], where
to,z, € R and ay, 8, > 0. Given f : I, x J, — R, I a compact interval, I C I,
and g : I — J,, we define f; : I — R by f,(t) = f(t, 9(t)).

Lemma 9.1 (Helly). ([22, p. 221]). Let F = {f(z)} be an infinite family
of increasing functions, defined on [a,b]. If all functions of the family are
bounded by one and the same number, f(x)‘ <K, feF a<z<b, then
there is a sequence of functions {fn (:U)} in F which converges to an increasing
function o(x) at every point of [a, b].

Theorem 9.1. Let 7 : S — R be an integral as in Definition 8.2, and let
f i1, x J, — R satisfy the following properties:

(i) f(t,-) is continuous on J, for almost all t € I,,
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(i) There exists a subinterval I = [t, —a,t, +a] of I,, and two I-integrable
functions m, M : I — R such that

e |(Z) fti m(s)ds| < B,
e |(2) ftto M(s)ds| < B,

o ifg: I — J, is an I-primitive with g(t,) = x,, then f, is measurable
on I and m(t) < fq(t) < M(t) a.e. on I.

Then there exists an Z-primitive p : I — J, such that p(t) = x,+(T) ftt fo(s)ds.

PROOF. We prove for example the case t > t,. On the interval [t,,t, + «] we
define the approximations ¢y, k =1,2,... by

o if £ € [to, to+ 2]
pr(t) = - . o
2o+ (I) [, * for(s)ds ift € [to+ T, to +al.

Since the integral Z is invariant to translations, it follows that

(t) = To if t € [to,to + %]
Pr(t) = xo+(z)ftto+%f%(s—%)ds if ¢ € [to + ¢, 10 + al.

Let @i : [tosto + @) — Jo, @r1(t) = z,. Clearly ¢ 1 is an Z-primitive on
[to, to + a]. By hypotheses we have

< (T) / m(s) ds < (T) / o () ds
totiQ to (8)
<@ [ " Ms)ds < B,

Let w2 [to,to + @] — Jo,

or1(t) if ¢ € [to, to + ¢
Or2(t) = S o+ (T) [ fooi(s)ds it € [to+ & 1o+ 2]
or2(to + 22) if t € [to+ 22, to + al.

By (8), it follows that ¢y o takes indeed values in J,. Since the integral Z is
invariant to translations, it follows that

t

IEO+(I)/t F f@kyl(s)d5:x0+(z)/t ftpk,l (S*%) ds,

. ot
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for t € [t, + ¢,to + 27“} Therefore ¢y, 2 is well defined and a Z-primitive on
[to, to + @, With @y 2(ts) = x,. Suppose that ¢k j—1 : [to,to + @] — Jo, j > 2
are already defined and let @y ; : [to, o + @] — J, be defined by

wr,j—1(t) t € [to, to + U512

—1)a t—% j—1)a j o
<Pk,j(t) = @’C,jfl((] k1> ) + (I) f +k(j—2)a f‘Pk,j—l (8) ds te [to + %7 to + JT]
E

to

Prj-1(to + 2F) t € [to+ 22, t, + a
But

(I)/t k fﬁok,j—l(s) ds = (I) /to+(jk1)°‘ f@k,j—l(s - %) ds,

O+(J7k?)a

for t € [t, + (j_kl)a,to + %] Clearly ¢y ; is a Z-primitive on [t,,t, + af,
with o j(t,) = 2,. We show that ¢y ; takes values only in J,. We first
show inductively that ¢ = @k ; on [to,to + %]. Suppose that ¢ = @k 1

on [te,t, + %] Then clearly ¢ ; = @rj—1 = @k on [to, to + U= 1)a]. Let
t €[t + @, to+ %] It follows that

o1, (t) = o (to + @) + (I)/ ok(s — =) ds

to+ Uz k
to+ s

vt @ [T gl Pase@ [ e s

to_,’_(Jfkl)w

:xo—|—(I)/t+ f¢k(s—%) ds = @i(t).

o
ol k

Suppose that @y j_1 € J,. We prove that ¢y ; € J,. For t € [t, (jfkl)o‘,to+ %]
we have

t-§

—B, < (2) /t/_? m(s)ds < (I)/t B Jor(s)ds < () CM(s)ds < S,.

o o to

Hence ¢y ; € J, in this case. Since g ; = i j—1 = @k on [tmt 4 U= 1)0‘]

we have ¢y, ;(t) € J, for all ¢t € [to,to + Jka] Clearly ¢r r = @i on [to,t, + a,
hence @y, is well defined and is a Z-primitive on [t,, t, + .
Let h, H : [to,to + a] — R be defined as follows:

wo) — L7 if £ € [to, to+ 2]
B xo—i—(I)ftto_%m(s)ds iftefto+ ¢t +0a
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() T, if ¢ € [to, to + ¢
o+ (@) [T M(s)ds ift€ [ty + 2t +al.

Let hy : [to,to + ] = R, hy(t) = @r(t) — h(t). Then, for t € [to,t, + §] we
have hy(t) =0, and for t € [t, + ¢,t, + @,

hi(t) = (T) / " (fon(s) —m(s)) ds = (£) / (o —m)(5) ds

o o

< <c>/t (M - m)(s)ds

o
o
=%

=(7) M(s)ds — (Z)/t B m(s)ds < 203,.

to o

Therefore {hy} is an increasing sequence of functions on [t,,t, + «] and
0 < hk(to) < hk(to + a) < 2/60 .

By Lemma 9.1, there exists a subsequence of {hy }, which converges punctually
to an increasing function G on [t,,t, + a]. We may suppose without loss of
generality that {h}r converges punctually to G on [t,,t, + «], hence {¢x}
converges punctually to ¢ := h + G on [t,,t, + a]. By (i), it follows that
for — foae.on [ty to+a]. By Theorem 3.1, it follows that f,,, and f, belong
to S on [t,,t] and limy_. Z(fy,) = Z(f,) on [t,,t]. From the definition of

¢k, we obtain that ¢(t) = z, + () ftto fo(s)ds. O
Corollary 9.1 (Bullen and Vyborny). ([5]). Let f : I, x J, — R be such that
(i) f(t,-) is continuous on J, for almost all t € I,.

(i1) there exists a > 0 and two continuous functions h, H : [t, — o, to + ] —
=B, Bo] satisfying the following properties:
e h(t,) = H(t,) = 0.
o ifg:[to—a,total — J,, g € AC*G, g is continuous and g(t,) = ¥,
then f, is measurable and Dh < f, < DH.

Then there exists a continuous function ¢ : [t, — a,t, + o] — J,, such that
ot
p(t) =x,+ (D )j;o fo(s)ds.

PROOF. Let g, : [to — o, to + @] = Jo, go(t) = z,. By hypothesis Dh < f, <
DH and f,, is measurable. From Marcinkiewicz’ theorem of [25, p. 253], it fol-
lows that f,, is D*-integrable. Since Dh < DH on [t,—a,t,+a], and Dh, DH
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are Borel measurable (hence Lebesgue measurable), by Marcinkiewicz’ theo-
rem again, we obtain that Dh, DH are D*-integrable on [t, — a,t, + . Let
m(z) = Dh(t) and M (t) = DH(t) for t € [t, — a,t, + a]. Then
t t
‘(D*) m(s) ds) < B, and ’(D*) M(s) ds‘ < Bo,

to to

because
o <h(0) < (D) [ m(s)ds < (D7) [ 2r(s)ds < 1(0) < 5,

for all ¢ € [t, — a, t, + a] (see for example [8]) Now the proof follows applying
Theorem 9.1. O
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