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ON THE T-INTEGRATION OF KARTÁK
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Abstract

General notions of integration have been introduced by Saks [25, p.
254], Karták [14, p. 482], Kubota [17, p. 389] and Sarkhel [28, p. 299].
Karták’s T -integration was further studied by Karták and Mař̀ı in [15],
and by Kubota in [18].

In this paper, starting from Kartak and Mař̀ı’s definition, we intro-
duce another general integration (see Definition 3.2), that allows a very
general theorem of dominated convergence (see Theorem 3.1). Then we
present a general definition for primitives, and this definition contains
many of the known nonabsolutely convergent integrals: the Denjoy∗-
integral, the α-Ridder integral, the wide Denjoy integral, the β-Ridder
integral, the Foran integral, the AF integral, the Gordon integral. Using
this integration and Theorem 3.1, we obtain a generalization of a result
on differential equations, of Bullen and Vyborny [5].

We further give a Banach-Steinhaus type theorem, a categoricity the-
orem, Riesz type theorems (as a particular case we obtain the Alexiewicz
Theorem [1]), and study the weak convergence for the T -integration.

1 Essentially Bounded Variation and the Bounded Slope
Variation

We denote by m(A) Lebesgue measure of A, whenever A ⊆ R is Lebesgue
measurable. For the definitions of V B, AC AC∗G and Lusin’s condition (N),
see [25]. Let χE denote the characteristic function of the set E.
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Definition 1.1 (Preiss). ([24] or [8, p. 35]). Let F : [a, b] → R. F is said to
be lower internal∗, if F (x+) ≥ F (x), whenever x ∈ [a, b) and F (x+) exists,
and F (x−) ≤ F (x), whenever x ∈ (a, b] and F (x−) exists. F is said to be
upper internal∗ if −F is lower internal∗. F is said to be internal∗ if it is
simultaneously upper and lower internal∗.

Definition 1.2. ([23]). Let P ⊂ [a, b] be a set of positive measure, and let
f : P → R be a measurable function, finite a.e. .

• f is said to be essentially upper bounded if there exists a real number
M such that the set {x ∈ P : f(x) > M} has measure zero.

• f is said to be essentially lower bounded if the function −f is essentially
upper bounded.

• f is said to be essentially bounded if it is simultaneously essentially
upper bounded and essentially lower bounded; i.e., there exists M > 0
such that the set {x ∈ P : |f(x)| > M} is of measure zero.

• Let supess(f ;P ) = inf{M : M is given by the fact that f is essentially
upper bounded} and supess(f ;P ) = +∞ if f is not essentially upper
bounded. Similarly we define infess(f ;P ).

• Let Oess(f ;P ) = supess(f ;P )− infess(f ;P ).

• Let Oess(f ;X) = 0, whenever X is a null subset of P .

• f is said to be of essentially bounded variation (short f ∈ EV B) on P ,
if there exists M > 0 such that

∑n
i=1Oess

(
f ; [ai, bi] ∩ P

)
< M when-

ever [ai, bi], i = 1, 2, . . . , n are nonoverlapping closed intervals with the
endpoints in P .

• Let EV (f ;P ) = inf{M : M is given by the fact that f ∈ EV B on P},
and let EV (f ;P ) = +∞ if f /∈ EV B on P .

• Let V (f ;P ) = inf{M : M is given by the fact that f ∈ V B on P} and
let V (f ;P ) = +∞ if f /∈ V B on P .

Lemma 1.1. ([9]). Let f : [a, b]→ R be a measurable function. The following
assertions are equivalent:

(i) f ∈ EV B on [a, b],

(ii) There exists f̃ : [a, b] → R, such that f̃ ∈ V B and f̃ = f a.e. on [a, b].
Moreover EV

(
f ; [a, b]

)
≤ V

(
f̃ ; [a, b]

)
≤ 2 · EV

(
f ; [a, b]

)
.
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Lemma 1.2. Let P be a set of positive finite measure, and let g : P → R be
a measurable function, which is finite a.e. on P . If g is not essentially upper
(respectively lower) bounded on P then there exists a function f : P → R such
that:

(i) f is summable on P ;

(ii) f · g ≥ 0 on P ;

(iii) f · g is not summable on P .

Proof. Suppose for example that g is not essentially upper bounded on P .
For α, β ∈ R, we let Eα(g) = {x ∈ P : g(x) ≥ α}, Eβα(g) = {x ∈ P : α ≤
g(x) < β} and E∞(g) = {x ∈ P : |g(x)| = +∞}. Clearly |E∞(g)| = 0.
We show that there exists a strictly increasing sequence of positive integers
{ni}∞i=1, such that ∣∣Eni+1

ni (g)
∣∣ > 0, i = 1, 2, . . . . (1)

Let n1 = 1. Then En1(g) has positive measure. Since

En1(g) \ E∞(g) = ∪∞n=n1+1E
n
n1

(g) ,

it follows that there exists n2 > n1 such that En2
n1

(g) has positive measure and
|En2(g)| > 0 (because g is not essentially upper bounded on P ). Continuing
in this way, we obtain (1). Let αi = |Eni+1

ni (g)| and let βi be such that
αi · ni · βi = 1/i, i = 1, 2, . . . . Let f : P → R,

f(x) =

{
βi, x ∈ Eni+1

ni (g), i = 1, 2, . . .
0, otherwise

(i) We have

(L)
∫
P

f(t) dt =
∞∑
i=1

βi · αi =
∞∑
i=1

1
ni · i

≤
∞∑
i=1

1
i2
< +∞ .

Hence f is summable on P .
(ii) We have f(x)·g(x) ≥ βi·ni, if x ∈ Eni+1

ni , i = 1, 2, . . ., and f(x)·g(x) = 0
otherwise.

(iii) We have

(L)
∫
P

f(t) · g(t) dt ≥
∞∑
i=1

αi · ni · βi =
∞∑
i=1

1
i

= +∞ .

Hence f · g is not summable on P .
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Lemma 1.3 (Sargent). ([26]). Let g : [a, b] → R be an essentially bounded,
measurable function. If g /∈ EV B on [a, b] then there exists [α, β] ⊆ [a, b] and
a function f : [α, β]→ R such that:

• f is Denjoy∗-integrable (short D∗-integrable) on [α, β];

• either f · g is summable on [α, x] whenever x ∈ (α, β), but

lim
x→β

(L)
∫ x

α

f(t)g(t) dt = +∞,

or f · g is summable on [x, β] whenever x ∈ (α, β), but

lim
x→α

(L)
∫ β

x

f(t)g(t) dt = +∞.

Proof. Let Jo = [a, b]. Since g /∈ EV B on Jo, it follows that g /∈ EV B
on at least one of the intervals, [a, (a + b)/2] or [(a + b)/2, b]. Denote this
interval by J1 = [a1, b1]. Continuing, we obtain a sequence of closed intervals
{Jn}n, Jn = [an, bn] such that bn − an = (b− a)/2n and g ∈ EV B on no Jn.
Let {c} = ∩∞n=1Jn, J ′n = [an, c] and J

′′

n = [c, bn]. Then there exist infinitely
many subscripts n such that g /∈ EV B on J ′n for example. We may suppose
without loss of generality that g ∈ EV B on no J ′n, for no n = 0, 1, . . . . Let
M = supess(g; [a, b]) and m = infess(g; [a, b]). Because g /∈ EV B on [a, b],
M −m > 0. Since g /∈ EV B on J ′o, there exists a partition πo of J ′o such that∑
I∈πo Oess(g; I) > 3(M −m). Let π′o = πo \ {c}. Then∑

I∈π′o

Oess(g; I) > 2(M −m) .

Let I ′o be the last interval of the partition πo. Then I ′o contains an interval
J
′

n1
; so g /∈ EV B on I ′o (because g /∈ EV B on J

′

n1
). It follows that there

exists a partition πn1 of I ′o such that
∑
I∈πn1

Oess(g; I) > 3(M − m). Let

I
′

n1
be the last interval of the partition πn1 . Let π

′

n1
= πn1 \ {c}. Then∑

I∈π′n1
Oess(g; I) > 2(M−m). Continuing, we obtain a sequence of partitions

{π′nk}k such that
∑
I∈π′nk

Oess(g; I) > 2(M − m) , for each k. Let x1 <

x2 < x3 < . . . < c be the endpoints of all intervals contained in ∪∞k=0π
′

nk
.

We obtain that
∑∞
n=1Oess

(
g; [xn, xn+1]

)
= +∞. Let [α, β] = [x1, c]. Let

Mn = supess
(
g; [xn, xn+1]

)
and mn = infess

(
g; [xn, xn+1]

)
. Now the proof

continues as in [20, p. 78], (see also [6, p. 46]).
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Corresponding to each n, there exist distinct measurable subsets Xn and
Yn of [xn, xn+1] such that |Xn| = |Yn| = δn > 0, g(x) ≥ (3/4)Mn + (1/4)mn

for x ∈ Xn, and g(x) ≤ (1/4)Mn + (3/4)mn for x ∈ Yn. Let

pn =
1

δn ·
∑n
i=1(Mi −mi)

and

f(x) =


pn for x ∈ Xn, n = 1, 2, . . .
−pn for x ∈ Yn, n = 1, 2, . . .
0 elsewhere

Clearly f is summable on each [xn, xn+1] and (L)
∫ xn+1

xn
f(t) dt = 0. For

u ∈ (xn, xn+1] we have∣∣∣∣(L)
∫ u

xn

f(t) dt
∣∣∣∣ ≤ (L)

∫ xn+1

xn

∣∣f(t)
∣∣ dt ≤ 2pnδn → 0, n→∞.

Let

F (x) =


0 for x = α

(L)
∫ x
xn
f(t) dt for x ∈ [xn, xn+1], n = 1, 2, . . .

0 for x = β

Clearly f is D∗-integrable on [α, β]. Since f is summable on [xn, xn+1] and g
is essentially bounded, it follows that f · g is summable on [xn, xn+1] and

(L)
∫ xn+1

xn

f(t)g(t) dt = (L)
∫
Xn

f(t)g(t) dt+ (L)
∫
Yn

f(t)g(t) dt

= pn · (L)
∫
Xn

g(t) dt− pn(L)
∫
Yn

g(t) dt

≥ pnδn
2

(Mn −mn) =
1
2
· Mn −mn∑n

i=1(Mi −mi)
= rn.

Since
∑∞
n=1(Mn−mn) = +∞, it follows that

∑∞
n=1 rn = +∞ (see for example

[20, p. 79]). We have

(L)
∫ xn+1

xn

∣∣f(t)g(t)
∣∣ dt ≤ (M −m) · (L)

∫ xn+1

xn

∣∣f(t)
∣∣ dt

≤ 2pnδn(M −m)→ 0.
(2)

Let γn = (L)
∫ xn+1

xn
f(t)g(t) dt. Then

∞∑
n=1

γn ≥
∞∑
n=1

rn = +∞. (3)
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Let G : [α, β)→ R,

G(x) = (L)
∫ x

α

f(t)g(t) dt, x ∈ [xn, xn+1], n = 1, 2, . . . .

We observe that

G(x) =
n−1∑
i=1

γi + (L)
∫ x

xn

f(t)g(t) dt on [xn, xn+1], n ≥ 2 .

By (2) and (3) it follows now that limx→β G(x) = +∞.

Definition 1.3. ([9]). A function F : [a, b]→ R is said to be of bounded slope
variation (short F ∈ BSV ) on a subset P of [a, b], if there exists M > 0 such
that

n∑
i=1

∣∣∣∣F (b2i)− F (a2i)
b2i − a2i

− F (b2i−1)− F (a2i−1)
b2i−1 − a2i−1

∣∣∣∣ < M,

whenever a1 < b1 ≤ a2 < b2 ≤ . . . ≤ a2n < b2n are points in P . Let
SV (F ;P ) = inf{M : M is given by the fact that F ∈ BSV on P}. If
F /∈ BSV on P . let SV (F ;P ) = +∞.

Theorem 1.1. ([9]). With the above notations we have the following results:

(i) Let f : [a, b] → R, f ∈ EV B and let F (x) = (L)
∫ x
a
f(t) dt. Then

F ∈ BSV on [a, b] and SV
(
F ; [a, b]

)
≤ EV

(
f ; [a, b]

)
.

(ii) Let F : [a, b]→ R, F ∈ BSV and let

F ∗(x) =

{
F ′(x) where F is derivable
0 elsewhere

Then F satisfies the Lipschitz condition, F ∗ ∈ EV B on [a, b], and
EV

(
F ∗; [a, b]

)
≤ SV

(
F ; [a, b]

)
.

Remark 1.1.

(i) If f is essentially bounded on [a, b], then F (x) = (L)
∫ x
a
f(t) dt is a

Lipschitz function on [a, b] and F
′

= f a.e. .

(ii) If F : [a, b] → R is a Lipschitz function, then F ∗ is essentially bounded
on [a, b] and F (x) = (L)

∫ x
a
F ∗(t) dt (for F ∗ see Theorem 1.1).
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2 The T-integration of Karták and Mař̀ı

Definition 2.1 (Karták and Mař̀ı). ([15], [14], [18], [19]). Let T be a func-
tional by which there corresponds to each closed interval J ⊂ I a linear space
K(T, J) of real valued measurable functions defined on J , and to each function
f of K(T, J) a real number T (f, J). A functional T is called an integration
(respectively a wide integration) on I if the following conditions are fulfilled:

(a) The functional T (f, J) is linear on K(T, J).

(b) If f ∈ K(T, J), J
′ ⊂ J , then f ∈ K(T, J

′
).

(c) If f is Lebesgue integrable (respectively f is Lebesgue integrable and es-
sentially bounded) on J , then f ∈ K(T, J) and T (f, J) = (L)

∫
J
f .

(d) If J1 and J2 are abutting intervals and if f ∈ K(T, J1) ∩ K(T, J2), then
f ∈ K(T, J1 ∪ J2) and T (f, J1 ∪ J2) = T (f, J1) + T (f, J2).

(e) If f ∈ K(T, J), f ≥ 0, then f is Lebesgue integrable on J .

(f) If f ∈ K(T, J), J = [α, β], then F (x) = T
(
f, [α, x]

)
is continuous on J ,

where F (α) = 0.

Let T be an integration (respectively a wide integration) on I. A function
f in K(T, J) is said to be T -integrable (respectively wide T -integrable) on J .
Given two integrals (respectively wide integrals) T1 and T2 on I, T2 includes
T1, written T1 ⊂ T2, if f ∈ K(T2, J) and T1(f, J) = T2(f, J), whenever f ∈
K(T1, J) and J ⊂ I.

Lemma 2.1 (Karták and Mař̀ı). ([15, p. 746]). There exist an integration
T , a function f ∈ K(T, I) and g ∈ AC on the closed interval I such that
f · g /∈ K(T, I).

Lemma 2.1 leads us to the following definition.

Definition 2.2. Let T be a wide integration on I = [a, b], satisfying the
following conditions:

(i) f · g ∈ K(T, I), whenever f ∈ K(T, I) and g ∈ V B,

(ii) T (f · g, I) = F (b)g(b) − (RS)
∫ b
a
F (x) dg(x), where F (x) = T (f, [a, x]),

x ∈ [a, b], F (a) = 0, whenever f ∈ K(T, I) and g ∈ V B (here (RS)
denotes the Riemann Stieltjes integral). Let 〈f |g〉 = T (f · g, I).

We shall not make distinction between f and g belonging to K(T, I) if f =
g a.e. . We define the following real normed spaces:
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•
(
K(T, I), ‖ · ‖

)
, where ‖f‖ = ‖F‖∞ = sup

{
|F (x)| : x ∈ [a, b]

}
;

•
(
V B, ‖ · ‖V B

)
, where ‖g‖V B =

∣∣g(b)
∣∣ + V

(
g, [a, b]

)
. (This is in fact a

Banach space).

Example 2.1. Some particular wide integrals which satisfy Definition 2.2 are:

1. the SF-integral (see [8, pp. 210-211]);

2. the Foran integral (see [10] or [8, p. 208]),

3. the Denjoy and Denjoy∗ integrals (see [6, pp. 31-34]),

4. the Lebesgue integral (because the product of a V B function and a
Lebesgue integrable function is still a Lebesgue integrable function),

5. the Lebesgue integral restricted to essentially bounded functions (be-
cause the product of a V B function and an essentially bounded function
is still an essentially bounded function).

3 A General Notion of Integration

Definition 3.1 (Sarkhel). ([28]) By f ·�·A→ R we mean a function with values
in R, whose domain contains almost all points of the set A such that f is finite
almost everywhere on A.

Let Lcomp = {f : R→ R : supp(f) is compact and f is Lebesgue integrable}.
Starting from Definition 2.1, we introduce the following general integration.

Definition 3.2. Let A = {(f, I) : I is a compact interval, f ·�· I → R, f is
measurable on I}. A mapping J : Ao → R, Ao ⊂ A is said to be an integral
if the following conditions are fulfilled:

(a) If (f, I) ∈ A, f is Lebesgue integrable on I, (g, I) ∈ Ao and α, β ∈ R, then
(αf + βg, I) ∈ Ao and J (αf + βg, I) = α · (L)

∫
I
f(t) dt+ β · J (g, I) .

(b) (f, J) ∈ Ao whenever (f, I) ∈ Ao and J ⊆ I.

(c) If (f, I) and (g, I) belong to Ao and f ≥ g a.e. on I then f −g is Lebesgue
integrable on [a, b].

(d) If (f, [a, b]) and (f, [b, c]) belong toAo, then (f, [a, c]) ∈ Ao and J (f, [a, b])+
J (f, [b, c]) = J (f, [a, c]) .
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Let J be an integral. Then f is said to be J -integrable on [a, b] if (f, [a, b]) ∈
Ao. In this case the function F : [a, b]→ R,

F (x) =

{
0 if x = a

J (f, [a, x]) if x = (a, b]

is called the indefinite J -integral of f on [a, b]. Clearly F is well defined and
J (f, [c, d]) = F (d)−F (c) whenever [c, d] ⊆ [a, b] (see (b) and (d)). A function
G : [a, b] → R of the form G(x) = F (x) + α, α ∈ R is called a J -primitive of
f on [a, b]. Let (J )

∫ x
a
f(t) dt := J (f ; [a, x]) .

Lemma 3.1. Let J : Ao → R be an integral as above. If f ·�· [a, b] → R is
Lebesgue integrable on [a, b], then (f, [a, b]) ∈ Ao and

(J )
∫ b

a

f(t) dt = (L)
∫ b

a

f(t) dt .

Proof. Let (g, [a, b]) ∈ Ao. By Definition 3.2, (a),

(J )
∫ b

a

(1f + 0g)(t) dt = 1(L)
∫ b

a

f(t) dt+ 0(J )
∫ b

a

g(t) dt.

Hence (J )
∫ b
a
f(t) dt = (L)

∫ b
a
f(t) dt.

Definition 3.3. ([22, p. 151]). Let M = {f} be a family of Lebesgue
integrable functions defined on a set P . If for every ε > 0 there exists a δ > 0
such that |(L)

∫
A
f | < ε for all f ∈ M, whenever A ⊂ P , m(A) < δ then the

functions of M are said to have equi-absolutely continuous integrals.

Lemma 3.2. Let {fn}n be a sequence of nonnegative Lebesgue integrable func-
tions, converging in measure to a function f defined on a measurable set P .
The following assertions are equivalent:

(i) f is Lebesgue integrable and limn→∞(L)
∫
P
fn = (L)

∫
P
f,

(ii) The functions of the sequence {fn}n have equi-absolutely continuous
integrals.

Proof. (i)⇒ (ii) By Theorem 5 of [22, p. 157] we have limn→∞(L)
∫
A
fn =

(L)
∫
A
f whenever A is a measurable subset of P . Now (ii) follows by [22]

(Corollary 1, p. 156 of Theorem 3, p. 153).
(ii)⇒ (i) See Vitali’s Theorem 2 of [22, p. 152].

Theorem 3.1. Let J be an integral as in Definition 3.2.
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(i) If f is measurable and
(
|f |, I) ∈ Ao, then f ∈ Lcomp.

(ii) If (f, I) ∈ Ao and g = f a.e. then (g, I) ∈ Ao and (J )
∫
I
f = (J )

∫
I
g.

(iii) If (f, I), (g, I) ∈ Ao and f ≤ g a.e., then (J )
∫
I
f ≤ (J )

∫
I
g.

(iv) If (g, I), (h, I) ∈ Ao, {fn}n is a sequence of measurable functions on R,
g ≤ fn ≤ h, a.e. and fn → f (fn converges in measure to f), then
(fn, I), (f, I) ∈ Ao and (J )

∫
I
f = limn→∞(J )

∫
I
fn.

(v) If (f, I) ∈ Ao, g ∈ Lcomp and f ≥ g a.e., then f ∈ Lcomp and (J )
∫
I
f =

(L)
∫
I
f .

(vi) Let {fn}n be a sequence of functions on I having the following properties:

(1) (fn, I) ∈ Ao for each n,

(2) there exists g, with (g, I) ∈ Ao, such that fn ≥ g a.e. for each n,

(3) {fn} converges in measure to f .

Then

(a) each fn − g ∈ Lcomp and (L)
∫
I
(fn − g) + (J )

∫
I
g = (J )

∫
I
fn;

(b) (f, I) ∈ Ao if and only if f − g ∈ Lcomp;

(c) (f, I) ∈ Ao and limn→∞(J )
∫
I
fn = (J )

∫
I
f if and only if the func-

tions of the sequence {fn − g}n have equi-absolutely continuous in-
tegrals.

(vii) Let {(fn, I)}n ⊂ Ao, f1 ≤ f2 ≤ . . . ≤ fn ≤ . . . a.e. , and fn → f a.e. .
Then (f, I) ∈ Ao if and only if limn→∞(J )

∫
I
fn 6= +∞. In this case we

have limn→∞(J )
∫
I
fn = (J )

∫
I
f .

(viii) Let g be a measurable function on I. If (fg, I) ∈ Ao whenever f is a
Lebesgue integrable function on I,, then g is essentially bounded on I.

(ix) Suppose that F (x) = (J )
∫ x
α
f(t) dt is internal∗ on J , whenever (f, J) ∈

Ao and J = [α, β]. Let g be a measurable function on I. If the J -
integral contains the D∗-integral and (f · g, I) ∈ Ao whenever f ∈ D∗,
then g equals a V B function a.e. on I.

Proof. (i) By Definition 3.2, (a), (0, I) ∈ Ao. Since |f | ≥ 0 a.e. on I, by
Definition 3.2, (c), |f | is Lebesgue integrable on I. Therefore so is f .

(ii) Since g − f = 0 a.e., it follows that g − f is Lebesgue integrable on I.
Because g = (g − f) + f and by Definition 3.2, (a) we obtain that (g, I) ∈ Ao
and (L)

∫
I
(g − f) + (J )

∫
I
f = (J )

∫
I
g. Therefore (J )

∫
I
f = (J )

∫
I
g.
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(iii) By Definition 3.2, (c), we have that g − f is Lebesgue integrable on I
and by Definition 3.2, (a), (L)

∫
I
(g − f) + (J )

∫
I
f = (J )

∫
I
g. But (L)

∫
I
(g −

f) ≥ 0. Hence (J )
∫
I
f ≤ (J )

∫
I
g.

(iv) By Definition 3.2, (c) we have that h− g is Lebesgue integrable on I.
But 0 ≤ fn − g ≤ h − g a.e. and each fn is measurable. It follows that each
fn−g is Lebesgue integrable and fn−g → f−g (convergence in measure). By
the Lebesgue Dominated Convergence Theorem, f − g is Lebesgue integrable
and limn→∞(L)

∫
I
(fn − g) = (L)

∫
I
(f − g). Because f = (f − g) + g and by

Definition 3.2, (a) we obtain that (f, I) ∈ Ao,

(L)
∫
I

(fn − g) + (J )
∫
I

g = (J )
∫
I

fn

and
(L)

∫
I

(f − g) + (J )
∫
I

g = (J )
∫
i

f, I .

Therefore limn→∞(J )
∫
I
fn = (J )

∫
I
f .

(v) By Definition 3.2, (a), (g, I) ∈ Ao, and by Definition 3.2, (c), f − g is
Lebesgue integrable on I. It follows that f = (f−g)+g is Lebesgue integrable
on I and by Lemma 3.1, (J )

∫
I
f = (L)

∫
I
f .

(vi) (a) This follows by Definition 3.2, (c), (a).
b) Since fn ≥ g a.e. it follows that f ≥ g a.e. . The assertion follows by

Definition 3.2, (a), (c).
c) By (vi), (b) and (a) it follows that the statement (f, I) ∈ Ao and

limn→∞(J )
∫
I
fn = (J )

∫
I
f is equivalent to f − g is Lebesgue integrable

and limn→∞(L)
∫
I
(fn − g) = (L)

∫
I
(f − g). Now Lemma 3.2 completes the

proof.
(vii) By (iii), (J )

∫
I
fn ≤ (J )

∫
I
fn+1 for each n. Then limn→∞(J )

∫
I
fn

exists (finite or infinite). By Definition 3.2, (c), (a), each fn − f1 is Lebesgue
integrable on I and

(J )
∫
I

fn = (L)
∫
I

(fn − f1) + (J )
∫
I

f1 .

By the Beppo-Levi Theorem it follows that

lim
n→∞

(J )
∫
I

fn = (L)
∫
I

(f − f1) + (J )
∫
I

f1 .

Therefore f − f1 is Lebesgue integrable if and only if limn→∞(L)
∫
I
(fn − f1)

is finite, and since f = (f − f1) + f1, it follows that (f, I) ∈ Ao and

lim
n→∞

(J )
∫
I

fn = (J )
∫
I

f .
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If limn→∞(J )
∫
I
fn = +∞ then f − f1 is not Lebesgue integrable on I. But

f − f1 ≥ 0 a.e. ; so by Definition 3.2, (a), (c), (f, I) /∈ Ao.
(viii) Suppose on the contrary that g is not essentially bounded on I. By

Lemma 1.2 there exists a function f : I → R such that f is Lebesgue integrable,
fg ≥ 0 and fg is not Lebesgue integrable on I. Since fg ≥ 0, by (v), it follows
that fg is Lebesgue integrable, a contradiction.

(ix) By (viii), g is essentially bounded. Suppose on the contrary that
g /∈ EV B on [a, b] (see Lemma 1.1). Then, by Lemma 1.3, there exist [α, β] ⊆
[a, b] and a function f : [α, β] → R such that f is D∗-integrable on [α, β], fg
is Lebesgue integrable on [α, x] for example, whenever x ∈ (α, β), and

lim
x↗β

(L)
∫ x

α

fg = +∞ .

By Definition 3.2, (c), we obtain that limx↗β J
(
fg, [α, x]

)
= +∞ (see Lemma

3.1). This contradicts the hypothesis.

Remark 3.1. Theorem 3.1, (viii) extends Theorem 12.8 of [20].

4 A Riesz Type Representation Theorem for T-integration

Lemma 4.1. In the conditions of Definition 2.2, let g ∈ V B be fixed. Let
L : K(T, I)→ R, L(f) = 〈f |g〉. Then:

(i) 〈·|g〉 is linear.

(ii)
∣∣〈f |g〉∣∣ ≤ ‖f‖ · ‖g‖V B.

(iii) L is a continuous linear functional and ‖L‖ ≤ ‖g‖V B.

Proof. (i) This follows by Definition 2.1, (a) and Definition 2.2, (i).
(ii) We have

∣∣〈f |g〉∣∣ =
∣∣T (f · g, [a, b])

∣∣ =
∣∣∣F (b)g(b)− (RS)

∫ b

a

F (x) dg(x)
∣∣∣

≤
∣∣F (b)

∣∣ · ∣∣g(b)
∣∣+ ‖F‖∞ · V

(
g, [a, b]

)
≤ ‖F‖∞ ·

(
|g(b)

∣∣+ V (g, [a, b]) = ‖f‖ · ‖g‖V B .

(iii) This follows by (i) and (ii).

Lemma 4.2. Let
(
X, ‖ · ‖1

)
and

(
Y, ‖ · ‖2

)
be normed real spaces and let

〈·|·〉 : X × Y → R be such that:
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(1) 〈·|y〉 is linear in the first variable, for each y ∈ Y ,

(2)
∣∣〈x|y〉∣∣ ≤ ‖x‖1 · ‖y‖2, whenever x ∈ X, y ∈ Y .

If f : X → R is a continuous linear functional and if there exist yo ∈ Y
and a dense subset Xo of X such that f(x) = 〈x|yo〉 for each x ∈ Xo, then
f(x) = 〈x|yo〉 on X and ‖f‖ ≤ ‖yo‖2.

Proof. Since Xo = X, for x ∈ X there exists a sequence {xn}n ⊂ Xo such
that ‖xn − x‖1 → 0, for n → ∞. But

∣∣〈xn|yo〉 − 〈x|yo〉∣∣ =
∣∣〈xn − x|yo〉∣∣ ≤

‖xn − x‖1 · ‖yo‖2. Since f is continuous, f(xo) = limn→∞〈xn|yo〉 = 〈x|yo〉.
Hence f(x) = 〈x|yo〉, for each x ∈ X and ‖f‖ ≤ ‖yo‖2.

Theorem 4.1. In the conditions of Definition 2.2, let L : K(T, I) → R be a
continuous linear functional. Then there exists g ∈ V B such that

L(f) = 〈f |g〉 = T (fg, I) and (4)
EV (g; I) ≤ ‖L‖ ≤ ‖g‖V B . (5)

Proof. Let

S(I) =
{
s : [a, b]→ R : s is a step function of the form

s(t) =
n−1∑
i=1

αiχ[ti−1,ti) + αnχ[tn−1,tn] for some positive integer n,

where each αi ∈ R, a = t0 < t1 < . . . < tn = b]
}
.

We show that S(I) = K(T, I). Let f ∈ K(T, I). Then F (x) = T
(
f, [a, x]

)
is

continuous on [a, b]. Let a = x0 < x1 < . . . < xn = b, xi−xi−1 = (b−a)/n for
each i = 1, 2, . . . , n. Let Fn(xi) = F (xi), i = 0, 1, . . . , n and let Fn be linear
on each closed interval [xi−1, xi]. Then Fn → F [unif] on [a, b]. Let

sn(x) =

{
F (xi)−F (xi−1)

xi−xi−1
for x ∈ [xi−1, xi), i = 1, 2, . . . , n− 1

F (xn)−F (xn−1)
xn−xn−1

for ∈ [xn−1, xn]

Then sn ∈ S(I) and ‖sn − f‖ = ‖Fn − F‖∞ → 0 (because Fn → F [unif]).
Let G(t) = L(χ[a,t]) and let a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ a2n < b2n ≤ b.
Since L is linear and continuous, we have

n∑
i=1

∣∣∣∣G(b2i)−G(a2i)
b2i − a2i

− G(b2i−1)−G(a2i−1)
b2i−1 − a2i−1

∣∣∣∣
=

n∑
i=1

∣∣L(ϕi)
∣∣ =

n∑
i=1

εiL(ϕi) = L
( n∑
i=1

εϕi

)
≤ ‖L‖ ·

∥∥∥ n∑
i=1

εiϕi

∥∥∥
1
≤ ‖L‖
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where εi = signL(ϕi) and

ϕi =
1

b2i − a2i
· χ(a2i,b2i] −

1
b2i−1 − a2i−1

· χ(a2i−1,b2i−1].

It follows that G ∈ BSV and

SV
(
G; [a, b]

)
≤ ‖L‖. (6)

By Theorem 1.1, (ii) there exists g = G∗ ∈ EV B and

EV
(
g, [a, b]

)
≤ SV

(
G; [a, b]

)
. (7)

Clearly

G(t) = (L)
∫ t

a

g(x) dx = (L)
∫ b

a

χ
[a,t](x)g(x) dx = L(χ[a,t]) .

Since L is linear it follows that L(s) = 〈s|g〉 whenever s ∈ S(I). Then L(f) =
〈f |g〉 for every f ∈ K(T, I) and ‖L‖ ≤ ‖g‖V B (see Lemma 4.2). By (7) and
(6), EV

(
g; [a, b]

)
≤ ‖L‖, hence EV

(
g; [a, b]

)
≤ ‖L‖ ≤ ‖g‖V B .

Remark 4.1. Particularly, if in Theorem 4.1, T stands for the D∗-integral,
then we obtain the Alexiewicz Theorem (see [20, Theorem 12.7]; see also [1]).

5 Banach-Steinhaus Type Theorems for T-integration

Definition 5.1. ([20, p. 67]).

• A sequence {Xn}n of sets in a normed real linear space X is said to be
an α-sequence if 0 ∈ X1 and if for every n, x + y and x − y belong to
Xn+1, whenever x, y ∈ Xn.

• X is called an α-space if X = ∪∞n=1Xn. where {Xn}n is an α-sequence
of closed sets each of which being nowhere dense in X.

• A normed real space is said to be a Sargent space or a β-space if it is
not an α-space.

Lemma 5.1. ([20, p. 70]). A normed real linear space X is a Sargent space
if and only if for every representation of the form X = ∪∞n=1Xn, where {Xn}n
is an α-sequence, there is an Xn for some n which is dense in a ball B of X.
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Lemma 5.2. Let T be a wide integration on I = [a, b] as in Definition 2.2
satisfying the Cauchy property

Iff ∈ K
(
T, [α, β]

)
foreveryinterval[α, β]witha ≤ c < α < β < d ≤ b

and lim
α→c
β→d

T
(
f, [α, β]

)
= A, thenf ∈ K

(
T, [c, d]

)
andT

(
f, [c, d]

)
= A. (C)

Then
(
K(T, I), ‖ · ‖

)
is a Sargent space.

Proof. The proof is similar to that of Example 11.3 of [20, pp. 68-69].
Condition (C) is necessary to show the convergence of the sequence {Xn}n in
the proof of Example 11.3.

Theorem 5.1. (A Banach-Steinhaus type theorem for a Sargent space, [20,
Theorem 11.6]). Let Tn be a sequence of continuous linear operators from a
Sargent space X into a normed linear space Y . If sup∞n=1 ‖Tn(x)‖ < +∞ for
every x ∈ X, then sup∞n=1 ‖Tn‖ < +∞.

Theorem 5.2. (A Banach-Steinhaus type theorem for the T -integral). Let T
be an integration as in Lemma 5.2, containing the D∗-integral. The following
assertions are equivalent:

(i) For every f ∈ K
(
T, [a, b]

)
there exists a constant M(f) such that for all

n we have
∣∣T (fgn, [a, b])

∣∣ ≤M(f);.

(ii) There exists c>0 such that supess |gn|<c and EV
(
gn, [a, b]

)
<c for all n.

Proof. (i) ⇒ (ii) Each function gn equals a V B function a.e. (see Theorem
3.1, (ix)). and is therefore essentially bounded. Let Ln(f) = T

(
fgn, [a, b]

)
for f ∈ K

(
T, [a, b]

)
. If f is Lebesgue integrable, then fgn is also Lebesgue

integrable. Hence Ln(f) = (L)
∫ b
a
fgn (see Definition 2.1, (c)). By the Banach-

Steinhaus Theorem (see [6, p. 45]) it follows that for some M1 > 0 we have
supess |gn| < M1, for all n = 1, 2, . . . . By Theorem 5.1 and Lemma 5.2, there
exists M2 > 0 such that ‖Ln‖ ≤M2 for all n = 1, 2, . . . and by Theorem 4.1,
EV

(
gn, [a, b]

)
≤ ‖Ln‖. Therefore EV

(
gn; [a, b]

)
< M2, for all n = 1, 2, . . . .

Let c = max{M1,M2}.
(ii) ⇒ (i) For this implication, condition (C) is not needed. By Lemma

1.1, there exists Gn : [a, b]→ R, Gn ∈ V B such that Gn = gn a.e. and

V
(
Gn, [a, b]

)
≤ 6V (Gn, A) ≤ 12EV

(
Gn, [a, b]

)
< 12c

(where A is defined in the proof of Lemma 1.1). Since supess |gn| < c, it follows
that sup |Gn| < 13c. By Theorem 3.1, (ii) we have that

T
(
fgn, [a, b]

)
= T

(
fGn, [a, b]

)
.
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Now the proof follows applying Definition 2.2.

Remark 5.1. Theorem 5.2 is an extension of Theorem 12.10 of [20] or of a
lemma of [6, p. 47].

6 The Categoricity of K
(
T; [a, b]

)
for Wide T-integration

Theorem 6.1. ([14, p. 511]). There exist an integration T (as in Definition
2.1) and a function f ∈ K

(
T, [a, b]

)
such that the identity F

′
= f a.e. does not

hold, where F (x) = T
(
f, [a, x]

)
.

Lemma 6.1. ([12, p. 49]). Let (X, τ) be a topological space and let Xo be a
dense subset of X. Let τo = τ/Xo . If Xo is of the second category in (X, τo),
then Xo is of the second category in (X, τ).

Lemma 6.2 (Jarnik). ([4, p. 213]). Let
(
C([a, b]), ‖‖∞

)
and let A =

{
f :

[a, b]→ R : f is continuous and f has every extended real number as a derived
number at every point

}
. Then C

(
[a, b]

)
\A is of the first category in C

(
[a, b]

)
.

Remark 6.1. For a wide T -integration let K̃
(
T, [a, b]

)
=
{
F : [a, b] → R :

there exists f ∈ K
(
T, [a, b]

)
such that F (x) = T (f, [a, x]), ∀ x ∈ [a, b]

}
en-

dowed with the norm ‖ · ‖∞. Then K
(
T, [a, b]

)
with the norm ‖ · ‖ given by

Definition 2.2 is isomorphic to
(
K̃(T, [a, b]), ‖ · ‖∞

)
.

Let C([a, b]) = {f : [a, b] → R : f is continuous on [a, b]}. Clearly(
K̃(T, [a, b]), ‖ · ‖∞

)
⊂
(
C([a, b]), ‖ · ‖∞

)
(see Definition 2.1, (f)). Since each

polynomial on [a, b] is a Lipschitz function, and because by the Weierstrass
theorem, each function f ∈ C

(
[a, b]

)
is the uniform limit of a sequence of poly-

nomials, it follows that K̃
(
T, [a, b]

)
is dense in

(
C([a, b]), ‖·‖∞

)
. Therefore the

completion of
(
K(T, [a, b]), ‖ · ‖

)
is the Banach space

(
C([a, b]), ‖ · ‖∞

)
.

Theorem 6.2. Let T be a wide integration on [a, b] which satisfies the hy-
potheses of Lemma 5.2. If for each f ∈ K

(
T, [a, b]

)
the equality F

′
(x) = f(x)

holds on a set of positive measure, where F (x) = T
(
f ; [a, x]

)
, x ∈ [a, b]), then(

K(T, [a, b]), ‖ · ‖
)

is of the first category on itself.

Proof. Suppose on the contrary that
(
K(T, [a, b]), ‖ · ‖

)
is of the second cat-

egory on itself. Since K
(
T, [a, b]

)
= K̃

(
T, [a, b]

)
= C

(
[a, b]

)
, by Lemma 6.1 it

follows that
(
K̃(T, [a, b]), ‖ · ‖

)
is of the second category in

(
C([a, b]), ‖ · ‖∞

)
.

By Lemma 6.2, K̃
(
T, [a, b]

)
is of the first category. This contradicts the fact

that
(
C([a, b]), ‖ · ‖∞

)
is a Banach space.
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Theorem 6.3. For a wide T integration on [a, b] let L :
(
K̃(T, [a, b]), ‖·‖∞

)
→

R be a continuous linear functional. Then there exists g ∈ V B on [a, b] such
that L(F ) = (RS)

∫ b
a
F (t) dg(t), whenever F ∈ K̃

(
T, [a, b]

)
.

Proof. For F ∈ K̃
(
T, [a, b]

)
there exists f ∈ K

(
T, [a, b]

)
such that F (x) =

T
(
f ; [a, x]

)
. Let L∗(f) = L(F ). Since ‖f‖ = ‖F‖∞ and L is a continuous

linear functional, by Theorem 4.1, there exists G ∈ V B such that

L∗(f) = F (b) ·G(b)− (RS)
∫ b

a

F (t) dG(t) = (RS)
∫ b

a

F (t) dg(t) ,

where g(x) = −G(x), x ∈ [a, b) and g(b) = 0. So L(F ) = (RS)
∫ b
a
F (t) dg(t).

Corollary 6.1. (The Riesz representation theorem, [20, Theorem 12.12]). Let
L :
(
C([a, b]), ‖ · ‖∞

)
→ R be a continuous linear functional. Then there exists

g ∈ V B on [a, b] such that L(F ) = (RS)
∫ b
a
F (t) dg(t) whenever F ∈ C

(
[a, b]

Proof. Since K̃
(
T, [a, b]

)
is dense in C

(
[a, b]

)
, it follows that for each F in

C
(
[a, b]

)
there exists a sequence {Fn}n ⊂ K̃

(
T, [a, b]

)
such that Fn → F [unif]

on [a, b]. Applying the uniform convergence theorem for the (RS)-integral we
obtain

L(F ) = lim
n→∞

L(Fn) = lim
n→∞

(RS)
∫ b

a

Fn(t) dg(t) = (RS)
∫ b

a

F (t) dg(t).

7 Weak Convergence in K
(
T, [a, b]

)
for Wide T-integration

Theorem 7.1. ([16, p. 259]). Let f, fn : [a, b]→ R, n = 1, 2, . . . be such that
f , fn are continuous and

∣∣fn(x)
∣∣ < M for some M , for every x ∈ [a, b] and

each n = 1, 2, . . . . Let g : [a, b]→ R, g ∈ V B. If fn → f on [a, b], then

(RS)
∫ b

a

f(t) dg(t) = lim
n→∞

(RS)
∫ b

a

fn(t) dg(t) .

Theorem 7.2. Let T be a wide integration on [a, b] as in Definition 2.2. Let
f, fn ∈ K

(
T, [a, b]

)
, n = 1, 2, . . .. The following assertions are equivalent:

(i) fn → f weakly on K
(
T, [a, b]

)
,

(ii) Let Fn(x) = T
(
fn, [a, x]

)
and F (x) = T

(
f, [a, x]

)
, x ∈ [a, b].
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(1)
∣∣Fn(x)

∣∣ ≤M for some M , for every x ∈ [a, b] and each n = 1, 2, . . . ,

(2) Fn(x)→ F (x) for every x ∈ [a, b].

Proof. Our proof follows the proof of Theorem 3, # 3, Chapter VIII of
[13]. Let L : K

(
T, [a, b]

)
→ R be a continuous linear functional. By Theorem

4.1 there exists gL ∈ V B on [a, b] such that L(f) = T
(
fgL, [a, b]

)
, for every

f ∈ K
(
T, [a, b]

)
.

(i)⇒ (ii) We shall use the following classical result (see [7] or [13], Theorem
2, # 1 of Chapter VIII): xn → x weakly in a normed space if and only
if supn ‖xn‖ < +∞ and

{
f : f(xn) → f(x), x ∈ [a, b]

}
is a dense set of

functionals in X∗. Since fn → f weakly, we have ‖fn‖ = ‖Fn‖∞ ≤M for some
positive number M . So we have (ii), (1). For x ∈ [a, b] let Lx : K

(
T, [a, b]

)
→

R be a continuous linear functional defined by Lx(f) = T
(
fχ[a,x], [a, b]

)
=

T
(
f, [a, x]

)
= F (x). Since fn → f weakly, we obtain (ii), (2).

(ii) ⇒ (i) It is sufficient to show that L(fn)→ L(f). By Theorem 7.1,∣∣L(fn)− L(f)
∣∣ =

∣∣T ((fn − f)gL, [a, b]
)∣∣

=
∣∣∣(Fn − F )(b)gL(b)− (RS)

∫ b

a

(Fn − F )(t) dgL(t)
∣∣∣→ 0.

8 General Classes of Primitives

Let a ∈ R, α, β ∈ R, α < β. Let’s denote by

• Taf : R→ R , Taf(x) := f(x− a), whenever f : R→ R,

• fα,β : R→ R,

fα,β(x) =


f(α) if x < α

f(x) if x ∈ [α, β]
f(β) if x > β

whenever f : R→ R,

• fQ : R→ R,

fQ(x) =

{
f(x) if x ∈ Q
, 0 if x /∈ Q

whenever f : E → R and Q ⊂ E ⊂ R.

Definition 8.1. A family S ⊂ {f : R → R : supp(f) is compact} is said to
be a space of integrable functions if it satisfies the following conditions:
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1) Lcomp+S = S and R·S = S i.e., if f ∈ Lcomp, g ∈ S, α ∈ R, then f+g ∈ S
and αg ∈ S,

2) S is invariant to translations: i.e., Taf ∈ S whenever f ∈ S and a ∈ R,

3) S · χ[a,b] ⊂ S for any [a, b] ⊂ R; i.e., if f ∈ S then f · χ[a,b] ∈ S,

4) If f, g ∈ S and f−g ≥ 0 a.e. on some closed interval [a, b] then (f−g)·χ[a,b] ∈
Lcomp,

5) If f, g ∈ S, supp(f) ⊆ [a, b] and supp(g) ⊆ [b, c], then f + g ∈ S.

Definition 8.2. Let S be a space of integrable functions. A functional I :
S → R is said to be an integral if:

1) I(αf + βg) = α(L)
∫

R f(t) dt + βI(g), whenever f ∈ Lcomp, g ∈ S and
α, β ∈ R,

2) I(Taf) = I(f) whenever a ∈ R and f ∈ S,

3) I(f+g) = I(f)+I(g) whenever f, g ∈ S, supp(f) ⊆ [a, b], supp(g) ⊆ [b, c].

Let f : E → R, Q ⊂ E ⊂ R, Q bounded. f is said to be I-integrable on Q if
fQ ∈ S. We denote by (I)

∫
Q
f(t) dt = I(fQ).

Definition 8.3. Let f : [a, b] → R be I–integrable on [a, b], and let α ∈ R.
The function G : [a, b]→ R defined by G(x) = α+ (I)

∫
[a,x]

f(t) dt is called an
I-primitive of f on [a, b].

A function G : [a, b]→ R is called an I-primitive if there exists g : [a, b]→
R, such that g is I-integrable on [a, b] and there exists α ∈ R so that

G(x) = α+ (I)
∫

[a,x]

g(t) dt .

Definition 8.4. Let ACR = {F : R→ R : F ∈ AC on each compact interval}.
A class G ⊂ {F : R→ R : F is a measurable function approximately derivable
a.e.} is said to be a general class of primitives if it has the following properties:

1) ACR + G = G and R · G = G,

2) G is invariant to translations; i.e., TaF ∈ G whenever F ∈ G and a ∈ R,

3) If F ∈ G and α, β ∈ R, α < β, then Fα,β ∈ G,

4) If F ∈ G and F
′

ap ≥ 0 a.e. on some interval [a, b], then F is increasing on
[a, b],
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5) Let F,G ∈ G. If F = Fa,b for some [a, b] ⊂ R and G = Gb,c for some [b, c],
then F +G ∈ G.

Let g : R→ R. A function F : R→ R, F ∈ G with F
′

ap = g a.e. is said to
be a (G)- primitive of g on R. A function f : R→ R with compact support is
said to be G-integrable if it admits G-primitives. The definite G-integral of f
will be denoted by

(G)
∫

R
f(t) dt = F (b)− F (a)

where F is a G-primitive of f such that supp(f) ⊆ [a, b].

In what follows we show that the G-integral is well defined.

Lemma 8.1. Let g : R → R which admits G-primitives. Suppose that F,G :
R→ R are two G-primitives of g. Then F −G is a constant on R.

Proof. By Definition 8.4, 4), it follows that F − G is a constant on each
[a, b] ⊂ R. Since R = ∪∞n=1[−n, n], we get that F −G is a constant on R.

Lemma 8.2. The G-integral is well-defined.

Proof. Let f : R→ R be a G-integrable function and F,G two G-primitives
of f . By Lemma 8.1, F − G is a constant on R. Let c = inf supp(f), d =
sup supp(f) and [a, b] ⊃ [c, d]. By Definition 8.4, 3), Fc,d, Gc,d belong to G and
they obviously are G-primitives of f . Hence, by Lemma 8.1 again, F = Fc,d
and G = Gc,d. It follows that F (b)− F (a) = G(b)−G(a).

Definition 8.5. A function f : E → R is said to be G-integrable on a bounded
set Q ⊂ E, if the function fQ is G-integrable. Then we write

(G)
∫
Q

f(t) dt = (G)
∫

R
fQ(t) dt .

Theorem 8.1. Let SG = {f : R → R : supp(f) is compact and f is G-
integrable}. Then SG is a space of integrable functions.

Proof. We verify conditions 1)–5) of Definition 8.1.
1) Let f ∈ Lcomp, g ∈ SG and α ∈ R. Clearly αg ∈ SG . Let a1 =

inf(supp(f)), b1 = sup(supp(f)) and F : R→ R,

F (x) =


0 if x ≤ a1

(L)
∫ x
a
f(t) dt if x ∈ [a1, b1]

F (b1) if x ≥ b1
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Then F ∈ ACR and F
′

= f a.e. on R. For g ∈ SG , there exists G ∈ G such
that G

′

ap = g a.e. on R. By Definition 8.4, 1), it follows that F + G ∈ G and
(F +G)

′

ap = f + g a.e. on R.
2) Suppose that f ∈ SG . Then there exists F ∈ G such that F

′

ap = f a.e.
on R. Let a ∈ R. Then

(TaF )
′

ap(x) = (F (x− a))
′

ap = F
′

ap(x− a) = f(x− a) = Taf(x) a.e. on R.

By Definition 8.4, 2), it follows that Taf ∈ SG .
3) Suppose that f ∈ SG and [a, b] ⊂ R. Then there exists F ∈ G such that

F
′

ap = f a.e. on R. By Definition 8.4, 3), it follows that Fa,b ∈ G and

(Fa,b)
′

ap = fχ[a,b] a.e.on R,

so fχ[a,b] ∈ SG .
4) Suppose that f, g ∈ SG and f−g ≥ 0 a.e. on some [a, b] ⊂ R. Then there

exists F,G ∈ G such that F
′

ap = f and G
′

ap = g a.e. on R. But (F − G)
′

ap =
f − g ≥ 0 a.e. on [a, b]. By Definition 8.4, 4), F −G is increasing on [a, b]; so
f − g is Lebesgue integrable on [a, b]. It follows that (f − g) · χ[a,b] ∈ Lcomp.

5) Suppose that f, g ∈ SG such that supp(f) ⊂ [a, b] and supp(g) ⊂ [b, c].
Then there exist F,G ∈ SG such that F

′

ap = f and G
′

ap = g a.e. on R. By
Definition 8.4, 3), Fa,b, Gb,c ∈ SG . Clearly

(Fa,b)
′

ap = f and (Gb,c)
′

ap = g a.e. on R .

By Lemma 8.1, F = Fa,b and G = Gb,c, Hence by Definition 8.4, 5), F+G ∈ G
and (F +G)

′

ap = f + g a.e. on R. Therefore f + g ∈ SG .

Example 8.1 (Examples of general classes of primitives). Let

• C = {F : R→ R : F is continuous on R},

• Cap = {F : R→ R : F is approximately continuous on R},

• Cpro = {F : R→ R : F is proximally continuous on R}.

The definition of the proximal continuity is somewhat technical, and it was
introduced by Sarkhel and De in [29]. We don’t give this definition here, but
we mention that Cpro is a real linear space contained in the class of Darboux
Baire one functions and C · Cpro = Cpro. That Cap is contained in the class
Darboux Baire one is well known, and of course C · Cap = Cap.

Let
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• AC∗GR = {F : R→ R : F is AC∗G on each compact interval [a, b]},

• ACGR = {F : R→ R : F is ACG on each compact interval [a, b]},

• FR = {F : R → R : F satisfies Foran’s condition F on each compact
interval [a, b]}.

We have the following examples of G-integrals:

• G = C ∩AC∗GR is the Denjoy∗-integral,

• G = Cap ∩AC∗GR is the α-Ridder integral,

• G = Cpro ∩AC∗GR seems to be new,

• G = C ∩ACGR is the wide Denjoy-integral,

• G = Cap ∩ACGR is the β-Ridder integral,

• G = Cpro ∩ACGR seems to be new,

• G = C ∩ FR is the Foran integral,

• G = Cap ∩ FR is called the AF -integral (see [11]),

• G = Cap ∩ V BG ∩ (N) is the Gordon integral,

• G = Cpro ∩ V BG ∩ (N) seems to be new.

9 A Generalization of a Result on Differential Equations
of Bullen and Vyborny

Definition 9.1. Let Io = [to −αo, to +αo] and Jo = [xo − βo, xo + βo], where
to, xo ∈ R and αo, βo > 0. Given f : Io×Jo → R, I a compact interval, I ⊂ Io
and g : I → Jo, we define fg : I → R by fg(t) = f(t, g(t)).

Lemma 9.1 (Helly). ([22, p. 221]). Let F = {f(x)} be an infinite family
of increasing functions, defined on [a, b]. If all functions of the family are
bounded by one and the same number,

∣∣f(x)
∣∣ ≤ K, f ∈ F, a ≤ x ≤ b, then

there is a sequence of functions
{
fn(x)

}
in F which converges to an increasing

function ϕ(x) at every point of [a, b].

Theorem 9.1. Let I : S → R be an integral as in Definition 8.2, and let
f : Io × Jo → R satisfy the following properties:

(i) f(t, ·) is continuous on Jo for almost all t ∈ Io,
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(ii) There exists a subinterval I = [to−α, to +α] of Io, and two I-integrable
functions m,M : I → R such that

•
∣∣(I)

∫ t
to
m(s) ds

∣∣ < βo

•
∣∣(I)

∫ t
to
M(s) ds

∣∣ < βo

• if g : I → Jo is an I-primitive with g(to) = xo, then fg is measurable
on I and m(t) ≤ fg(t) ≤M(t) a.e. on I.

Then there exists an I-primitive ϕ : I → Jo such that ϕ(t) = xo+(I)
∫ t
to
fϕ(s) ds.

Proof. We prove for example the case t ≥ to. On the interval [to, to + α] we
define the approximations ϕk, k = 1, 2, . . . by

ϕk(t) =

{
xo if t ∈ [to, to + α

k ]
xo + (I)

∫ t−αk
to

fϕk(s) ds if t ∈ [to + α
k , to + α].

Since the integral I is invariant to translations, it follows that

ϕk(t) =

{
xo if t ∈ [to, to + α

k ]
xo + (I)

∫ t
to+

α
k
fϕk(s− α

k ) ds if t ∈ [to + α
k , to + α].

Let ϕk,1 : [to, to + α] → Jo, ϕk,1(t) = xo. Clearly ϕk,1 is an I-primitive on
[to, to + α]. By hypotheses we have

−βo < (I)
∫ t−αk

to

m(s) ds ≤ (I)
∫ t−αk

to

fϕk,1(s) ds

≤ (I)
∫ t−αk

to

M(s) ds < βo.

(8)

Let ϕk,2 : [to, to + α]→ Jo,

ϕk,2(t) =


ϕk,1(t) if t ∈ [to, to + α

k ]
xo + (I)

∫ t−αk
to

fϕk,1(s) ds if t ∈ [to + α
k , to + 2α

k ]
ϕk,2(to + 2α

k ) if t ∈ [to + 2α
k , to + α].

By (8), it follows that ϕk,2 takes indeed values in Jo. Since the integral I is
invariant to translations, it follows that

xo + (I)
∫ t−αk

to

fϕk,1(s) ds = xo + (I)
∫ t

to+
α
k

fϕk,1
(
s− α

k

)
ds ,
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for t ∈ [to + α
k , to + 2α

k ]. Therefore ϕk,2 is well defined and a I-primitive on
[to, to + α], with ϕk,2(to) = xo. Suppose that ϕk,j−1 : [to, to + α] → Jo, j ≥ 2
are already defined and let ϕk,j : [to, to + α]→ Jo be defined by

ϕk,j(t) =

8>>><>>>:
ϕk,j−1(t) t ∈ [to, to + (j−1)α

k
]

ϕk,j−1( (j−1)α
k

) + (I)
R t−α

k

to+
(j−2)α
k

fϕk,j−1(s) ds t ∈ [to + (j−1)α
k

, to + jα
k

]

ϕk,j−1(to + jα
k

) t ∈ [to + jα
k
, to + α]

But

(I)
∫ t−αk

to+
(j−2)α
k

fϕk,j−1(s) ds = (I)
∫ t

to+
(j−1)α
k

fϕk,j−1

(
s− α

k

)
ds ,

for t ∈ [to + (j−1)α
k , to + jα

k ]. Clearly ϕk,j is a I-primitive on [to, to + α],
with ϕk,j(to) = xo. We show that ϕk,j takes values only in Jo. We first
show inductively that ϕk = ϕk,j on

[
to, to + jα

k

]
. Suppose that ϕk = ϕk,j−1

on [to, to + jα
k ]. Then clearly ϕk,j = ϕk,j−1 = ϕk on [to, to + (j−1)α

k ]. Let
t ∈ [to + (j−1)α

k , to + jα
k ]. It follows that

ϕk,j(t) = ϕk
(
to +

(j − 1)α
k

)
+ (I)

∫ t

to+
(j−1)α
k

ϕk
(
s− α

k

)
ds

= xo + (I)
∫ to+

(j−1)α
k

to+
α
k

fϕk
(
s− α

k

)
ds+ (I)

∫ t

to+
(j−1)α
k

ϕk
(
s− α

k

)
ds

= xo + (I)
∫ t

to+
α
k

fϕk
(
s− α

k

)
ds = ϕk(t).

Suppose that ϕk,j−1 ∈ Jo. We prove that ϕk,j ∈ Jo. For t ∈ [to
(j−1)α
k , to+ jα

k ]
we have

−βo < (I)
∫ t−αk

to

m(s)ds ≤ (I)
∫ t−αk

to

fϕk(s)ds ≤ (I)
∫ t−αk

to

M(s) ds < βo.

Hence ϕk,j ∈ Jo in this case. Since ϕk,j = ϕk,j−1 = ϕk on
[
to, to + (j−1)α

k

]
we have ϕk,j(t) ∈ Jo for all t ∈

[
to, to + jα

k

]
. Clearly ϕk,k = ϕk on [to, to + α],

hence ϕk is well defined and is a I-primitive on [to, to + α].
Let h,H : [to, to + α]→ R be defined as follows:

h(t) =

{
xo if t ∈ [to, to + α

k ]
xo + (I)

∫ t−αk
to

m(s) ds if t ∈ [to + α
k , to + α]
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H(t) =

{
xo if t ∈ [to, to + α

k ]
xo + (I)

∫ t−αk
to

M(s) ds if t ∈ [to + α
k , to + α].

Let hk : [to, to + α] → R, hk(t) = ϕk(t) − h(t). Then, for t ∈ [to, to + α
k ] we

have hk(t) = 0, and for t ∈ [to + α
k , to + α],

hk(t) = (I)
∫ t−αk

to

(fϕk(s)−m(s)) ds = (L)
∫ t−αk

to

(fϕk −m)(s) ds

≤ (L)
∫ t−αk

to

(M −m)(s) ds

= (I)
∫ t−αk

to

M(s) ds− (I)
∫ t−αk

to

m(s) ds < 2βo.

Therefore {hk}k is an increasing sequence of functions on [to, to + α] and

0 ≤ hk(to) ≤ hk(to + α) ≤ 2βo .

By Lemma 9.1, there exists a subsequence of {hk}k which converges punctually
to an increasing function G on [to, to + α]. We may suppose without loss of
generality that {hk}k converges punctually to G on [to, to + α], hence {ϕk}k
converges punctually to ϕ := h + G on [to, to + α]. By (i), it follows that
fϕk → fϕ a.e. on [to, to+α]. By Theorem 3.1, it follows that fϕk and fϕ belong
to S on [to, t] and limk→∞ I(fϕk) = I(fϕ) on [to, t]. From the definition of
ϕk, we obtain that ϕ(t) = xo + (I)

∫ t
to
fϕ(s) ds.

Corollary 9.1 (Bullen and Vyborny). ([5]). Let f : Io×Jo → R be such that

(i) f(t, ·) is continuous on Jo for almost all t ∈ Io.

(ii) there exists α > 0 and two continuous functions h,H : [to −α, to +α]→
[−βo, βo] satisfying the following properties:

• h(to) = H(to) = 0.

• if g : [to−α, to+α]→ Jo, g ∈ AC∗G, g is continuous and g(to) = xo,
then fg is measurable and Dh ≤ fg ≤ DH.

Then there exists a continuous function ϕ : [to − α, to + α] → Jo, such that
ϕ(t) = xo + (D∗)

∫ t
to
fϕ(s) ds.

Proof. Let go : [to − α, to + α]→ Jo, go(t) = xo. By hypothesis Dh ≤ fgo ≤
DH and fgo is measurable. From Marcinkiewicz’ theorem of [25, p. 253], it fol-
lows that fgo is D∗-integrable. Since Dh ≤ DH on [to−α, to+α], and Dh , DH
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are Borel measurable (hence Lebesgue measurable), by Marcinkiewicz’ theo-
rem again, we obtain that Dh , DH are D∗-integrable on [to − α, to + α]. Let
m(x) = Dh(t) and M(t) = DH(t) for t ∈ [to − α, to + α]. Then∣∣∣(D∗)∫ t

to

m(s) ds
∣∣∣ < βo and

∣∣∣(D∗)∫ t

to

M(s) ds
∣∣∣ < βo ,

because

−βo ≤ h(t) ≤ (D∗)
∫ t

to

m(s) ds ≤ (D∗)
∫ t

to

M(s) ds ≤ H(t) ≤ βo,

for all t ∈ [to − α, to + α] (see for example [8]) Now the proof follows applying
Theorem 9.1.
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