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BILIPSCHITZ MAPPINGS OF NETS†

Abstract

Let 0 < a <
√

2. Suppose δ = δ(d, ε) has the following property. If N
is an a-net of the Euclidean ball in R

d, A ⊂ N , and f : A → R
d is (1+ε)-

bilipschitz, then f admits a (1 + δ)-bilipschitz extension f : N → R
d.

We give some estimates of δ.

1 Introduction

Let A be a subset of a Hilbert space X and f : A → X a Lipschitz mapping. By
the classical theorem of Kirszbraun and Valentine, f can be extended to X with
the same Lipschitz constant. There are many simple examples of bilipschitz
mappings (both the mapping and its inverse are Lipschitz) that cannot be
extended; the paper [V] of Väisälä explains the subject. Nevertheless, if N ⊂
R

d is finite, then clearly every bijection of N is bilipschitz. In this note we
consider the following question. Fix some 0 < a <

√
2. Let δ = δ(d, ε)

have the following property. Suppose N is an a-net of BRd and A ⊂ N . If
f : A → R

d is (1 + ε)-bilipschitz, then f admits a (1 + δ)-bilipschitz extension
f : N → R

d. How large does δ have to be? In particular, can we have δ = δ(ε)
not depending on the dimension, and at the same time limε→0 δ(ε) = 0?

In Proposition 3.2 we show that independently of the dimension, δ ≤ ca
√

ε
if we wish to extend just to N ∩ conv A. This makes it perhaps more natural
to investigate extension properties of bilipschitz mappings defined on nets of
Sd−1 rather than on nets of BRd . If we can extend to a net of the sphere, we
can extend to some net of the ball as well.
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Suppose f is a (1+ ε)-bilipschitz mapping of an a-net of Sd−1 into R
d. We

adapt a proof from [K] to show in Theorem 4.4 that there exists an isometry
T : R

d → R
d with ‖f(x) − T (x)‖ ≤ c 1

2−a2

√
ε ln d for all x ∈ N , where c is an

absolute constant.

Suppose A is a subset of an a-net N of Sd−1, and f : A → R
d is (1 + ε)-

bilipschitz. By a result of [ATV], f can be extended to a (1+cd
√

ε)-bilipschitz
mapping of N . It is a corollary of Theorem 4.4, that cd really does depend on
d. In Proposition 4.5 we show that cd ≥ cad

1

4 ln−2 d. Notice though that this
does not answer the question whether δ really does depend on d.

If a net N of Sd−1 is symmetric and “thin” enough; that is, if |〈x, y〉| is not
very far from ε for x 6= ±y ∈ N , extending independently of the dimension
is possible. In Proposition 5.4 we give an example of such an extension. We

show that if 0 < 1 − a2

2 ≤ √
ε and f : A → R

d is (1 + ε)-bilipschitz, then f

admits a (1 + c(ε ln 1/ε)
1

2 )-bilipschitz extension f : N → R
d. Here the point

is that f goes into R
d again extending f so that f : N → ℓ2 is trivial in this

case.

In Proposition 6.3 we show that for every ε > 0 and d0 > 0 there exist
d > d0, k ≥ cεd ln d and a (1+ ε)-bilipschitz antipodal mapping f of BRk onto
itself such that f(BRd) contains an orthonormal basis of R

k together with its
negative. We leave open the question of how large k = k(d, ε) can get in
general.

2 Preliminaries

In this section we give the notation, terminology, and a few basic results we
will use in the paper.

By c we denote absolute constants, which may have different values, even
in the same formula; cd is a function of d only. By Sd−1, d ≥ 2, we denote
the sphere of the Euclidean ball BRd in R

d. P is the uniform measure on the
sphere Sd−1. By e1, e2, . . . , ed we denote the standard orthonormal basis of
R

d. By D(A) we denote the diameter of the set A.

Definition 2.1. Let M be a metric space and a > 0. An inclusion-maximal
set N ⊂ M such that ‖x − y‖ ≥ a if x, y ∈ N , x 6= y, is called an a-net of M .

We recall an example from [V]. The mapping f : {±1,±ε} → R defined
by f(±ε) = ±ε and f(±1) = ∓1 is (1 + 3ε)-bilipschitz, if ε is small. If f is
any continuous extension of the mapping to R, then ∅ 6= [−ε, 1] ∩ [−1, ε] ⊂
f([−1,−ε]) ∩ f([ε, 1]). Since [−1,−ε] ∩ [ε, 1] = ∅, f is not bijective. In par-
ticular, f admits no bilipschitz extension to R. This nice idea of [V] works
also in R

d. Let A = ker e1 ∪ {e1,−e1, εe1,−εe1} and f : A → R
d be defined
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by f(±e1) = ∓e1 and as the identity on ker e1 ∪ {±εe1}. Then f is (1 + 3ε)-
bilipschitz, and f admits no continuous bijective extension to R

d with range
in R

d. Suppose now some L > 1 is given and choose a > 0 small and R > 0
large enough. Let N0 be an a-net of A∩BRd(0, R). Extend N0 to an a-net N
of BRd . Let g : N0 → R

d be the restriction of f to N0. It is quite easy to see
that g admits no L-bilipschitz extension to N with range in R

d. By scaling
the whole picture down, we can get that R = 1 with a > 0 small enough. Sim-
ilarly, by scaling it up we can get a = 1 with R > 0 large enough. Therefore
in this paper, we only consider a-nets of the unit ball with some a > 0 fixed
at the beginning, before the bilipschitz constant is given.

We can equivalently describe a net of the sphere by estimating the angles
between its points. If the net is symmetric, we also get an upper estimate for
the distances between points in it.

Lemma 2.2. Let N ⊂ Sd−1, 0 < a <
√

2, and b = 1 − 1
2a2.

(i) Then N is an a-net if and only if N is an inclusion-maximal set such
that 〈x, y〉 ≤ b if x, y ∈ N , x 6= y.

(ii) N is a symmetric a-net if and only if N is a symmetric inclusion-
maximal set such that |〈x, y〉| ≤ b if x, y ∈ N , x 6= ±y.

(iii) If N is a symmetric a-net, then ‖x − y‖ ≤
√

4 − a2 for any x, y ∈ N ,
x 6= −y.

Proof. For x, y ∈ N we have

‖x ± y‖2 = 2 ± 2〈x, y〉. (1)

If N is an a-net and x 6= y, then (1) implies a2 ≤ 2 − 2〈x, y〉, and a2 ≤
2 ± 2〈x, y〉 in the symmetric case. Conversely, if 〈x, y〉 ≤ 1 − 1

2a2, then (1)
implies that ‖x − y‖2 ≥ 2 − 2(1 − 1

2a2) = a2. Finally, if N is symmetric,
‖x − y‖2 = 2 − 2〈x, y〉 ≤ 2 + 2(1 − 1

2a2) = 4 − a2.

The thicker the net is, the larger a ball contained in its convex hull is.

Lemma 2.3. Let 0 < a <
√

2, and N be an a-net, or a symmetric a-net of
Sd−1. Then BRd(0, b) ⊂ convN , where b = 1 − 1

2a2.

Proof. Suppose not. By the Hahn-Banach theorem, there is v ∈ Sd−1 so
that 〈x, v〉 < 1− 1

2a2 = b for all x ∈ N . Then dist (v,N ) > a. Hence N is not
maximal, which is a contradiction.

If N is symmetric, we get |〈x, v〉| < b from the Hahn-Banach theorem, and
we may, for a contradiction, enlarge N by both v and −v.
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Figure 1: Illustration to the statement of Lemma 2.2.

Definition 2.4. Let ε > 0. A mapping f from a subset A of a Banach space
X into a Banach space Y is called ε-rigid if it is (1 + ε)-bilipschitz; that is
(1 + ε)−1‖x − y‖ ≤ ‖f(x) − f(y)‖ ≤ (1 + ε)‖x − y‖ for all x, y ∈ A.

We will mostly deal with ε-rigid mappings of nets. It will be convenient to
have another description for them.

Definition 2.5. Let ε > 0. A mapping f from a subset A of a Banach
space X into a Banach space Y is called an ε-nearisometry if ‖x − y‖ − ε ≤
‖f(x) − f(y)‖ ≤ ‖x − y‖ + ε for all x, y ∈ A.

Suppose that D(A) < ∞ and that A is a discrete set such that ‖x− y‖ ≥ a
for x, y ∈ A, x 6= y. If f : A → Y is ε-rigid, then f is an εD(A)-nearisometry.
Conversely, for each 0 < ε ≤ a/2 every ε-nearisometry of A is a 2

aε-rigid
mapping. In other words, for nets these two notions basically coincide.

The following estimate of linearity of Lipschitz mappings appears in [Za]
(also see [BL, p. 81]).

Lemma 2.6. Let X be a Hilbert space, α > 0 and let f : X → X be an
α-Lipschitz mapping. Let x1, . . . , xn ∈ X, λi ≥ 0 and

∑n
i=1 λi = 1. Then

‖f(
∑n

i=1λixi) −
∑n

i=1λif(xi)‖2 ≤ αD · max(α‖xi − xj‖ − ‖f(xi) − f(xj)‖),

where D = D({x1, . . . , xn}).
Notice that if f is ε-rigid on some set A ⊂ X with D = D(A) < ∞, then

0 ≤ (1 + ε)‖x − y‖ − ‖f(x) − f(y)‖ ≤ ε(ε + 2)‖x − y‖ (2)
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for x, y ∈ A. If 0 < ε < 1, then by Lemma 2.6

‖f(
∑n

i=1λixi) −
∑n

i=1λif(xi)‖ ≤ 3D
√

ε (3)

for x1, . . . , xn ∈ A, λi ≥ 0 and
∑n

i=1 λi = 1. We will also use the following
iteration of Lemma 2.6.

Lemma 2.7. Let X be a Hilbert space, A ⊂ X, D(A) < ∞. Let f : X → X be
α-Lipschitz and such that α‖x− y‖− ‖f(x)− f(y)‖ ≤ δ for x, y ∈ A. Suppose
X1, . . . , Xn ∈ conv A, λi ≥ 0 and

∑n
i=1 λi = 1. Then

‖f(
∑n

i=1λiXi) −
∑n

i=1λif(Xi)‖2 ≤ 4αδD(A).

Proof. Let Xi =
∑N

j=1 ai
jx

i
j , where xi

j ∈ A, ai
j ≥ 0, and

∑N
j=1 ai

j = 1.
Lemma 2.6 implies that

‖f(
∑n

i=1λiXi) −
∑n

i=1λif(Xi)‖ ≤ ‖f(
∑n

i=1λiXi) −
∑n

i=1

∑N
j=1λia

i
jf(xi

j)‖
+ λ1‖f(X1) −

∑N
j=1a

1
jf(x1

j)‖ + · · · + λn‖f(Xn) − ∑N
j=1a

n
j f(xn

j )‖
≤(αδD(A))

1

2 (1 + (λ1 + · · · + λn)) ≤ 2(αδD(A))
1

2 .

3 Extensions to Convex Hulls

In this paper, we investigate extension properties of mappings defined on a
subset of a net of Sd−1 rather than on a subset of a net of BRd . The reason
for this is, that, as we will show in Proposition 3.2, an ε-rigid mapping of a
bounded subset A of a Hilbert space X can be extended to a net of the convex
hull of A without altering the bilipschitz constant too much. This is a simple
corollary of Zarantonello’s Lemma 2.6. Here is the idea. By the Kirszbraun-
Valentine extension theorem for Lipschitz mappings [BL, p. 18], the mapping
f : A → X can be extended to a (1 + ε)-Lipschitz mapping f : X → X .
Similarly, the mapping f−1 : f(A) → X can be extended to a (1+ε)-Lipschitz
mapping f̃ : X → X . Lemma 2.6 then implies that f̃ well approximates the
inverse of f : conv A → X . Consequently, f is bilipschitz on a net of conv A.

Lemma 3.1. Let X be a Hilbert space, A ⊂ X such that D(A) < ∞, 0 <
ε < 1, and let f : A → X be (1 + ε)-bilipschitz. Let f be a (1 + ε)-Lipschitz
extension of f to X, and let f̃ : X → X be a (1 + ε)-Lipschitz extension of
f−1 : f(A) → A. (Both extensions exist by the theorem of Kirszbraun and
Valentine.) Then ‖f̃(f(x)) − x‖ ≤ 12D(A)

√
ε for each x ∈ conv A.
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Figure 2: Lemma 3.1 when |A| = 3. Here x =
∑

aixi, y =
∑

aif(xi) and the
thick segments have length at most cD

√
ε.

Proof. Put D = D(A). Let x ∈ conv A, where x =
∑

aixi, xi ∈ A, ai ≥ 0,
and

∑

ai = 1. Fig. 2 illustrates the situation when |A| = 3. Lemma 2.6,
and (3) in particular, imply that ‖f(x) − ∑

aif(xi)‖ ≤ 3D
√

ε. Since f̃ is
(1 + ε)-Lipschitz,

‖f̃(f(x)) − f̃(
∑

aif(xi))‖ ≤ 3(1 + ε)D
√

ε ≤ 6D
√

ε.

Since f̃ is (1+ ε)-bilipschitz on f(A), and D(f(A)) ≤ (1+ ε)D, by Lemma 2.6
applied to f̃ , we have that

‖f̃(
∑

aif(xi)) − x‖ = ‖f̃(
∑

aif(xi)) −
∑

aif̃(f(xi))‖ ≤ 6D
√

ε,

and the statement of the lemma follows from the triangle inequality.

Proposition 3.2. Let X be a Hilbert space, and A ⊂ X be such that D(A) <
∞; let 0 < ε < 1. Let f : A → X be (1 + ε)-bilipschitz. Again denote by f its
(1 + ε)-Lipschitz extension to X (It exists by the theorem of Kirszbraun and
Valentine.) and put D = max{1, D(A)}. Then

(i) f is a (50D
√

ε)-nearisometry on conv A;

(ii) if, moreover, N ⊂ X is such that ‖x − y‖ ≥ a > 0 if x, y ∈ N and
x 6= y, and 0 < ε < 10−4(a/D)2, then f is (1+100 1

aD
√

ε)-bilipschitz on
conv A ∩ N .

Proof. Let x, y ∈ conv A, x 6= y. Since f is (1 + ε)-Lipschitz,

‖f(x) − f(y)‖ ≤ (1 + ε)‖x − y‖ ≤ ‖x − y‖ + εD.
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Let f̃ : X → X be a (1 + ε)-Lipschitz extension of f−1 : f(A) → A. By
Lemma 3.1

‖f(x) − f(y)‖ ≥(1 + ε)−1‖f̃(f(x)) − f̃(f(y))‖
≥(1 − ε)(‖x − y‖ − 24D

√
ε) ≥ ‖x − y‖ − 50D

√
ε.

This means that f is a (50D
√

ε)-nearisometry on conv A. If, moreover, 0 <
ε < 10−4(a/D)2, then f is (1 + 100 1

aD(A)
√

ε)-bilipschitz on conv A ∩ N by
the remark after Definition 2.5.

4 Approximation by Linear Mappings

Let f : BRd → R
d be a (1 + ε)-bilipschitz mapping. By a result of Kalton [K],

there exists an isometry T : R
d → R

d so that ‖f(x) − T (x)‖ ≤ cε ln d, where
c is an absolute constant. By [M], this estimate is sharp. In this section we
modify Kalton’s proof to get an approximation of a bilipschitz mapping of a
net of Sd−1 by an isometry; see Theorem 4.4.

For more general mappings f : A → ℓ2, where A ⊂ R
d is some com-

pact set (not necessarily a sphere or a net of a sphere), there is the following
approximation result of Alestalo, Trotsenko, and Väisälä.

Theorem 4.1. [ATV] Let A ⊂ R
d be bounded, 0 < ε < 1, and let f : A → ℓ2

be an εD(A)-nearisometry. There is a surjective isometry S : ℓ2 → ℓ2 so that
‖f(x) − S(x)‖ ≤ cdD(A)

√
ε, where cd depends only on d. If f(A) ⊂ R

d, we
can choose S so that S(Rd) ⊂ R

d. In particular, if we extend f by setting
f(x) = S(x) for x ∈ ℓ2 \ A, then f : ℓ2 → ℓ2 is a δ-nearisometry with
δ = cdD(A)

√
ε.

Nearisometries and rigid mappings basically coincide for finite discrete sets,
as we already mentioned in Section 2. Theorem 4.1 immediately implies the
following.

Corollary 4.2. There exists cd > 0 depending only on d with the following
property. Let 0 < a <

√
2, let N be an a-net of BRd

and let 0 < ε < 1.
Let A ⊂ N and f : A → ℓ2 be (1 + ε)-bilipschitz. There exists an isometry
S : ℓ2 → ℓ2 with ‖f(x)−S(x)‖ ≤ cd

√
ε for x ∈ A. If f(A) ⊂ R

d, we can choose
S so that S(Rd) ⊂ R

d. Moreover, f admits a (1 + δ)-bilipschitz extension to
N with δ ≤ cd

1
a

√
ε. If f(A) ⊂ R

d, then we also have f(N ) ⊂ R
d.

Proof. The mapping f is an εD(A)-nearisometry, as it is (1 + ε)-bilipschitz.
By Theorem 4.1, it can be approximated by an isometry with an error of no
more than cdD(A)

√
ε, and extended to a δ-nearisometry with δ ≤ cdD(A)

√
ε.
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Suppose ε ≤ a2/(2cdD(A))2. Then δ ≤ a/2 and the δ-nearisometry is (1+ δ′)-
bilipschitz on N , where δ′ = 2

aδ ≤ 2
acdD(N )

√
ε ≤ cd

4
a

√
ε, since D(N ) ≤ 2.

Next we will observe that for any 0 < ε < 1, the mapping f : A → ℓ2 can be
extended to a 10/a-bilipschitz mapping of N (while preserving f(N ) ⊂ R

d if
f(A) ⊂ R

d). This will finish the proof, by enlarging cd to max{4cd, 10}.
Indeed, let M and N be two discrete sets of diameters at most α > 0 and

so that the distances between the points in M and the distances between the
points in N are at least a. Then any bijection from M to N is α/a-bilipschitz.
Place a copy Ñ of N at a distance a from f(A) and extend f as a bijection of
N into f(A)∪Ñ . As D(f(A)∪Ñ ) ≤ 10, this extension is 10/a-bilipschitz.

In Proposition 4.5 we will show that if we wish to extend the mapping f
from Corollary 4.2 to a (1 + ca,d

√
ε)-bilipschitz mapping with range in R

d,
then ca,d really does depend on the dimension, independently of the method
we use to extend f . In other words, the function

√
ε does not go to zero slowly

enough to extend ε-rigid mappings to ca
√

ε-rigid mappings on a-nets (with ca

independent of the dimension).

We will approximate ε-rigid mappings on nets of Sd−1 by isometries, by
reducing the situation to the following theorem, as was done by Kalton in [K].

Theorem 4.3. [K] There is an absolute constant c with the following property.
Let ε > 0 and Ω : R

d → R
d, d ≥ 2, be a continuous mapping such that

(i) Ω(λx) = λΩ(x), if λ ∈ R and x ∈ R
d;

(ii) ‖Ω(x + y) − Ω(x) − Ω(y)‖ ≤ ε(‖x‖ + ‖y‖) for x, y ∈ R
d.

Then there is a linear mapping T : R
d → R

d with ‖Ω(x) − T (x)‖ ≤ cε‖x‖ lnd
for all x ∈ R

d.

Theorem 4.4. Let 0 < a <
√

2, d ≥ 2, let N be an a-net of Sd−1 and let
0 < ε < 1. Let f : N → R

d be (1 + ε)-bilipschitz. Then there exists an
isometry T : R

d → R
d with ‖f(x)− T (x)‖ ≤ c 1

2−a2

√
ε ln d for x ∈ N , where c

is an absolute constant.

Proof. Denote also by f a (1 + ε)-Lipschitz extension of f to R
d. We can

assume that f(0) = 0 (otherwise we add −f(0) to f and at the end f(0) to
the approximating isometry we will find). By Lemma 2.3, BRd(0, b) ⊂ convN ,

where b = 1 − a2

2 .

Claim 1. Let x, y ∈ convN ⊃ BRd(0, b) and let t ∈ [0, 1]. Then

‖f(tx + (1 − t)y) − tf(x) − (1 − t)f(y)‖ ≤ 15
√

ε.
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In particular, ‖f(tx)− tf(x)‖ ≤ 15
√

ε, and for x ∈ BRd(0, b) we have ‖f(x) +
f(−x)‖ ≤ 30

√
ε. Indeed, since f is (1 + ε)-bilipschitz on N , we have by (2)

for every x, y ∈ N that

0 ≤ (1 + ε)‖x − y‖ − ‖f(x) − f(y)‖ ≤ 3ε‖x− y‖.

Hence by Lemma 2.7, if x, y ∈ convN , then

‖f(tx + (1 − t)y) − tf(x) − (1 − t)f(y)‖ ≤ 2
√

6
√

εD(N ) ≤ 15
√

ε.

Since f(0) = 0 we get immediately that ‖f(tx) − tf(x)‖ ≤ 15
√

ε. If x ∈
BRd(0, b), then −x ∈ convN . Hence

1
2‖f(x) + f(−x)‖ = ‖f(x−x

2 ) − 1
2 (f(x) + f(−x))‖ ≤ 15

√
ε.

Define Ω(0) = 0 and for x 6= 0

Ω(x) = 1
2b‖x‖(f(b x

‖x‖ ) − f(−b x
‖x‖)).

Claim 2. If x ∈ BRd(0, b), then ‖Ω(x) − f(x)‖ ≤ 30
√

ε. If x ∈ convN \
BRd(0, b), then ‖Ω(x) − f(x)‖ ≤ 30 1

b

√
ε. Indeed, by the definition of Ω,

‖Ω(x) − f(x)‖ = ‖ ‖x‖
2b (f(b x

‖x‖ ) − f(−b x
‖x‖)) − f(x)‖.

If x ∈ BRd(0, b), we have by Claim 1 that

‖Ω(x) − f(x)‖ ≤ 1
2‖

‖x‖
b f(b x

‖x‖ ) − f(x)‖ + 1
2‖

‖x‖
b f(b −x

‖x‖ ) − f(−x)‖
+ 1

2‖f(x) + f(−x)‖
≤ 1

2 (15
√

ε + 15
√

ε + 30
√

ε) = 30
√

ε.

If x ∈ convN \ BRd(0, b), then by Claim 1

‖Ω(x) − f(x)‖ ≤ ‖x‖
b ‖f(b x

‖x‖) − b
‖x‖f(x)‖ + ‖x‖

2b ‖f(b x
‖x‖) + f(−b x

‖x‖ )‖
≤ 1

b 15
√

ε + 1
2b30

√
ε = 30 1

b

√
ε.

Let x, y ∈ R
d be such that β = (‖x‖+‖y‖)/b 6= 0. Then (x+y)/β, x/β, y/β ∈

BRd(0, b), and by Claim 2 and Claim 1 we get that

‖Ω(x + y) − Ω(x) − Ω(y)‖ = β‖2Ω(x+y
2β ) − Ω(x

β ) − Ω( y
β )‖

≤β(2‖f(x+y
2β ) − 1

2 (f(x
β ) + f( y

β ))‖ + 4 · 30
√

ε)

≤β(2 · 15
√

ε + 4 · 30
√

ε) = 150
√

ε(‖x‖ + ‖y‖)/b.
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Therefore, by Theorem 4.3, there exists a linear T : R
d → R

d so that

‖Ω(x) − Tx‖ ≤ c
√

ε 1
b‖x‖ lnd for x ∈ R

d.

It remains to replace T by an isometry. Let ‖x‖ = b. By Claim 2,

‖Tx− f(x)‖ ≤ ‖Ω(x) − Tx‖ + ‖Ω(x) − f(x)‖ ≤ c
√

ε ln d + 30
√

ε ≤ c
√

ε ln d.

By Proposition 3.2, if ‖x‖ = b, then 1−c 1
b

√
ε ≤ 1

b‖f(x)‖ ≤ 1+ε. Consequently,

1 − c 1
b

√
ε ln d ≤ ‖Tx‖

‖x‖ ≤ 1 + c 1
b

√
ε ln d

and there exists an isometry U so that ‖U −T ‖ ≤ c 1
b

√
ε ln d. From Claim 2 it

then follows that for x ∈ convN ,

‖Ux− f(x)‖ ≤ ‖f(x)−Ω(x)‖+ ‖Ω(x)−Tx‖+ ‖Tx−Ux‖ ≤ c 1
b

√
ε ln d.

Recall that if d = 2k for some k ∈ N, then R
d contains an orthonormal

basis comprising vectors of the form 1√
d

∑d
i=1 ±ei. This is the so-called Walsh

basis.

Proposition 4.5. Let 0 < a <
√

2. Suppose γ : N → R
+, γ = γa, has the

following property. If 0 < ε < 1, d ≥ 2 and N ⊂ Sd−1 is an a-net, A ⊂ N
and f : A → R

d is (1 + ε)-bilipschitz, then f admits a (1 + γ(d)
√

ε)-bilipschitz

extension f : N → R
d. Then γ(d) ≥ cad

1

4 ln−2 d, where ca > 0 depends only
on a.

Proof. Let d be so that
√

2(1− 1√
d
) ≥ a. For the finitely many smaller d we

just adjust ca. Choose k ∈ N so that 2k ≤ d < 2k+1, and put d0 = 2k. Let
v1, . . . , vd0/2 be the Walsh basis in R

d0/2. Let

A = {±e1, . . . ,±ed0/2,±v1, . . . ,±vd0/2},

and let N be an a-net of Sd−1 containing A. Define f : A → R
d by f(±ei) =

±ei and f(±vi) = ±ei+d0/2 for i = 1, . . . , d0/2. An elementary computation

shows that f is (1 + cd−
1

2 )-bilipschitz for some absolute constant c > 0. Sup-

pose f admits a (1 + γ(d)d−
1

4 )-bilipschitz extension to N . By Theorem 4.4,

there exists an isometry T so that ‖f(x)− Tx‖ ≤ c 1
2−a2 γ

1

2 (d)d−
1

8 ln d = δ(d).

Let Z = T (Rd0/2). Then Z is a d0/2-dimensional affine subspace of R
d.

Put Q = {±e1, . . . ,±ed0
} ⊂ f(N ). By [T, p. 237] there exists q ∈ Q so

that dist (Z, q) ≥ 1/
√

2. Therefore δ(d) ≥ 2−
1

2 and, consequently, γ(d) ≥
cad

1

4 / ln2 d.
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5 Extension to Sparse Nets of the Sphere Is Possible

Let ε > 0 be fixed and let N ⊂ BRd be an a-net with a > 0 small enough (how
small depends only on ε). In Section 2 we mentioned a simple example of a
(1 + ε)-bilipschitz mapping of a subset A of N which cannot be extended to a
2-bilipschitz mapping of N into R

d.
In this section we will deal with the other extreme case when a is very

close to
√

2. Let ε > 0 be fixed and let N be a symmetric a-net of Sd−1 with
0 < a <

√
2 close enough to

√
2 (how close depends only on ε, but not on the

dimension d). Suppose A ⊂ N , and that f : {0}∪A → N is (1+ε)-bilipschitz.
Then f can be extended to N with a bilipschitz constant not much larger. We
prove this assertion in Proposition 5.4 as a simple corollary of an estimate of
the size of N in Lemma 5.3. For an easy reference we include a simple proof
of Lemma 5.3 and the results needed for it.

Lemma 5.1. Let 0 < ε < 1 and d ∈ N be given. If A0 ⊂ Sd−1, then there
exists A ⊂ Sd−1 so that |A0∪A| ≥ 1

4eε2d/2 and |〈x, y〉| < ε for each x ∈ A0∪A
and y ∈ A, x 6= y.

Proof. If u ∈ Sd−1, then by the concentration of measure on the sphere
P [|〈u, x〉| ≥ ε] ≤ 4e−ε2d/2. If A′ ⊂ Sd−1 consists of vectors as required above,

but |A′| < 1
4eε2d/2, then P [|〈u, x〉| < ε for all u ∈ A′] > 1 − 4e−ε2d/2|A′| > 0

and the set A′ can be enlarged.

Theorem 5.2. [Al] Let B = (bi,j) be an n × n matrix with bi,i = 1 for all i
and |bi,j | ≤ ε for all i 6= j. If the rank of B is d and 1√

n
≤ ε ≤ 1

3 , then

d ≥ c
lnn

ε2 ln 1
ε

,

where c > 0 is an absolute constant.

Using these two results we can easily estimate the size of a symmetric a-net
when a is close to

√
2.

Lemma 5.3. Let 4
3 ≤ a <

√
2, let N ⊂ Sd−1 be a symmetric a-net of Sd−1,

and b = 1 − a2

2 . If 1√
d
≤ b, then ecdb2 ≤ |N | ≤ eCdb2 ln 1

b where c, C > 0 are

absolute constants.

Proof. First recall that by Lemma 2.2, N is a symmetric inclusion-maximal
subset of Sd−1 such that |〈x, y〉| ≤ b for all x, y ∈ N , x 6= y. Notice that for
the lower estimate we do not have to assume that N is symmetric. Suppose
|N | < 1

4eb2d/2. Then by Lemma 5.1 applied to A0 = N and ε = b the set N
can be enlarged, and this contradicts its maximality.
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To get the upper estimate, we let N0 be “one half” of the set N (that is,
N = −N0 ∪N0 and −N0 ∩N0 = ∅) and define the matrix B = (〈x, y〉)x,y∈N0

.
Since N0 ⊂ R

d, the rank of B is at most d. By Lemma 2.2, if x, y ∈ N0,
then |〈x, y〉| ≤ b. Theorem 5.2 then implies that d ≥ c ln |N0|/b2 ln 1

b , and the
estimate in the lemma follows.

Suppose a net N is symmetric and “thin” enough; that is, |〈x, y〉| is not
very far from

√
ε for x 6= ±y ∈ N . If A ⊂ N and f : {0} ∪ A → R

d is (1 + ε)-
bilipschitz, then f can be extended to N without enlarging the bilipschitz
constant too much. This is trivial if the range-space is ℓ2. We first extend
f symmetrically to −A ∪ A, then choose a large enough orthonormal set Q
orthogonal to f(A) and finally map N \(−A∪A) symmetrically and bijectively
into −Q∪Q. If the range-space is only R

d, then the same idea works; we just
have to make sure (using Lemma 5.3) that Sd−1 accommodates an “almost
orthogonal” set of cardinality at least N . Here is an example of such an
extension.

Proposition 5.4. Let 0 < ε < ε1, where ε1 > 0 is an absolute constant, and

let a ≤
√

2 be such that b = 1 − a2

2 ≤ √
ε. Suppose N ⊂ Sd−1 is a symmetric

a-net, A ⊂ N and f : A ∪ {0} → R
d is (1 + ε)-bilipschitz. Then f admits a

(1 + c(ε ln 1
ε )

1

2 )-bilipschitz extension f : N → R
d.

Proof. Let ε1 > 0 be small; just how small can in principle be determined
by an inspection of the estimates below. We can assume that f(0) = 0 which
implies that 1/(1 + ε) ≤ ‖f(x)‖ ≤ 1 + ε for x ∈ A. Let A0 ⊂ A be such
that −A0 ∩ A0 = ∅ and A ⊂ −A0 ∪ A0. Similarly, let N0 ⊂ N be such that
−N0 ∩ N0 = ∅ and N = −N0 ∪ N0. Suppose x 6= y ∈ A. Then

‖ f(x)
‖f(x)‖ − f(y)

‖f(y)‖‖ ≥‖f(x) − f(y)‖ − ‖f(x) − f(x)
‖f(x)‖‖ − ‖f(y) − f(y)

‖f(y)‖‖
≥a/(1 + ε) − 2ε = a1.

Let β = c′b ln
1

2
1
b , where c′ =

√

C/c and c, C are the absolute constants
from Lemma 5.3. Put a2 =

√
2 − 2β, α = min{a1, a2} and extend the set

Ã = {f(x)/‖f(x)‖ : x ∈ A0} to a symmetric α-net M of Sd−1. Choose
M0 ⊃ Ã so that M = −M0 ∪M0 and −M0 ∩M0 = ∅. By Lemma 5.3,

|N | ≤ eCdb2 ln 1

b ≤ ecdβ2 ≤ |M|.

Therefore it is possible to extend f as a bijection of N0\A0 into M0\Ã, and for
x ∈ −N0\A put f(x) = −f(−x). If both x ∈ A and −x ∈ A for some x ∈ N we
have by (3) that ‖f(x) + f(−x)‖ ≤ c

√
ε, and, also ‖f(x)/‖f(x)‖ + f(−x)‖ ≤
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c
√

ε. This and Lemma 2.2 imply the following estimates for the bilipschitz
constants of f .

1
1+ε ≤‖f(x)−f(y)‖

‖x−y‖ ≤ 1 + ε if x = −y or x, y ∈ A

α√
4−a2

≤‖f(x)−f(y)‖
‖x−y‖ ≤

√
4−α2

a if x 6= −y and x, y ∈ N \ A

α−c
√

ε√
4−a2

≤‖f(x)−f(y)‖
‖x−y‖ ≤

√
4−α2+c

√
ε

a if x 6= −y and x ∈ A, y ∈ N \ A.

Since α2 ≥ 2−c
√

ε ln
1

2
1
ε and a2 ≥ 2−2

√
ε, an elementary computation shows

that the bilipschitz constant of f is at most 1 + c
√

ε ln
1

2
1
ε .

Note that we did not assume in Proposition 5.4 that the subset A was
symmetric. We did assume, though, that f was bilipschitz on A ∪ {0}. The
bilipschitz constant of the extension does not increase too much if instead we
assume that for at least one x ∈ A we also have −x ∈ A.

6 How Large Can an Almost-Isometric Image of BRn

Get?

It is a simple and a well known application of the concentration of measure on
the sphere that Sd−1 contains a large “almost orthogonal” set. Let A ⊂ Sd−1

be such a set. Namely, let |〈x, y〉| < ε for all x, y ∈ A, x 6= y, and let

N = |A| ≥ 1
4eε2d/2 which is possible by Lemma 5.1. Let f be a bijection of A

and of the set {e1, e2, . . . , eN}. Define f also on −A by f(−x) = −f(x). The
mapping f : −A ∪ A → R

N is (1 + ε)-bilipschitz, if 0 < ε < 1/2. A natural
question arises, if f can be extended to Sd−1, or at least to some a-net of Sd−1

containing −A ∪ A without altering the bilipschitz constant of f too much.
For 0 < δ < 1, 0 < a <

√
2, and d ∈ N, let k(d, a, δ) be the largest dimen-

sion k such that there exists an a-net N of Sd−1 and a (1+δ)-bilipschitz map-
ping f : N → ℓ2 so that f(N ) contains an orthonormal basis of R

k together
with its negative. Does there exist δ > 0 so that limd→∞ k(d, a, δ)e−εd = 0
for every ε > 0? Suppose that the answer is yes. (We do not know if it
is.) This would mean, that for an arbitrarily small ε > 0 we could find a large
enough dimension d and a (1+ε)-bilipschitz mapping f (the one defined above)
which admits no (1 + δ)-bilipschitz extension to an a-net containing −A ∪ A.
In other words, the answer to the question in the introduction, whether one
can have δ = δ(ε) not depending on the dimension, and at the same time,
limε→0 δ(ε) = 0 would be negative.

In this section we give a lower estimate for k. To do so, we first modify an
example of F. John (see [J], or [BL, p. 352]).
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Lemma 6.1. Let 0 < ε < 1. If 0 < r ≤ e−π/2ε and n ∈ N, then there
exists a norm-preserving (1 + ε)-bilipschitz mapping H of R

n+1 onto itself so
that H(x) = −H(−x) for x ∈ R

n+1, H(±e0) = ±e0, and H(±r4k−3e0) =
∓r4k−3ek, for k = 1, . . . , n.

Proof. We prove the assertion of the lemma for r = e−π/2ε. If 0 < s < r,
we simply construct an ε′-quasi isometry as below with ε′ ln s = −π/2. Let
h : R

2 → R
2 be defined in polar coordinates by h(r, ϕ) = (r, ϕ+ ε ln r) if r ≤ 1

and h(r, ϕ) = (r, ϕ) if r ≥ 1. This is a norm-preserving (1 + ε)-bilipschitz
mapping of R

2 onto itself (see [J], or [BL, p. 352]). Let hk, k = 1, . . . , n, be
the mapping h written in Cartesian coordinates and considered as a mapping
hk : span {e0, ek} → span {e0, ek}. Let

A0 = {u : ‖u‖ ≤ r4n or 1 ≤ ‖u‖}
Ak = {u : r4k ≤ ‖u‖ ≤ r4(k−1)},

and define H : R
n+1 → R

n+1 by

H(x) =

{

x if x ∈ A0

hk(x0, xk) +
∑n

i=1,i6=k xiei if x =
∑n

i=0 xiei ∈ Ak.

Fig. 3 illustrates that H rotates the points re0, r
5e0, . . . by −π

2 into orthog-
onal directions −re1,−r5e2, . . . . Notice, that H is well defined as H(x) = x
if ‖x‖ = r4k. By the Pythagorean theorem, H is a (1 + ε)-bilipschitz map-
ping of each of the sets A0, A1, . . . , An onto itself. By Lemma 2 of [IP], H
is a (1 + ε)-bilipschitz mapping of R

n+1 onto itself. If ‖x‖ = r4k−3, H acts
on x as a rotation by ε ln r4k−3 = −π

2 − 2(k − 1)π in span {x0, xk}. Hence
H(r4k−3e0) = −r4k−3ek.

Lemma 6.2. Let m, n ∈ N and let d = 2m(4n+1). There exist orthonormal
bases O1, O2, . . . , On+1 in R

d so that if u ∈ Ok, then 〈u, ei〉 ∈ {0,±2−
m

2
(4k−3)}

for all i = 1, 2, . . . , d.

Proof. Let m ∈ N. We use induction on n. If n = 0, let O1 be the Walsh

basis in R
2m

. (It consists of orthonormal vectors of the form 2−m/2
∑2m

i=1 ±ei.)
Now assume S1, S2, . . . , Sn+1 are the required orthonormal bases in R

d0 , where
d0 = 2m(4n+1). Let d = 2m(4(n+1)+1) = 24md0. We write R

d as a product of
24m copies of R

d0 and for k = 1, . . . , n+1, j = 1, . . . , 24m, denote the basis Sk

in the j-th copy of R
d0 by Sj

k . For k = 1, . . . , n + 1 let Ok =
⋃24m

j=1 Sj
k, and let

On+2 be the Walsh basis of R
d.

In the next proposition we strengthen an example from [M]. For a suitable
dimension d we choose n ≈ ε ln d orthonormal bases O1, . . . , On in R

d as it
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e0

e1

rr4r5r8−e0

Id

Id

Id

Id

−e1

r4e2

−r4e2

Figure 3: Die Korfsche Uhr [Mo].
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was done in Lemma 6.2. The mapping H from Lemma 6.1 applied to each of
the vectors e1, . . . , ed in place of e0 produces new n copies X1, . . . , Xn of R

d

and “twists” each Ok out of R
d to become a basis of Xk.

Proposition 6.3. Let ε > 0 be given. For every K ∈ N there exists d > K
with the following property. There exists N ≥ cεd ln d and a norm-preserving
(1 + ε)-bilipschitz mapping f of R

N onto itself such that f(x) = −f(−x) for
x ∈ R

N and f(BRd) contains an orthonormal basis of R
N .

Proof. Let 0 < ε < 1 be given. Choose the smallest m ∈ N so that 2−m/2 ≤
e−

π

2ε ; that is, m = ⌈ π
ε ln 2⌉. Let ε′ satisfy 2−m/2 = e−π/2ε′

. Then ε/2 ≤ ε′ ≤ ε.

Choose n ∈ N so that d = 2m(4n+1) > K. Write R
d(n+2) = X0 ⊕ X1 ⊕

· · · ⊕ Xn+1, where R
d ∼= Xk = span {e1+kd, . . . , ed+kd}. Let O0 = {e1, . . . , ed}

and let O1, . . . , On+1 be the orthonormal bases in X0 which exist according
to Lemma 6.2. Let Sk be a copy of Ok in Xk, k = 1, . . . , n + 1. Define
f : R

d(n+2) → R
d(n+2) “block-wise”; namely let f act on each of the blocks

Yj = span {ej+0, ej+d, . . . , ej+(n+1)d} as H , where H is the mapping from

Lemma 6.1 (with r = 2−m/2 = e−π/2ε′

). The mapping f is norm-preserving
and (1 + ε)-bilipschitz with f(x) = −f(−x), since H is such a mapping. It
follows that f = Id on ±O0 and f(±Ok) = ∓Sk if k = 1, . . . , n + 1. Finally,

n + 2 =
ln d

4m ln 2
+

7

4
=

ε′ ln d

4π
+

7

4
>

1

8π
ε lnd.
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