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ON THE LEVEL STRUCTURE OF
BOUNDED DERIVATIVES

Abstract

We prove: In the space C of continuous functions on [0, 1] under the
sup metric, the functions all of whose level sets (in every direction) have
measure zero, form a residual subset of C. In the space D of bounded
derivatives of [0, 1], the derivatives all of whose level sets are nowhere
dense sets of measure zero form a residual subset of D. Moreover, there
exists a derivative in D all of whose level sets have measure zero and
one of whose level sets is dense in [0, 1].

Let C denote the family of continuous real valued functions on [0, 1], and
let D be the family of bounded derivatives on [0, 1]:

D =
{
f : f is bounded and there exists an F ∈ C such that

F ′(x) = f(x) for 0 ≤ x ≤ 1
}
.

Then D and C are complete metric spaces under the sup metric (see [W1])

d(f, g) = sup
0≤x≤1

∣∣f(x)− g(x)
∣∣.

We say that a set E ⊂ [0, 1] is a “level” set if
{
(x, f(x)) : x ∈ E

}
is the

intersection of the graph of f with a nonvertical line in the plane. The “slope”
of the level set is the slope of this line. (We do not define the slopes of singleton
level sets, but it won’t matter.) In this paper we study the (linear) measures
of the level sets of functions in certain residual subsets of D and of C. In [BG],
A. M. Bruckner and K. M. Garg proved the existence of a residual subset of
C such that the level sets of each member of this residual subset consists of
a perfect set or the union of a perfect set with a singleton or doubleton set.
We conclude that each and every one of these perfect sets can have measure
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zero. In other words, the functions in C, all of whose level sets have measure
zero, form a residual subset of C. Moreover we prove that the functions in D,
all of whose level sets are nowhere dense sets of measure zero, form a residual
subset of D. In [W2], Clifford Weil used a category argument on a complete
subset of D to prove the existence of derivatives in D that take both positive
and negative values on every subinterval of [0, 1]. We will prove the existence
of such a derivative all of whose level sets have measure zero.

In this paper, m(X) will denote the measure of X. The level sets of
functions in C or D are necessarily measurable. We begin with some needed
lemmas.

Lemma 1. Let (a, b) be an open subinterval of [0, 1], and put

P =
{

f ∈ D : f has a level set E such that m
(
E ∩ (a, b)

)
≥ 3

4
(b− a)

}
.

Then P is a first category subset of D.

Proof. For definiteness we assign to each f ∈ P a level set E(f) of f such
that m

(
E(f) ∩ (a, b)

)
≥ 3

4 (b− a), and let c(f) be the slope of E(f). For each
positive integer N , put

PN =
{

f ∈ P :
∣∣c(f)

∣∣ ≤ N
}

.

It suffices to prove that PN is a nowhere dense subset of D. Select ε > 0 and
f ∈ PN . We prove that there is a function h ∈ D \ PN with |f − h| ≤ ε.
To do this put h(x) = f(x) + εx2. Assume to the contrary, that h ∈ PN .
Necessarily the intersection E(f) ∩ E(h) ∩ (a, b) has a positive measure. Fix
u ∈ E(f) ∩ E(h) ∩ (a, b). For any x in this intersection, we have

h(u)− h(x)− (u− x)c(h) = 0,

f(u)− f(x)− (u− x)c(f) = 0,

and by taking differences,

εu2 − εx2 − (u− x)
(
c(h)− c(f)

)
= 0 .

But u is fixed, so this polynomial equation can have at most two roots in x.
This contradiction proves that PN has a dense complement.

It remains to prove that PN is closed in D. Let g lie in the closure of PN .
Let (fn) be a sequence of functions in PN converging uniformly to g. Now

∞⋂
n=1

⋃
j≥n

E(fj) ∩ (a, b)
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has positive measure; fix a point v in this intersection. Then v lies in E(fn)∩
(a, b) for infinitely many n. By passing to a subsequence if necessary, we
assume without loss of generality, that v ∈ E(fn) ∩ (a, b) for all n and the
sequence c(fn) converges, say to t. Observe that |t| ≤ N .

For each positive index j we define the set

Aj =
{

x ∈ (a, b) :
∣∣g(x)− g(v)− (x− v)t

∣∣ < 2−j
}

(1)

and put A = ∩jAj . For fixed j choose n so large that

|fn − g| < 2−j

3
,

∣∣c(fn)− t
∣∣ <

2−j

3
.

Then ∣∣fn(x)− g(x)
∣∣ <

2−j

3
,

∣∣fn(v)− g(v)
∣∣ <

2−j

3
,

and
∣∣∣(x− v)c(fn)− (x− v)t

∣∣∣ <
2−j

3
,

(2)

and for x ∈ E(fn) ∩ (a, b),

fn(x)− fn(v)− (x− v)c(fn) = 0 . (3)

Now from (2) and (3) we deduce that∣∣∣g(x)− g(v)− (x− v)t
∣∣∣ < 2−j

and x ∈ Aj . Thus Aj ⊃ E(fn) ∩ (a, b) for this n, and

m(Aj) ≥ m
(
E(fn) ∩ (a, b)

)
≥ 3

4
(b− a).

Clearly A1 ⊃ A2 ⊃ A3 ⊃ . . . ⊃ Aj ⊃ . . . and hence m(A) ≥ 3
4 (b−a). Moreover

g(x)− g(v)− (x− v)t = 0 for x ∈ A by (1). We deduce that A is a subset of a
level set of g (the line here is y = g(v) + (x− v)t) and therefore g ∈ PN . This
proves that PN is closed.

Now let f ∈ D and let f vanish on a dense subset of (a, b). Because f is
a Baire 1 function, f−1(0) is a Gδ-set and f vanishes on a residual subset of
[a, b].

Lemma 2. Let (a, b) be an open subinterval of [0, 1], and put

P =
{

f ∈ D : f has a level set E such that E ∩ (a, b) is dense in (a, b)
}

.

Then P is a first category subset of D.
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Proof. We deduce from our preceding comment that if f ∈ P then E ∩ (a, b)
is a residual subset of [a, b]. The proof proceeds just like the proof of Lemma 1
where m

(
E ∩ (a, b)

)
≥ 3

4 (b − a) is replaced by E ∩ (a, b) is a dense subset of
(a, b), only easier. So we leave it.

Theorem 1. The functions in D, all of whose level sets are nowhere dense
sets of measure zero, form a residual subset of D.

Proof. For any rational numbers a and b, 0 ≤ a < b ≤ 1, define

P (a, b) =
{

f ∈ D : f has a level set E such that either E ∩ (a, b)

is a dense subset of (a, b), or m
(
E ∩ (a, b)

)
≥ 3

4
(b− a)

}
.

Then ∪a<bP (a, b) is a first category subset of D, by Lemmas 1 and 2. If g ∈ D
has a level set Eg such that either m(Eg) > 0 or Eg is not nowhere dense,
then g lies in some P (a, b). The conclusion follows.

Theorem 2. The functions in C, all of whose level sets are nowhere dense
sets of measure zero, form a residual subset of C.

Proof. The argument is just like the proof of Theorem 1, only easier. Lemma 2
is not needed this time. So we leave it.

Let B denote the family of all bounded Baire class 1 functions, that is,
pointwise limits of sequences of continuous functions on [0, 1]. Then B is a
vector space under the usual addition and scalar multiplication of functions,
and B is complete under the sup metric (see [Gf, Theorem 1, p. 138]). It is
easy to see that the proof of Theorem 1 goes through word for word when
B replaces D. Moreover the proof goes through when D is replaced by any
closed vector subspace of B that contains a nonlinear polynomial.

Let W denote the family of all members of D that vanish on a dense subset
of [0, 1]. In [W2] it was observed that W is a complete vector space under
the sup metric. It was further observed that the functions in W that take
both positive and negative values on each subinterval of [0, 1] form a residual
subset of W. Here we show that the functions in W all of whose level sets
have measure zero, form a residual subset of W. An additional problem here
is that there are no nonzero polynomials in W.

Lemma 3. Let (a, b) be an open subinterval of [0, 1] and let

P =
{

f ∈ W; f has a level set E such that m
(
E ∩ (a, b)

)
≥ 3

4
(b− a)

}
.

Then P is a first category subset of W.
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Proof. Choose f ∈ P and let ε > 0. We will construct a g ∈ W \ P such
that |f − g| < ε. The function m

(
E ∩ (a, x)

)
is a continuous nondecreasing

function in x whose range is an interval containing points 0 and 3
4 (b − a).

Select p ∈ (a, b) such that m
(
E ∩ (a, p)

)
= b−a

2 .
We deduce from [KS, Theorem, p. 351] that there is a derivative T on

[0, 1] such that 1−T is positive on a dense subset of [0, 1], such that T = 1 on
a dense subset of [0, 1] containing 0 and 1, and 0 < T ≤ 1. Put h1 = 1 − T .
Then 0 ≤ h1 ≤ 1, h1 > 0 on a dense subset of [0, 1], and h1 vanishes on a
dense subset of [0, 1] containing 0 and 1. Now h1 is a bounded derivative and
is hence the derivative of an absolutely continuous function. It follows that
the set

{
x : h1(x) > 0

}
has positive measure; say its measure is δ > 0. We

extend h1 to the real line by making h1 periodic with period 1. Put

h2(x) =
∞∑

j=1

2−jh1(2jx) (0 ≤ x ≤ 1).

For any interval I of the form
(
(i − 1)2−j ; i2−j

)
(i, j positive integers) the

function h1(2jx) is positive on a subset of I with measure δm(I). Likewise
h2 is positive on a subset of I of measure at least δm(I). It follows that the
set

{
x : h2(x) = 0

}
can have no point of density, and hence h2 > 0 almost

everywhere on [0, 1]. Clearly h1 and h2 both vanish on residual subsets of [0, 1]
so h1 and h2 lie in W.

As in [W2, p. 389], by pushing and crushing it is not hard to use h2 to
prove the existence of a function h3 such that 0 ≤ h3 < ε, h3 vanishes on a
dense subset of [p, b] containing p and b, and h3 > 0 almost everywhere on
[p, b]. Make h3 = 0 for x < p and x > b. Then h3 lies in W.

Let L be the line such that
{
(x, f(x)) : x ∈ E

}
⊂ L. Then there is a real

number r such that 0 < r < 1 and the set{
x ∈ (p, b) :

(
x, f(x) + rh3(x)

)
∈ L

}
has measure zero. Put g(x) = f(x)+ rh3(x) for 0 ≤ x ≤ 1. Let L0 be a line in
the plane different from L. It follows from the choice of p and the definition
of h3 that the measure of the set{

x ∈ (a, b) :
(
x, g(x)

)
∈ L

}
is b−a

2 and (because L∩L0 contains at most one point) the measure of the set{
x ∈ (a, b) :

(
x, g(x)

)
∈ L0

}



662 F. S. Cater

can not exceed b−a
2 . Therefore g /∈ P . But |f − g| < rε < ε. It follows that P

has a dense complement in W.
The proof that P is the union of countably many closed sets is just like

the corresponding argument in the proof of Lemma 1, so we leave it.

Theorem 3. The functions in W, all of whose level sets have measure zero,
form a residual subset of W.

Proof. The argument is just like the proofs of Theorem 1 and Theorem 2
where Lemma 1 is replaced by Lemma 3. So we leave it.

Now let f be a function in W whose graph meets the x-axis in a set of measure
zero. Then f is discontinuous at each point where it is nonzero, so f is
discontinuous almost everywhere on [0, 1]. The family of derivatives in W
that vanish on a set of positive measure in every subinterval of [0, 1] and are
discontinuous almost everywhere on [0, 1], form a first category subset of W.
The question arises: are there any such derivatives? The answer is yes. We
gave a constructive definition of one such derivative in [C].

For a detailed discussion of the topology of level sets of functions in C,
consult [BG].
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