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ON RIEMANN INTEGRAL
QUASICONTINUITY

Abstract

A function f: R™ — R satisfies condition (Qr:(x)) (resp. (Qr,s(x)),
[@r.0(2)]) at a point z if for each real r > 0 and for each set U contain-
ing  and belonging to Euclidean topology in R™ (resp. to the strong
density topology [to the ordinary density topology]) there is a regular
domain I such that int(I) NU # 0, f | I is integrable in the sense of
Riemann and \m Jiar f@)dt — f(z)] < 7. These notions are par-
ticular cases of their analogues for the Lebesgue integral. In this article
we compare these notions with the classical quasicontinuity and integral
quasicontinuities.

Let R be the set of all reals and let R™ be the n-dimensional product space.
For a point = (z1,...,z,) € R™ and positive reals rq,...,r, put

I = (x; —rjxy+ry) for i =1,2,...,n,

and
P(zsry,...,rn) =11 X ... x I,.

The symbol Q(z, r) denotes the cube P(x;r,...,r,), wherer; = -+ =r, = 7.

Let o denote Lebesgue measure in R™. For a Lebesgue measurable set

A C R"™ and a point z € R™ we define the lower strong density (compare [3]
r [10], IV § 10) D;(A, x) of the set A at the point x as

hn))
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Similarly, for a measurable set A C R™ and a point = € R™ we define the lower
ordinary density (compare [3] or [10], IV § 10) d;(A, z) of the set A at the

point x as
. (AN Q(z,h))
n—ot  p(Q(z,h))
A point z is said to be a strong density point (an ordinary density point) of a
measurable set A if Dj(A,z) =1 (if d;(A,z) = 1).
The family Tsq (T,q) of all Lebesgue measurable sets A C R™ for which
the implication

x € A = x is a strong (resp. an ordinary) density point of A

is true, is a topology called the strong (resp. ordinary) density topology (com-
pare [1, 3] and for the case n = 1 compare [12]). If T, denotes the Euclidean
topology in R", then evidently T, C Tsq C T,q. The continuity of applica-
tions f from (R™,Ts4) (resp. from (R™,T,q)) to (R,T.) is called the strong
(ordinary) approximate continuity ([1, 3]).

For an arbitrary function f : R™ — R denote by C(f) the set of all conti-
nuity points of f. Moreover, let D(f) = R"™\ C(f).

In [7, 9] the following notion is investigated. A function f : R™ — R is
quasicontinuous at a point = (f € Q(x)) if for each positive real r and for
each set U € T, containing x there is a nonempty open set I such that I C U
and |f(t) — f(x)| < r for all points t € I. A function f is quasicontinuous, if
f € Q(z) for every point z € R™.

In [5] the following properties are investigated. A function f : R™ — R is
integrally quasicontinuous at a point z (f € Q;(z)) if for each positive real r
and for each set U € T, containing x there is a nonempty bounded open set I
such that I C U, the restricted function f[I is Lebesgue integrable and

Jif@de
p(I)

A function f is integrally quasicontinuous (f € Q;), if f € Q;(z) for every
point x € R™.

A function f : R™ — R belongs to Qs(x) (resp. f € Q,(x)), if for each
positive real n and for each set U € T,y (resp. U € T,q) containing x there is
an open set I such that I N U # @, the function f is Lebesgue integrable on
INU and

fl@)| <r

1
i f 1050 <0

If f € Qs(x) (resp. f € Qo(x)) for every point & € R™, then we will write that
f e Qs (resp. f€Q,).
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In this article I investigate some analogues of these properties defined by
the application of the integral of Riemann.

We will say that a nonempty set I C R”™ is a regular domain if it is
a bounded Jordan measurable set. If, for a regular domain I, the interior
int(I) # 0, then we will say that I is a nondegenerate regular domain.

A function f : R™ — R is R-integrally quasicontinuous at a point = (f €
Qri(x)) if, for each positive real r and for each set U € T, containing z, there
is a nondegenerate regular domain I such that I C U, the restricted function
f 11 is integrable in the sense of Riemann and

[, f(t)dt
L2t f(x)] <
wry T
A function f is R-integrally quasicontinuous (f € Q,;), if f € Q,i(z) for
every point z € R"™.

A function f:R™ — R belongs to @, s(x) (resp. f € Qro(2)), if, for each
positive real n and for each set U € Tyq (resp. U € T,4) containing x, there is
a nondegenerate regular domain I such that int(I) N U # @, the function f[I
is integrable in the sense of Riemann and

Fic Flt)dt - (@) <

T~ —Jx n,

wINU) Jinv
where the integral on I NU in the last inequality is the integral of Lebesgue.
If f e Qrs(x) (resp. f € Qro(x)) for every point x € R™, then we will write
that f € Q. s (resp. f € Qr ).

In [5] it is observed that, if a function f : R™ — R is integrally quasicon-
tinuous, then the set Z(f) of all points € R™ at which f is locally Lebesgue
integrable is open and dense in R™. Analogously we can observe the following.

Remark 1. If a function f : R™ — R is R-integrally quasicontinuous, then it
is integrally quasicontinuous and there is a dense open set U C R™ such that

wUN\C(f)) = 0.

PRrOOF. Evidently, if f is R-integrally quasicontinuous, then it is also inte-
grally quasicontinuous. If W is a nonempty open set, then there is a non-
degenerate regular domain I C W such that the restricted function f [ I is
integrable in the sense of Riemann on I. Consequently, p(int(I) \ C(f)) = 0.
So for each open set W = ) there is an open cube J C W whose vertexes have
rational coordinates such that p(int(J) \ C(f)) = 0. Let U be the union of
all open cubes J C W whose vertexes have rational coordinates and such that
w(int(J) \ C(f)) = 0. Then the open set U satisfies all requirements. O
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Example 1. Let A C (0,1) be a nonempty Fy,-set such that D;(A,z) =1 for
each point z € A and the closure cl(A) is a nowhere dense set. There is ([13]
and [2], p. 28, Th. 6.5) an approximately continuous function f : R — [0,1]
such that f(A) = (0,1], f(z) =0 for z € R\ A and C(f) =R\ A. Then f is
integrally quasicontinuous and int(C(f)) = R\ cl(A) is open and dense, but f
is not R-integrally quasicontinuous at any point = € A.

Theorem 1. If a function f : R® — R is integrally quasicontinuous and
locally integrable in the sense of Riemann at a point x, then f is R-integrally
quasicontinuous at x.

PrOOF. Fix an open set U 3 z and areal n > 0. Since f is locally integrable in
the sense of Riemann, there is a regular domain I C U such that = € int(/) and
f is integrable on I in the sense of Riemann. From the integral quasicontinuity
of f at z it follows that there is a bounded open set V' C int(I) such that

Jv f
n(V)

There is a regular domain J C V such that

- f(fv)' <

I f
— flx)] <n.
’u(J ) (@)
Since f is integrable on J in the sense of Riemann. O

The next example shows that an R-integrally quasicontinuous function may
be nonmeasurable.

Example 2. Let A C (0,1) be a nowhere dense, perfect set of positive measure
and let A = BUC, where B and C' are nonmeasurable and disjoint. In each
component (a,b) of the complement R\ A find a nondegenerate closed interval
I(a,b) = [c(a,b),d(a,b)] and put

_J1 forx e I(a,b)
f(a,b)(x) = {0 for x € (a,b) \ I(a,b).

If

faap(x) for x € (a,b), where (a,b) is an component of R\ A
flx)y=<0 forz € B
1 for z € C,

then f is evidently R-integrally quasicontinuous and nonmeasurable.
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In [5] an example of a quasicontinuous bounded function f : R — R such
that Z(f) = 0 is shown and the following theorem is proved.

Theorem 2. If f : R®™ — R is a quasicontinuous function and if there is a
dense open set G C R™ such that the restricted function f |G is measurable,
then f is integrally quasicontinuous.

In this article I prove the following assertion.

Theorem 3. If f : R® — R is a quasicontinuous function and if there is
a dense open set G C R™ such that (G \ C(f)) = 0, then f is R-integrally
quasicontinuous.

ProoOF. Fix a point z, a real n > 0 and an open set W > x. Since f is
quasicontinuous, the set C(f) of all continuity points of f is dense and there is
a nonempty open set V- C W such that f(V) C (f(z) —n, f(z) + 7). There is
apoint u € VNGNC(f). Let hy > 0 be a real such that cl(Q(u, k1)) C VNG.
Since cl(Q(u,h1)) C V and p(cl(Q(u,h1)) \ C(f)) = 0, the function f is
integrable on cl(Q(u, k1)) in the sense of Riemann. From the continuity of f
at u it follows that

. fcl(Q(u,h)) f(t) dt
(e TOR D) A

Since f(u) € (f(x) —n, f(z) + n), there is a real h > 0 such that h < hy and

Ja@umy I (8) dt
w(Q(u, h))
The next example (considered also in [5]) shows that there is a uniform

limit of a sequence of R-integrally quasicontinuous functions which is not R-
integrally quasicontinuous.

€ (f(x) =, f(z) +n). o

Example 3. If A C R is a bounded nowhere dense closed set of positive
measure, then we find a nonmeasurable (in the sense of Lebesgue) set B C
AN\ {inf A,sup A} such that the interior measures p;(B) and u;(A\ B) are 0
and we put

Fa(z) = 1 forxeB
A@ =30 forz e (A\ B) U (—oo, inf 4] U fsup A, 00),

and if (a, b) is a component of the set (inf A,sup A) \ A, then for = € (a,b) we
put

fa(z) :Sin( ! )

min(z — a,b — x)



244 ZBIGNIEW GRANDE

Evidently, the function f4 is quasicontinuous,

and the restricted function f4 [ A is not measurable (in the Lebesgue sense).

Now let E' C R be a dense Gs-set of measure zero and let H = R\ E. Since
H is an F,-set of the first category, by Sierpinski’s theorem from [11] there
are pairwise disjoint bounded closed sets F), such that H = J,, F;,. Without
loss of generality we can suppose that p(F,) > 0 for n > 1. Let

F=3 g ()
n=1

If z € E, then for each integer n > 1 the point z belongs to R\ F,, = C(fr,).
Consequently, by the uniform convergence of the series in (%), the function f
is continuous at x. So, f € Q(x).

Now let © € H. There is a unique integer k with z € Fj. For n # k the
functions fp, are continuous at z, so the sum >, 5 [F, is also continuous
at z. Since the function fp, is quasicontinuous at x, by Theorem 1 from [4]

the sum -
1 1 1
> o P = > o+ 5p IR
n=1 n#k
is also quasicontinuous at x. So the function f is quasicontinuous.
In the same way we can prove that the partial sums

k
1
fk:Z?an for k > 1,
n=1
are also quasicontinuous at each point z. Since the sets
n
Clfa) =R\ U F
i=1

are open and dense, the functions f,, are R-integrally quasicontinuous for
n>1.

Now let K C R be a measurable set of positive measure. Then there is an
integer j > 1 with p(K N F;) > 0. Since the sum }, 5 [, is continuous
on K NF}; and the restricted function fr, [ K is not measurable, the restricted
function f | K is not measurable. Consequently, Z(f) = § and f is not
integrally quasicontinuous at any point. It follows that it is not R-integrally
quasicontinuous.
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Theorem 4. Let f; : R™ — R be R-integrally quasicontinuous functions such
that p(R™\ C(fx)) =0 for k > 1. If the sequence (fi) uniformly converges to
a function f, then f is R-integrally quasicontinuous and u(R™\ C(f)) = 0.

PROOF. Since uniform convergence preserves continuity,

oo

r] (fx) and p(R"\ C(f)) < > p(R"\ C(fr)) =

k=1

So f is almost everywhere continuous. For the proof that f is R-integrally
quasicontinuous fix a point x, a positive real n and an open set U 5 x. From
the uniform convergence of (f) it follows that there is a positive integer k
such that

funy) = F@)] < 3 forall y e R".

Since fx, is R-integrally quasicontinuous at x, there is a regular domain I C U

such that
Jifr, — [ (@ )’ !

(1) 3

The function f is almost everywhere continuous and bounded on I, so it is
integrable on [ in the sense of Riemann. Moreover,

L . ' f[ f] fk1 f[ fkl _ .
D) G Jir (@) + 1 iy (2) — f(2)]
f lf=fl ' m m_n 29
<ijﬁr*+§+§§§+§—m
so f is R-integrally quasicontinuous at x. O

Theorem 5. Let f : R™ — R be an R-integrally quasicontinuous function and
let A C R™ be a dense set. Then for each point x € R™ the inequalities

lim (mf{f( pte A, jt—z| <r}) < fx) < Tl_i)%i(sup{f(t);t €A, |t—z| <r})

r—0+
are true.

PROOF. Fix a point x € R™ and positive reals 7 and r. Since the function f
is R-integrally quasicontinuous at x, there is a nondegenerate regular domain
I C K(z,r) = {t;|t — x| < r} such that f is integrable on I in the sense of
Riemann and I

I

a1 <n
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From the Riemann integrability of f on I it follows that u(I \ C(f)) = 0 and
that f is bounded on I. There are points

u,v € INC(f) with f(u) > f(z) —n and f(v) < f(z) +n.
But the set A is dense, so there are points uy,v; € I N A such that

f(u1) > f(z) —nand f(v1) < f(x) +n.
So the inequalities from the statement of the theorem are true. O

Corollary 1. Let f: (R" x R™) — R be a function such that the horizontal
sections f¥(x) = f(x,y), € R™ and y € R™, are R-integrally quasicontinuous
and almost everywhere continuous, and the vertical sections f.(y) = f(x,y)
are Lebesque measurable. Then f is Lebesgue measurable.

PROOF. By the previous theorem our corollary follows immediately from
Theorem 2 from [8]. O

It is well known (see for example, [6]) that there are functions f: R* — R
with continuous sections f, and fY, x,y € R, such that u(I N (R*\ C(f))) >
0 for each nondegenerate regular domain I. FEvidently, such functions are
not R-integrally quasicontinuous. By Kempisty’s theorem from [7] they are
quasicontinuous. Since they are also Lebesgue measurable, by Theorem 2 they
are integrally quasicontinuous.

Theorem 6. Let f : (R™ x R™) — R be a function locally integrable in the
sense of Riemann such that for each point (x,y) € R™ x R™ there is an open
set A(xz,y) C R™ containing x for which the sections f,, u € A(z,y), are

R-integrally equiquasicontinuous at y; i.e., for each real n > 0 and for each
open set U > y contained in R™ there is a nondegenerate regular domain
I C U such that fy, u € A(x,y), are integrable in the sense of Riemann on I

and
fife
D) flu,y)

If the sections f, v € R™, are R-integrally quasicontinuous, then f is also
R-integrally quasicontinuous.

<n foru e Az, y).

PROOF. Fix a point (z,y) € R™ x R™, an open set U 3 (z,y) and a positive
real n. Since f is locally integrable in the sense of Riemann, there is a regular
domain I C U such that f is integrable on I in the sense of Riemann and
(z,y) € int(I). The section f¥ is R-integrally quasicontinuous at x, so there
is a nondegenerate regular domain

J C A(z,y) N (int(1))Y = A(z,y) N{u € R™; (u,y) € int(I)}
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such that fY is integrable on J in the sense of Riemann and

Lot
()
From the inclusion J x {y} C int([I) it follows that for each point u € J there

is an open regular domain X (u) X Y (u) C R™ x R™ such that v € X(u),
y € Y(u) and X(u) x Y(u) C U. Since the set J x {y} is compact and

T {y) € |J (X(w) x Y (u),

ueJ

N3

f(:v,y)' <

there is a finite subset {uy, ua,...,ur} C J with

k

I x {y} © | J(X (u) x Y ().

i=1

Let Y = ﬂle Y (u;). Then Y is an open regular domain containing y such
that J x {y} C J x Y. Since the sections f,, u € J, are R-integrally equiqua-
sicontinuous at y, there is a nondegenerate regular domain K C Y such that
fu, u € J, are integrable on K in the sense of Riemann and

‘fou

p(K)

Let W = J x K. Then W C I is a nondegenerate regular domain, f is
integrable on W in the sense of Riemann and

‘% —f(wvy)’ < ‘fJ(fo(u,’v)dv)du 3 fJf(u,Z;)u(K)du‘

—f(u,y)’ < g for uw € J.

M(W) 7 N(K)
fJ fu,y)u(K) du — f(x
+| “uuy T
Jy | P — fww)du 1 gy du
< 1(J) Jr‘ n(J) 7f(x’y)‘
nfydu
< 2#@) eI D

Theorem 7. There is a function f : R? — R such that the sections f, and
fY, z,y € R, are continuous and R-integrally equiquasicontinuous and which
is not locally integrable in the sense of Riemann.
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PROOF. Let A C [0, 1] be a nowhere dense perfect set of positive measure such
that 0,1 € A and let ((ag,br))r be an enumeration of all components of the
set [0,1] \ A such that (ag,bx) N (a;,b;) = 0 for k # i. For each k > 1 there is
a strictly decreasing sequence (¢ ;) with lim; oo cx; = ar and ¢ ; € (ax, by)
for i > 1. The set N of all positive integers is the union of an infinite family of
pairwise disjoint infinite subsets Ny, 5, where k, s > 1. Evidently, for all integers
k,m,i > 1 the sequence (cx,;j)jen,, , is strictly decreasing and converges to ay.
For each point ¢ ; put

inf(inf{|ck; — ek ;|35 #4 and j > 1}, |cki — bil)

r(ck,i) = 3 .

Moreover, for all pairs (¢, ¢s¢) let

Iy ;e = [k — 1(Chyi)s i +7(cri)] X [csp —1(Cot), ot +1(Cst)]-

Now we will define a function f. On the rectangles I, , .. ., where i € Ni s,
k,s > 1, we define f in such a way that f is continuous on I, , ., ,,

f(uvv) =0on Ick,'iycs,i \int(lck,iacs,i)

and f(I, ,.c.,) = [0,1]. Moreover, on the set R\ Uy —y UieNk ey iens we
put f(u,v) = 0. For each point € R the set of all pairs (ci,cs,:) (k,s > 1,
i € Ni,s) giving a nonempty intersection

{(:L‘, v);v € R} N Ick,iycs,i #0,

is empty or contains only one pair. Similarly, for each point y € R the set of
all pairs (cx,i,¢s,) giving a nonempty intersection

{(u,y); (RS R} n ICk,th,i # @7

is empty or contains only one pair.
So the sections f, and fY are continuous. Since

{@y)ifey#0tc U U Loens
k,s=1i€EN} ¢

by the definitions of I, , .., we obtain that the sections f,, x € R, and f¥,
y € R, are integrally equiquasicontinuous at all points. Moreover,

R2\ C(f) = Ax A

and consequently f is not locally R-integrable at some points of A x A. [
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Observe that the function f from the proof of the last theorem is R-integrally
quasicontinuous.

Problem 1. Suppose that the sections f,, x € R", of a function f :
(R™ x R™) — R are R-integrally equiquasicontinuous and the sections f¥,
y € R™ are R-integrally quasicontinuous. Is the function f R-integrally qua-
sicontinuous?

Finishing, we will prove a natural characterization of the classes @, s and

Qr,o-

Theorem 8. A function f : R™ — R belongs to Qs (resp. to Qro) if and
only lf:u(D(f)) =0and f € Qs (resp. [ €Q,)

PROOF. Let f € Qo C Q5. Assume, to a contradiction, that p(R"\C(f)) >
0. Since Lebesgue’s density theorem is true for the topologies Tsq and Tpq (see
[1] or [10], IV § 10, Th. (10.1)), there is a nonempty set U € Tsq contained
in R"\ C(f). Since for each point z € U and for each regular domain I with
U Nint(I) # @ the restricted function f | I is not integrable in the sense of
Riemann, we obtain a contradiction. So, u(R™\ C(f)) = 0. Immediately from
the definition it follows that, if f € Q. s (resp. f € Qr,), then f € Q, (resp.
feq,).

Now we will prove that, if u(D(f)) =0 and f € Qs (resp. f € Q,), then
f € Qs (vesp. f € Q). For this fix a function f € Q,, a point z, a set
U € T,q containing x and a real n > 0. Since f € Qg, there is an open set W
such that W N U # 0 and

fUﬁW f

MW“UYJW)<%

For each point uw € W N C(f) there is a nondegenerate closed box I(u) C W
whose vertexes have rational coordinates such that v € int(I(w)) and f is
integrable on I(u) in the sense of Riemann. Since p(D(f)) = 0, there is a
regular domain I C W being the finite union of some family (I(u;));<, where
u; € WNC(f), such that int(I) NU # 0 and

fUﬁIf

MUmef@)<n

Evidently, f [ I is integrable in the sense of Riemann and the proof in this case
is completed. For the case f € ), the proof is analogous. O
In the definitions of the classes @, ;s and @, , we use the integral of Lebesgue.

For locally bounded functions we have a characterization in which only the
integral of Riemann is used.
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The present form of Theorem 9 and its proof is an idea of the
referee.

Theorem 9. Let f : R™ — R be a locally bounded function. The function f
belongs to Qr s (resp. to Qro) if and only if it satisfies the following condition

(a) for each point x € R™, for each set U > x belonging to Tsq (resp. to
Toa), for each open set Z > x and for each real n > 0 there is a nonde-
generate regular domain I C Z such that f 1 is integrable in the sense
of Riemann, int(I) NU # 0, p(I\U) <nu(INU) and

It iy

(1) =

PRrROOF. Fix a point z, a set U 5 x belonging to T4, an open set Z > x and
a positive real 7. Since f is locally bounded, there are an open set V' > x
contained in Z and a real M > 0 with |f(t)] < M for t € V. Let U; =
VNU. If f € Qys, then there is a nondegenerate regular domain I such that

int(I) N Uy # 0 and
Jiow, f

MGIAE f(z)

<.

f is measurable by Theorem 8 and bounded on V. Hence we find an open set
W, int(I)NUy) C W C int(I) NV, that approximates int(I) NU; from outside
such that [,
W
iy 1] <

and p(W\U;y) < nu(WNUy). The last estimate gives u(W\U) < nu(WNU),
because WNU; =W N(VNU)=WnNU and similarly W\ U; = W\ U, and
in particular W N U # 0.

Since pu(D(f)) = 0 by Theorem 8, we obtain, as in the previous proof,
a nondegenerate regular domain J C W with int(J) N U # 0, u(J\U) <
nu(JNU), and

’/{{j)—f(m)‘ <n

This proves (a).

On the other hand, if f satisfies condition (a), then there is a nondegenerate
regular domain I C V such that int(I) NU # 0, p(I\U) < 7p(INU), f11
is integrable in the sense of Riemann, and

it o
i 1)<
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Then
Jiow f Jrow ! J
ey 1) < ey ~ |+ [~ )

f f n

f
= /mU( (IQU)_E)_ I\Um‘—'—2
1

: (ﬁ N(D)/me’Jr’M(lI)/I\Uf‘JFZ

- (u(m u(lf))M“(mU)JfﬁMu(l\UHg
w(d)  pINU)  u(I\U) 0

S<“(I) (1) - w(I) )M+2

PYICANY)) pI\U)

“Pn u(f) Mgz (ImU)M+*

<2m]\4_|_,:77

This yields f € Q5.
The equivalence of the inclusion f € @, , with the respective version of (a)
can be proved in the same way.

Acknowledgement. I would like to thank the referee for his valuable remarks
which allowed me to correct many mistakes in the first version of the paper.
I am especially grateful to him for the correction of condition (a) in Theorem
9.
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