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ON RIEMANN INTEGRAL
QUASICONTINUITY

Abstract

A function f : Rn → R satisfies condition (Qr,i(x)) (resp. (Qr,s(x)),
[Qr,o(x)]) at a point x if for each real r > 0 and for each set U contain-
ing x and belonging to Euclidean topology in Rn (resp. to the strong
density topology [to the ordinary density topology]) there is a regular
domain I such that int(I) ∩ U 6= ∅, f � I is integrable in the sense of
Riemann and | 1

µ(U∩I)

R
U∩I

f(t) dt − f(x)| < r. These notions are par-
ticular cases of their analogues for the Lebesgue integral. In this article
we compare these notions with the classical quasicontinuity and integral
quasicontinuities.

Let R be the set of all reals and let Rn be the n-dimensional product space.
For a point x = (x1, . . . , xn) ∈ Rn and positive reals r1, . . . , rn put

Ii = (xi − ri, xi + ri) for i = 1, 2, . . . , n,

and
P (x; r1, . . . , rn) = I1 × . . .× In.

The symbol Q(x, r) denotes the cube P (x; r1, . . . , rn), where r1 = · · · = rn = r.
Let µ denote Lebesgue measure in Rn. For a Lebesgue measurable set

A ⊂ Rn and a point x ∈ Rn we define the lower strong density (compare [3]
or [10], IV § 10) Dl(A, x) of the set A at the point x as

lim inf
h1,...,hn→0+

µ(A ∩ P (x; h1, . . . , hn))
µ(P (x; h1, . . . , hn))

.
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Similarly, for a measurable set A ⊂ Rn and a point x ∈ Rn we define the lower
ordinary density (compare [3] or [10], IV § 10) dl(A, x) of the set A at the
point x as

lim inf
h→0+

µ(A ∩Q(x, h))
µ(Q(x, h))

.

A point x is said to be a strong density point (an ordinary density point) of a
measurable set A if Dl(A, x) = 1 (if dl(A, x) = 1).

The family Tsd (Tod) of all Lebesgue measurable sets A ⊂ Rn for which
the implication

x ∈ A =⇒ x is a strong (resp. an ordinary) density point of A

is true, is a topology called the strong (resp. ordinary) density topology (com-
pare [1, 3] and for the case n = 1 compare [12]). If Te denotes the Euclidean
topology in Rn, then evidently Te ⊂ Tsd ⊂ Tod. The continuity of applica-
tions f from (Rn, Tsd) (resp. from (Rn, Tod)) to (R, Te) is called the strong
(ordinary) approximate continuity ([1, 3]).

For an arbitrary function f : Rn → R denote by C(f) the set of all conti-
nuity points of f . Moreover, let D(f) = Rn \ C(f).

In [7, 9] the following notion is investigated. A function f : Rn → R is
quasicontinuous at a point x (f ∈ Q(x)) if for each positive real r and for
each set U ∈ Te containing x there is a nonempty open set I such that I ⊂ U
and |f(t) − f(x)| < r for all points t ∈ I. A function f is quasicontinuous, if
f ∈ Q(x) for every point x ∈ Rn.

In [5] the following properties are investigated. A function f : Rn → R is
integrally quasicontinuous at a point x (f ∈ Qi(x)) if for each positive real r
and for each set U ∈ Te containing x there is a nonempty bounded open set I
such that I ⊂ U , the restricted function f �I is Lebesgue integrable and∣∣∣∣

∫
I
f(t) dt

µ(I)
− f(x)

∣∣∣∣ < r.

A function f is integrally quasicontinuous (f ∈ Qi), if f ∈ Qi(x) for every
point x ∈ Rn.

A function f : Rn → R belongs to Qs(x) (resp. f ∈ Qo(x)), if for each
positive real η and for each set U ∈ Tsd (resp. U ∈ Tod) containing x there is
an open set I such that I ∩ U 6= ∅, the function f is Lebesgue integrable on
I ∩ U and ∣∣∣∣ 1

µ(I ∩ U)

∫
I∩U

f(t) dt− f(x)
∣∣∣∣ < η.

If f ∈ Qs(x) (resp. f ∈ Qo(x)) for every point x ∈ Rn, then we will write that
f ∈ Qs (resp. f ∈ Qo).
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In this article I investigate some analogues of these properties defined by
the application of the integral of Riemann.

We will say that a nonempty set I ⊂ Rn is a regular domain if it is
a bounded Jordan measurable set. If, for a regular domain I, the interior
int(I) 6= ∅, then we will say that I is a nondegenerate regular domain.

A function f : Rn → R is R-integrally quasicontinuous at a point x (f ∈
Qr,i(x)) if, for each positive real r and for each set U ∈ Te containing x, there
is a nondegenerate regular domain I such that I ⊂ U , the restricted function
f �I is integrable in the sense of Riemann and∣∣∣∣

∫
I
f(t) dt

µ(I)
− f(x)

∣∣∣∣ < r.

A function f is R-integrally quasicontinuous (f ∈ Qr,i), if f ∈ Qr,i(x) for
every point x ∈ Rn.

A function f : Rn → R belongs to Qr,s(x) (resp. f ∈ Qr,o(x)), if, for each
positive real η and for each set U ∈ Tsd (resp. U ∈ Tod) containing x, there is
a nondegenerate regular domain I such that int(I) ∩ U 6= ∅, the function f �I
is integrable in the sense of Riemann and∣∣∣∣ 1

µ(I ∩ U)

∫
I∩U

f(t) dt− f(x)
∣∣∣∣ < η,

where the integral on I ∩ U in the last inequality is the integral of Lebesgue.
If f ∈ Qr,s(x) (resp. f ∈ Qr,o(x)) for every point x ∈ Rn, then we will write
that f ∈ Qr,s (resp. f ∈ Qr,o).

In [5] it is observed that, if a function f : Rn → R is integrally quasicon-
tinuous, then the set Z(f) of all points x ∈ Rn at which f is locally Lebesgue
integrable is open and dense in Rn. Analogously we can observe the following.

Remark 1. If a function f : Rn → R is R-integrally quasicontinuous, then it
is integrally quasicontinuous and there is a dense open set U ⊂ Rn such that
µ(U \ C(f)) = 0.

Proof. Evidently, if f is R-integrally quasicontinuous, then it is also inte-
grally quasicontinuous. If W is a nonempty open set, then there is a non-
degenerate regular domain I ⊂ W such that the restricted function f � I is
integrable in the sense of Riemann on I. Consequently, µ(int(I) \ C(f)) = 0.
So for each open set W 6= ∅ there is an open cube J ⊂ W whose vertexes have
rational coordinates such that µ(int(J) \ C(f)) = 0. Let U be the union of
all open cubes J ⊂ W whose vertexes have rational coordinates and such that
µ(int(J) \ C(f)) = 0. Then the open set U satisfies all requirements.
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Example 1. Let A ⊂ (0, 1) be a nonempty Fσ-set such that Dl(A, x) = 1 for
each point x ∈ A and the closure cl(A) is a nowhere dense set. There is ([13]
and [2], p. 28, Th. 6.5) an approximately continuous function f : R → [0, 1]
such that f(A) = (0, 1], f(x) = 0 for x ∈ R \ A and C(f) = R \ A. Then f is
integrally quasicontinuous and int(C(f)) = R \ cl(A) is open and dense, but f
is not R-integrally quasicontinuous at any point x ∈ A.

Theorem 1. If a function f : Rn → R is integrally quasicontinuous and
locally integrable in the sense of Riemann at a point x, then f is R-integrally
quasicontinuous at x.

Proof. Fix an open set U 3 x and a real η > 0. Since f is locally integrable in
the sense of Riemann, there is a regular domain I ⊂ U such that x ∈ int(I) and
f is integrable on I in the sense of Riemann. From the integral quasicontinuity
of f at x it follows that there is a bounded open set V ⊂ int(I) such that∣∣∣∣

∫
V

f

µ(V )
− f(x)

∣∣∣∣ < η.

There is a regular domain J ⊂ V such that∣∣∣∣
∫

J
f

µ(J)
− f(x)

∣∣∣∣ < η.

Since f is integrable on J in the sense of Riemann.
The next example shows that an R-integrally quasicontinuous function may

be nonmeasurable.

Example 2. Let A ⊂ (0, 1) be a nowhere dense, perfect set of positive measure
and let A = B ∪ C, where B and C are nonmeasurable and disjoint. In each
component (a, b) of the complement R\A find a nondegenerate closed interval
I(a, b) = [c(a, b), d(a, b)] and put

f(a,b)(x) =

{
1 for x ∈ I(a, b)
0 for x ∈ (a, b) \ I(a, b).

If

f(x) =


f(a,b)(x) for x ∈ (a, b), where (a, b) is an component of R \A

0 for x ∈ B

1 for x ∈ C,

then f is evidently R-integrally quasicontinuous and nonmeasurable.
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In [5] an example of a quasicontinuous bounded function f : R → R such
that Z(f) = ∅ is shown and the following theorem is proved.

Theorem 2. If f : Rn → R is a quasicontinuous function and if there is a
dense open set G ⊂ Rn such that the restricted function f � G is measurable,
then f is integrally quasicontinuous.

In this article I prove the following assertion.

Theorem 3. If f : Rn → R is a quasicontinuous function and if there is
a dense open set G ⊂ Rn such that µ(G \ C(f)) = 0, then f is R-integrally
quasicontinuous.

Proof. Fix a point x, a real η > 0 and an open set W 3 x. Since f is
quasicontinuous, the set C(f) of all continuity points of f is dense and there is
a nonempty open set V ⊂ W such that f(V ) ⊂ (f(x)− η, f(x) + η). There is
a point u ∈ V ∩G∩C(f). Let h1 > 0 be a real such that cl(Q(u, h1)) ⊂ V ∩G.
Since cl(Q(u, h1)) ⊂ V and µ(cl(Q(u, h1)) \ C(f)) = 0, the function f is
integrable on cl(Q(u, h1)) in the sense of Riemann. From the continuity of f
at u it follows that

lim
h→0+

∫
cl(Q(u,h))

f(t) dt

µ(Q(u, h))
= f(u).

Since f(u) ∈ (f(x)− η, f(x) + η), there is a real h > 0 such that h < h1 and∫
cl(Q(u,h))

f(t) dt

µ(Q(u, h))
∈ (f(x)− η, f(x) + η).

The next example (considered also in [5]) shows that there is a uniform
limit of a sequence of R-integrally quasicontinuous functions which is not R-
integrally quasicontinuous.

Example 3. If A ⊂ R is a bounded nowhere dense closed set of positive
measure, then we find a nonmeasurable (in the sense of Lebesgue) set B ⊂
A \ {inf A, sup A} such that the interior measures µi(B) and µi(A \ B) are 0
and we put

fA(x) =

{
1 for x ∈ B

0 for x ∈ (A \B) ∪ (−∞, inf A] ∪ [sup A,∞),

and if (a, b) is a component of the set (inf A, sup A) \A, then for x ∈ (a, b) we
put

fA(x) = sin
( 1

min(x− a, b− x)

)
.
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Evidently, the function fA is quasicontinuous,

fA(R) = [−1, 1], C(fA) = R \A

and the restricted function fA �A is not measurable (in the Lebesgue sense).
Now let E ⊂ R be a dense Gδ-set of measure zero and let H = R\E. Since

H is an Fσ-set of the first category, by Sierpiński’s theorem from [11] there
are pairwise disjoint bounded closed sets Fn such that H =

⋃
n Fn. Without

loss of generality we can suppose that µ(Fn) > 0 for n ≥ 1. Let

f =
∞∑

n=1

1
2n

fFn . (∗)

If x ∈ E, then for each integer n ≥ 1 the point x belongs to R \ Fn = C(fFn).
Consequently, by the uniform convergence of the series in (∗), the function f
is continuous at x. So, f ∈ Q(x).

Now let x ∈ H. There is a unique integer k with x ∈ Fk. For n 6= k the
functions fFn

are continuous at x, so the sum
∑

n 6=k
1
2n fFn

is also continuous
at x. Since the function fFk

is quasicontinuous at x, by Theorem 1 from [4]
the sum

∞∑
n=1

1
2n

fFn
=

∑
n 6=k

1
2n

fFn
+

1
2k

fFk

is also quasicontinuous at x. So the function f is quasicontinuous.
In the same way we can prove that the partial sums

fk =
k∑

n=1

1
2n

fFn
for k ≥ 1,

are also quasicontinuous at each point x. Since the sets

C(fn) = R \
n⋃

i=1

Fi

are open and dense, the functions fn are R-integrally quasicontinuous for
n ≥ 1.

Now let K ⊂ R be a measurable set of positive measure. Then there is an
integer j ≥ 1 with µ(K ∩ Fj) > 0. Since the sum

∑
n 6=j

1
2n fFn

is continuous
on K ∩Fj and the restricted function fFj

�K is not measurable, the restricted
function f � K is not measurable. Consequently, Z(f) = ∅ and f is not
integrally quasicontinuous at any point. It follows that it is not R-integrally
quasicontinuous.
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Theorem 4. Let fk : Rn → R be R-integrally quasicontinuous functions such
that µ(Rn \C(fk)) = 0 for k ≥ 1. If the sequence (fk) uniformly converges to
a function f , then f is R-integrally quasicontinuous and µ(Rn \ C(f)) = 0.

Proof. Since uniform convergence preserves continuity,

C(f) ⊃
∞⋂

k=1

C(fk) and µ(Rn \ C(f)) ≤
∞∑

k=1

µ(Rn \ C(fk)) = 0.

So f is almost everywhere continuous. For the proof that f is R-integrally
quasicontinuous fix a point x, a positive real η and an open set U 3 x. From
the uniform convergence of (fk) it follows that there is a positive integer k1

such that
|fk1(y)− f(y)| < η

3
for all y ∈ Rn.

Since fk1 is R-integrally quasicontinuous at x, there is a regular domain I ⊂ U
such that ∣∣∣∣

∫
I
fk1

µ(I)
− fk1(x)

∣∣∣∣ <
η

3
.

The function f is almost everywhere continuous and bounded on I, so it is
integrable on I in the sense of Riemann. Moreover,∣∣∣∣

∫
I
f

µ(I)
− f(x)

∣∣∣∣ ≤ ∣∣∣∣
∫

I
f

µ(I)
−

∫
I
fk1

µ(I)

∣∣∣∣ +
∣∣∣∣
∫

I
fk1

µ(I)
− fk1(x)

∣∣∣∣ + |fk1(x)− f(x)|

<

∫
I
|f − fk1 |
µ(I)

+
η

3
+

η

3
≤ η

3
+

2η

3
= η,

so f is R-integrally quasicontinuous at x.

Theorem 5. Let f : Rn → R be an R-integrally quasicontinuous function and
let A ⊂ Rn be a dense set. Then for each point x ∈ Rn the inequalities

lim
r→0+

(inf{f(t); t ∈ A, |t−x| < r}) ≤ f(x) ≤ lim
r→0+

(sup{f(t); t ∈ A, |t−x| < r})

are true.

Proof. Fix a point x ∈ Rn and positive reals η and r. Since the function f
is R-integrally quasicontinuous at x, there is a nondegenerate regular domain
I ⊂ K(x, r) = {t; |t − x| < r} such that f is integrable on I in the sense of
Riemann and ∣∣∣∣

∫
I
f

µ(I)
− f(x)

∣∣∣∣ < η.
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From the Riemann integrability of f on I it follows that µ(I \ C(f)) = 0 and
that f is bounded on I. There are points

u, v ∈ I ∩ C(f) with f(u) > f(x)− η and f(v) < f(x) + η.

But the set A is dense, so there are points u1, v1 ∈ I ∩A such that

f(u1) > f(x)− η and f(v1) < f(x) + η.

So the inequalities from the statement of the theorem are true.

Corollary 1. Let f : (Rn × Rm) → R be a function such that the horizontal
sections fy(x) = f(x, y), x ∈ Rn and y ∈ Rm, are R-integrally quasicontinuous
and almost everywhere continuous, and the vertical sections fx(y) = f(x, y)
are Lebesgue measurable. Then f is Lebesgue measurable.

Proof. By the previous theorem our corollary follows immediately from
Theorem 2 from [8].

It is well known (see for example, [6]) that there are functions f : R2 → R
with continuous sections fx and fy, x, y ∈ R, such that µ(I ∩ (R2 \ C(f))) >
0 for each nondegenerate regular domain I. Evidently, such functions are
not R-integrally quasicontinuous. By Kempisty’s theorem from [7] they are
quasicontinuous. Since they are also Lebesgue measurable, by Theorem 2 they
are integrally quasicontinuous.

Theorem 6. Let f : (Rn × Rm) → R be a function locally integrable in the
sense of Riemann such that for each point (x, y) ∈ Rn × Rm there is an open
set A(x, y) ⊂ Rn containing x for which the sections fu, u ∈ A(x, y), are
R-integrally equiquasicontinuous at y; i.e., for each real η > 0 and for each
open set U 3 y contained in Rm there is a nondegenerate regular domain
I ⊂ U such that fu, u ∈ A(x, y), are integrable in the sense of Riemann on I
and ∣∣∣∣

∫
I
fu

µ(I)
− f(u, y)

∣∣∣∣ < η for u ∈ A(x, y).

If the sections fv, v ∈ Rm, are R-integrally quasicontinuous, then f is also
R-integrally quasicontinuous.

Proof. Fix a point (x, y) ∈ Rn × Rm, an open set U 3 (x, y) and a positive
real η. Since f is locally integrable in the sense of Riemann, there is a regular
domain I ⊂ U such that f is integrable on I in the sense of Riemann and
(x, y) ∈ int(I). The section fy is R-integrally quasicontinuous at x, so there
is a nondegenerate regular domain

J ⊂ A(x, y) ∩ (int(I))y = A(x, y) ∩ {u ∈ Rn; (u, y) ∈ int(I)}
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such that fy is integrable on J in the sense of Riemann and∣∣∣∣
∫

J
fy

µ(J)
− f(x, y)

∣∣∣∣ <
η

2
.

From the inclusion J × {y} ⊂ int(I) it follows that for each point u ∈ J there
is an open regular domain X(u) × Y (u) ⊂ Rn × Rm such that u ∈ X(u),
y ∈ Y (u) and X(u)× Y (u) ⊂ U . Since the set J × {y} is compact and

J × {y} ⊂
⋃
u∈J

(X(u)× Y (u)),

there is a finite subset {u1, u2, . . . , uk} ⊂ J with

J × {y} ⊂
k⋃

i=1

(X(ui)× Y (ui)).

Let Y =
⋂k

i=1 Y (ui). Then Y is an open regular domain containing y such
that J × {y} ⊂ J × Y . Since the sections fu, u ∈ J , are R-integrally equiqua-
sicontinuous at y, there is a nondegenerate regular domain K ⊂ Y such that
fu, u ∈ J , are integrable on K in the sense of Riemann and∣∣∣∣

∫
K

fu

µ(K)
− f(u, y)

∣∣∣∣ <
η

2
for u ∈ J.

Let W = J × K. Then W ⊂ I is a nondegenerate regular domain, f is
integrable on W in the sense of Riemann and∣∣∣ ∫

W
f

µ(W )
− f(x, y)

∣∣∣ ≤ ∣∣∣∫J
(
∫

K
f(u, v) dv) du

µ(W )
−

∫
J

f(u, y)µ(K) du

µ(J)µ(K)

∣∣∣
+

∣∣∣∫J
f(u, y)µ(K) du

µ(J)µ(K)
− f(x, y)|

≤

∫
J

∣∣∣ R
K

f(u,v) dv

µ(K) − f(u, y)
∣∣∣ du

µ(J)
+

∣∣∣∫J
f(u, y) du

µ(J)
− f(x, y)

∣∣∣
<

η
∫

J
du

2µ(J)
+

η

2
= η

Theorem 7. There is a function f : R2 → R such that the sections fx and
fy, x, y ∈ R, are continuous and R-integrally equiquasicontinuous and which
is not locally integrable in the sense of Riemann.
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Proof. Let A ⊂ [0, 1] be a nowhere dense perfect set of positive measure such
that 0, 1 ∈ A and let ((ak, bk))k be an enumeration of all components of the
set [0, 1] \A such that (ak, bk) ∩ (ai, bi) = ∅ for k 6= i. For each k ≥ 1 there is
a strictly decreasing sequence (ck,i) with limi→∞ ck,i = ak and ck,i ∈ (ak, bk)
for i ≥ 1. The set N of all positive integers is the union of an infinite family of
pairwise disjoint infinite subsets Nk,s, where k, s ≥ 1. Evidently, for all integers
k, m, i ≥ 1 the sequence (ck,j)j∈Nm,i is strictly decreasing and converges to ak.
For each point ck,i put

r(ck,i) =
inf(inf{|ck,i − ck,j |; j 6= i and j ≥ 1}, |ck,i − bk|)

3
.

Moreover, for all pairs (ck,i, cs,t) let

Ick,i,cs,t = [ck,i − r(ck,i), ck,i + r(ck,i)]× [cs,t − r(cs,t), cs,t + r(cs,t)].

Now we will define a function f . On the rectangles Ick,i,cs,i , where i ∈ Nk,s,
k, s ≥ 1, we define f in such a way that f is continuous on Ick,i,cs,i ,

f(u, v) = 0 on Ick,i,cs,i \ int(Ick,i,cs,i)

and f(Ick,i,cs,i) = [0, 1]. Moreover, on the set R2 \
⋃∞

k,s=1

⋃
i∈Nk,s

Ick,i,cs,i we
put f(u, v) = 0. For each point x ∈ R the set of all pairs (ck,i, cs,i) (k, s ≥ 1,
i ∈ Nk,s) giving a nonempty intersection

{(x, v); v ∈ R} ∩ Ick,i,cs,i 6= ∅,

is empty or contains only one pair. Similarly, for each point y ∈ R the set of
all pairs (ck,i, cs,i) giving a nonempty intersection

{(u, y); u ∈ R} ∩ Ick,i,cs,i 6= ∅,

is empty or contains only one pair.
So the sections fx and fy are continuous. Since

{(x, y); f(x, y) 6= 0} ⊂
∞⋃

k,s=1

⋃
i∈Nk,s

Ick,i,cs,i
,

by the definitions of Ick,i,cs,t
we obtain that the sections fx, x ∈ R, and fy,

y ∈ R, are integrally equiquasicontinuous at all points. Moreover,

R2 \ C(f) = A×A

and consequently f is not locally R-integrable at some points of A×A.
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Observe that the function f from the proof of the last theorem is R-integrally
quasicontinuous.

Problem 1. Suppose that the sections fx, x ∈ Rn, of a function f :
(Rn × Rm) → R are R-integrally equiquasicontinuous and the sections fy,
y ∈ Rm, are R-integrally quasicontinuous. Is the function f R-integrally qua-
sicontinuous?

Finishing, we will prove a natural characterization of the classes Qr,s and
Qr,o.

Theorem 8. A function f : Rn → R belongs to Qr,s (resp. to Qr,o) if and
only if µ(D(f)) = 0 and f ∈ Qs (resp. f ∈ Qo).

Proof. Let f ∈ Qr,o ⊂ Qr,s. Assume, to a contradiction, that µ(Rn\C(f)) >
0. Since Lebesgue’s density theorem is true for the topologies Tsd and Tod (see
[1] or [10], IV § 10, Th. (10.1)), there is a nonempty set U ∈ Tsd contained
in Rn \ C(f). Since for each point x ∈ U and for each regular domain I with
U ∩ int(I) 6= ∅ the restricted function f � I is not integrable in the sense of
Riemann, we obtain a contradiction. So, µ(Rn \C(f)) = 0. Immediately from
the definition it follows that, if f ∈ Qr,s (resp. f ∈ Qr,o), then f ∈ Qs (resp.
f ∈ Qo).

Now we will prove that, if µ(D(f)) = 0 and f ∈ Qs (resp. f ∈ Qo), then
f ∈ Qr,s (resp. f ∈ Qr,o). For this fix a function f ∈ Qs, a point x, a set
U ∈ Tsd containing x and a real η > 0. Since f ∈ Qs, there is an open set W
such that W ∩ U 6= ∅ and ∣∣∣∣

∫
U∩W

f

µ(W ∩ U)
− f(x)

∣∣∣∣ < η.

For each point u ∈ W ∩ C(f) there is a nondegenerate closed box I(u) ⊂ W
whose vertexes have rational coordinates such that u ∈ int(I(u)) and f is
integrable on I(u) in the sense of Riemann. Since µ(D(f)) = 0, there is a
regular domain I ⊂ W being the finite union of some family (I(ui))i≤k, where
ui ∈ W ∩ C(f), such that int(I) ∩ U 6= ∅ and∣∣∣∣

∫
U∩I

f

µ(U ∩ I)
− f(x)

∣∣∣∣ < η.

Evidently, f �I is integrable in the sense of Riemann and the proof in this case
is completed. For the case f ∈ Qo the proof is analogous.

In the definitions of the classes Qr,s and Qr,o we use the integral of Lebesgue.
For locally bounded functions we have a characterization in which only the
integral of Riemann is used.
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The present form of Theorem 9 and its proof is an idea of the
referee.

Theorem 9. Let f : Rn → R be a locally bounded function. The function f
belongs to Qr,s (resp. to Qr,o) if and only if it satisfies the following condition

(a) for each point x ∈ Rn, for each set U 3 x belonging to Tsd (resp. to
Tod), for each open set Z 3 x and for each real η > 0 there is a nonde-
generate regular domain I ⊂ Z such that f � I is integrable in the sense
of Riemann, int(I) ∩ U 6= ∅, µ(I \ U) < ηµ(I ∩ U) and∣∣∣∣

∫
I
f

µ(I)
− f(x)

∣∣∣∣ < η.

Proof. Fix a point x, a set U 3 x belonging to Tsd, an open set Z 3 x and
a positive real η. Since f is locally bounded, there are an open set V 3 x
contained in Z and a real M > 0 with |f(t)| < M for t ∈ V . Let U1 =
V ∩ U . If f ∈ Qr,s, then there is a nondegenerate regular domain I such that
int(I) ∩ U1 6= ∅ and ∣∣∣∣∣

∫
I∩U1

f

µ(I ∩ U1)
− f(x)

∣∣∣∣∣ < η.

f is measurable by Theorem 8 and bounded on V . Hence we find an open set
W , int(I)∩U1) ⊂ W ⊂ int(I)∩V , that approximates int(I)∩U1 from outside
such that ∣∣∣∣

∫
W

f

µ(W )
− f(x)

∣∣∣∣ < η

and µ(W \U1) < ηµ(W ∩U1). The last estimate gives µ(W \U) < ηµ(W ∩U),
because W ∩U1 = W ∩ (V ∩U) = W ∩U and similarly W \U1 = W \U , and
in particular W ∩ U 6= ∅.

Since µ(D(f)) = 0 by Theorem 8, we obtain, as in the previous proof,
a nondegenerate regular domain J ⊂ W with int(J) ∩ U 6= ∅, µ(J \ U) <
ηµ(J ∩ U), and ∣∣∣∣

∫
J

f

µ(J)
− f(x)

∣∣∣∣ < η.

This proves (a).
On the other hand, if f satisfies condition (a), then there is a nondegenerate

regular domain I ⊂ V such that int(I)∩U 6= ∅, µ(I \U) < η
4M µ(I ∩U), f �I

is integrable in the sense of Riemann, and∣∣∣∣
∫

I
f

µ(I)
− f(x)

∣∣∣∣ <
η

2
.
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Then∣∣∣ ∫
I∩U

f

µ(I ∩ U)
− f(x)

∣∣∣ ≤ ∣∣∣ ∫
I∩U

f

µ(I ∩ U)
−

∫
I
f

µ(I)

∣∣∣ +
∣∣∣∣
∫

I
f

µ(I)
− f(x)

∣∣∣∣
<

∣∣∣ ∫
I∩U

( f

µ(I ∩ U)
− f

µ(I)

)
−

∫
I\U

f

µ(I)

∣∣∣ +
η

2

≤
∣∣∣( 1

µ(I ∩ U)
− 1

µ(I)

) ∫
I∩U

f
∣∣∣ +

∣∣∣ 1
µ(I)

∫
I\U

f
∣∣∣ +

η

2

≤
( 1

µ(I ∩ U)
− 1

µ(I)

)
Mµ(I ∩ U) +

1
µ(I)

Mµ(I \ U) +
η

2

≤
(µ(I)

µ(I)
− µ(I ∩ U)

µ(I)
+

µ(I \ U)
µ(I)

)
M +

η

2

= 2
µ(I \ U)

µ(I)
M +

η

2
≤ 2

µ(I \ U)
µ(I ∩ U)

M +
η

2

< 2
η

4M
M +

η

2
= η.

This yields f ∈ Qr,s.
The equivalence of the inclusion f ∈ Qr,o with the respective version of (a)

can be proved in the same way.
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[11] W. Sierpiński, Sur une Propriété des Ensembles Fσ-Linéaires, Fund.
Math., 14 (1929), 216–220.

[12] F. D. Tall, The Density Topology, Pacific J. Math., 62 (1976), 275–284
(MR 0419709).

[13] Z. Zahorski, Sur la Première Dérivée, Trans. Amer. Math. Soc., 69
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