Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: grande@ab.edu.pl

ON RIEMANN INTEGRAL QUASICONTINUITY

Abstract

A function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies condition $(Q_{r,i}(x))$ (resp. $(Q_{r,s}(x))$, $[Q_{r,o}(x)]$) at a point x if for each real r>0 and for each set U containing x and belonging to Euclidean topology in \mathbb{R}^n (resp. to the strong density topology [to the ordinary density topology]) there is a regular domain I such that $\operatorname{int}(I) \cap U \neq \emptyset$, $f \upharpoonright I$ is integrable in the sense of Riemann and $|\frac{1}{\mu(U \cap I)} \int_{U \cap I} f(t) \, dt - f(x)| < r$. These notions are particular cases of their analogues for the Lebesgue integral. In this article we compare these notions with the classical quasicontinuity and integral quasicontinuities.

Let \mathbb{R} be the set of all reals and let \mathbb{R}^n be the *n*-dimensional product space. For a point $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and positive reals r_1, \dots, r_n put

$$I_i = (x_i - r_i, x_i + r_i)$$
 for $i = 1, 2, \dots, n$,

and

$$P(x; r_1, \ldots, r_n) = I_1 \times \ldots \times I_n$$
.

The symbol Q(x,r) denotes the cube $P(x;r_1,\ldots,r_n)$, where $r_1=\cdots=r_n=r$. Let μ denote Lebesgue measure in \mathbb{R}^n . For a Lebesgue measurable set $A\subset\mathbb{R}^n$ and a point $x\in\mathbb{R}^n$ we define the lower strong density (compare [3] or [10], IV § 10) $D_l(A,x)$ of the set A at the point x as

$$\liminf_{h_1,\ldots,h_n\to 0^+} \frac{\mu(A\cap P(x;h_1,\ldots,h_n))}{\mu(P(x;h_1,\ldots,h_n))}.$$

Key Words: Riemann integral quasicontinuity, density topology, uniform limit, functions of two variables

Mathematical Reviews subject classification: 26A05, 26A15

Received by the editors April 11, 2005 Communicated by: B. S. Thomson 240 ZBIGNIEW GRANDE

Similarly, for a measurable set $A \subset \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$ we define the lower ordinary density (compare [3] or [10], IV § 10) $d_l(A, x)$ of the set A at the point x as

$$\liminf_{h\to 0^+} \frac{\mu(A\cap Q(x,h))}{\mu(Q(x,h))}.$$

A point x is said to be a strong density point (an ordinary density point) of a measurable set A if $D_l(A, x) = 1$ (if $d_l(A, x) = 1$).

The family T_{sd} (T_{od}) of all Lebesgue measurable sets $A \subset \mathbb{R}^n$ for which the implication

 $x \in A \Longrightarrow x$ is a strong (resp. an ordinary) density point of A

is true, is a topology called the strong (resp. ordinary) density topology (compare [1, 3] and for the case n=1 compare [12]). If T_e denotes the Euclidean topology in \mathbb{R}^n , then evidently $T_e \subset T_{sd} \subset T_{od}$. The continuity of applications f from (\mathbb{R}^n, T_{sd}) (resp. from (\mathbb{R}^n, T_{od})) to (\mathbb{R}, T_e) is called the strong (ordinary) approximate continuity ([1, 3]).

For an arbitrary function $f: \mathbb{R}^n \to \mathbb{R}$ denote by C(f) the set of all continuity points of f. Moreover, let $D(f) = \mathbb{R}^n \setminus C(f)$.

In [7, 9] the following notion is investigated. A function $f: \mathbb{R}^n \to \mathbb{R}$ is quasicontinuous at a point x ($f \in Q(x)$) if for each positive real r and for each set $U \in T_e$ containing x there is a nonempty open set I such that $I \subset U$ and |f(t) - f(x)| < r for all points $t \in I$. A function f is quasicontinuous, if $f \in Q(x)$ for every point $x \in \mathbb{R}^n$.

In [5] the following properties are investigated. A function $f: \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous at a point x ($f \in Q_i(x)$) if for each positive real r and for each set $U \in T_e$ containing x there is a nonempty bounded open set I such that $I \subset U$, the restricted function $f \upharpoonright I$ is Lebesgue integrable and

$$\left| \frac{\int_{I} f(t) dt}{\mu(I)} - f(x) \right| < r.$$

A function f is integrally quasicontinuous $(f \in Q_i)$, if $f \in Q_i(x)$ for every point $x \in \mathbb{R}^n$.

A function $f: \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_s(x)$ (resp. $f \in Q_o(x)$), if for each positive real η and for each set $U \in T_{sd}$ (resp. $U \in T_{od}$) containing x there is an open set I such that $I \cap U \neq \emptyset$, the function f is Lebesgue integrable on $I \cap U$ and

$$\left| \frac{1}{\mu(I \cap U)} \int_{I \cap U} f(t) dt - f(x) \right| < \eta.$$

If $f \in Q_s(x)$ (resp. $f \in Q_o(x)$) for every point $x \in \mathbb{R}^n$, then we will write that $f \in Q_s$ (resp. $f \in Q_o$).

In this article I investigate some analogues of these properties defined by the application of the integral of Riemann.

We will say that a nonempty set $I \subset \mathbb{R}^n$ is a regular domain if it is a bounded Jordan measurable set. If, for a regular domain I, the interior $\operatorname{int}(I) \neq \emptyset$, then we will say that I is a nondegenerate regular domain.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is R-integrally quasicontinuous at a point x ($f \in Q_{r,i}(x)$) if, for each positive real r and for each set $U \in T_e$ containing x, there is a nondegenerate regular domain I such that $I \subset U$, the restricted function $f \upharpoonright I$ is integrable in the sense of Riemann and

$$\left| \frac{\int_{I} f(t) \, dt}{\mu(I)} - f(x) \right| < r.$$

A function f is R-integrally quasicontinuous $(f \in Q_{r,i})$, if $f \in Q_{r,i}(x)$ for every point $x \in \mathbb{R}^n$.

A function $f: \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_{r,s}(x)$ (resp. $f \in Q_{r,o}(x)$), if, for each positive real η and for each set $U \in T_{sd}$ (resp. $U \in T_{od}$) containing x, there is a nondegenerate regular domain I such that $\operatorname{int}(I) \cap U \neq \emptyset$, the function $f \upharpoonright I$ is integrable in the sense of Riemann and

$$\left| \frac{1}{\mu(I \cap U)} \int_{I \cap U} f(t) dt - f(x) \right| < \eta,$$

where the integral on $I \cap U$ in the last inequality is the integral of Lebesgue. If $f \in Q_{r,s}(x)$ (resp. $f \in Q_{r,o}(x)$) for every point $x \in \mathbb{R}^n$, then we will write that $f \in Q_{r,s}$ (resp. $f \in Q_{r,o}$).

In [5] it is observed that, if a function $f: \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous, then the set Z(f) of all points $x \in \mathbb{R}^n$ at which f is locally Lebesgue integrable is open and dense in \mathbb{R}^n . Analogously we can observe the following.

Remark 1. If a function $f : \mathbb{R}^n \to \mathbb{R}$ is R-integrally quasicontinuous, then it is integrally quasicontinuous and there is a dense open set $U \subset \mathbb{R}^n$ such that $\mu(U \setminus C(f)) = 0$.

PROOF. Evidently, if f is R-integrally quasicontinuous, then it is also integrally quasicontinuous. If W is a nonempty open set, then there is a non-degenerate regular domain $I \subset W$ such that the restricted function $f \upharpoonright I$ is integrable in the sense of Riemann on I. Consequently, $\mu(\operatorname{int}(I) \setminus C(f)) = 0$. So for each open set $W \neq \emptyset$ there is an open cube $J \subset W$ whose vertexes have rational coordinates such that $\mu(\operatorname{int}(J) \setminus C(f)) = 0$. Let U be the union of all open cubes $J \subset W$ whose vertexes have rational coordinates and such that $\mu(\operatorname{int}(J) \setminus C(f)) = 0$. Then the open set U satisfies all requirements. \square

242 ZBIGNIEW GRANDE

Example 1. Let $A \subset (0,1)$ be a nonempty F_{σ} -set such that $D_l(A,x) = 1$ for each point $x \in A$ and the closure $\operatorname{cl}(A)$ is a nowhere dense set. There is ([13] and [2], p. 28, Th. 6.5) an approximately continuous function $f : \mathbb{R} \to [0,1]$ such that f(A) = (0,1], f(x) = 0 for $x \in \mathbb{R} \setminus A$ and $C(f) = \mathbb{R} \setminus A$. Then f is integrally quasicontinuous and $\operatorname{int}(C(f)) = \mathbb{R} \setminus \operatorname{cl}(A)$ is open and dense, but f is not R-integrally quasicontinuous at any point $x \in A$.

Theorem 1. If a function $f: \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous and locally integrable in the sense of Riemann at a point x, then f is R-integrally quasicontinuous at x.

PROOF. Fix an open set $U \ni x$ and a real $\eta > 0$. Since f is locally integrable in the sense of Riemann, there is a regular domain $I \subset U$ such that $x \in \operatorname{int}(I)$ and f is integrable on I in the sense of Riemann. From the integral quasicontinuity of f at x it follows that there is a bounded open set $V \subset \operatorname{int}(I)$ such that

$$\left| \frac{\int_V f}{\mu(V)} - f(x) \right| < \eta.$$

There is a regular domain $J \subset V$ such that

$$\left| \frac{\int_J f}{\mu(J)} - f(x) \right| < \eta.$$

Since f is integrable on J in the sense of Riemann.

The next example shows that an R-integrally quasicontinuous function may be nonmeasurable.

Example 2. Let $A \subset (0,1)$ be a nowhere dense, perfect set of positive measure and let $A = B \cup C$, where B and C are nonmeasurable and disjoint. In each component (a,b) of the complement $\mathbb{R} \setminus A$ find a nondegenerate closed interval I(a,b) = [c(a,b),d(a,b)] and put

$$f_{(a,b)}(x) = \begin{cases} 1 & \text{for } x \in I(a,b) \\ 0 & \text{for } x \in (a,b) \setminus I(a,b). \end{cases}$$

If

$$f(x) = \begin{cases} f_{(a,b)}(x) & \text{for } x \in (a,b), \text{ where } (a,b) \text{ is an component of } \mathbb{R} \setminus A \\ 0 & \text{for } x \in B \\ 1 & \text{for } x \in C, \end{cases}$$

then f is evidently R-integrally quasicontinuous and nonmeasurable.

In [5] an example of a quasicontinuous bounded function $f : \mathbb{R} \to \mathbb{R}$ such that $Z(f) = \emptyset$ is shown and the following theorem is proved.

Theorem 2. If $f: \mathbb{R}^n \to \mathbb{R}$ is a quasicontinuous function and if there is a dense open set $G \subset \mathbb{R}^n$ such that the restricted function $f \upharpoonright G$ is measurable, then f is integrally quasicontinuous.

In this article I prove the following assertion.

Theorem 3. If $f: \mathbb{R}^n \to \mathbb{R}$ is a quasicontinuous function and if there is a dense open set $G \subset \mathbb{R}^n$ such that $\mu(G \setminus C(f)) = 0$, then f is R-integrally quasicontinuous.

PROOF. Fix a point x, a real $\eta > 0$ and an open set $W \ni x$. Since f is quasicontinuous, the set C(f) of all continuity points of f is dense and there is a nonempty open set $V \subset W$ such that $f(V) \subset (f(x) - \eta, f(x) + \eta)$. There is a point $u \in V \cap G \cap C(f)$. Let $h_1 > 0$ be a real such that $\operatorname{cl}(Q(u, h_1)) \subset V \cap G$. Since $\operatorname{cl}(Q(u, h_1)) \subset V$ and $\mu(\operatorname{cl}(Q(u, h_1)) \setminus C(f)) = 0$, the function f is integrable on $\operatorname{cl}(Q(u, h_1))$ in the sense of Riemann. From the continuity of f at u it follows that

$$\lim_{h \to 0^+} \frac{\int_{\text{cl}(Q(u,h))} f(t) \, dt}{\mu(Q(u,h))} = f(u).$$

Since $f(u) \in (f(x) - \eta, f(x) + \eta)$, there is a real h > 0 such that $h < h_1$ and

$$\frac{\int_{\operatorname{cl}(Q(u,h))} f(t) dt}{\mu(Q(u,h))} \in (f(x) - \eta, f(x) + \eta). \quad \Box$$

The next example (considered also in [5]) shows that there is a uniform limit of a sequence of R-integrally quasicontinuous functions which is not R-integrally quasicontinuous.

Example 3. If $A \subset \mathbb{R}$ is a bounded nowhere dense closed set of positive measure, then we find a nonmeasurable (in the sense of Lebesgue) set $B \subset A \setminus \{\inf A, \sup A\}$ such that the interior measures $\mu_i(B)$ and $\mu_i(A \setminus B)$ are 0 and we put

$$f_A(x) = \begin{cases} 1 & \text{for } x \in B \\ 0 & \text{for } x \in (A \setminus B) \cup (-\infty, \inf A] \cup [\sup A, \infty), \end{cases}$$

and if (a, b) is a component of the set $(\inf A, \sup A) \setminus A$, then for $x \in (a, b)$ we put

$$f_A(x) = \sin\left(\frac{1}{\min(x-a,b-x)}\right).$$

Evidently, the function f_A is quasicontinuous,

$$f_A(\mathbb{R}) = [-1, 1], \quad C(f_A) = \mathbb{R} \setminus A$$

and the restricted function $f_A \upharpoonright A$ is not measurable (in the Lebesgue sense).

Now let $E \subset \mathbb{R}$ be a dense G_{δ} -set of measure zero and let $H = \mathbb{R} \setminus E$. Since H is an F_{σ} -set of the first category, by Sierpiński's theorem from [11] there are pairwise disjoint bounded closed sets F_n such that $H = \bigcup_n F_n$. Without loss of generality we can suppose that $\mu(F_n) > 0$ for $n \ge 1$. Let

$$f = \sum_{n=1}^{\infty} \frac{1}{2^n} f_{F_n}.$$
 (*)

If $x \in E$, then for each integer $n \ge 1$ the point x belongs to $\mathbb{R} \setminus F_n = C(f_{F_n})$. Consequently, by the uniform convergence of the series in (*), the function f is continuous at x. So, $f \in Q(x)$.

Now let $x \in H$. There is a unique integer k with $x \in F_k$. For $n \neq k$ the functions f_{F_n} are continuous at x, so the sum $\sum_{n \neq k} \frac{1}{2^n} f_{F_n}$ is also continuous at x. Since the function f_{F_k} is quasicontinuous at x, by Theorem 1 from [4] the sum

$$\sum_{n=1}^{\infty} \frac{1}{2^n} f_{F_n} = \sum_{n \neq k} \frac{1}{2^n} f_{F_n} + \frac{1}{2^k} f_{F_k}$$

is also quasicontinuous at x. So the function f is quasicontinuous.

In the same way we can prove that the partial sums

$$f_k = \sum_{n=1}^k \frac{1}{2^n} f_{F_n} \text{ for } k \ge 1,$$

are also quasicontinuous at each point x. Since the sets

$$C(f_n) = \mathbb{R} \setminus \bigcup_{i=1}^n F_i$$

are open and dense, the functions f_n are R-integrally quasicontinuous for $n \ge 1$.

Now let $K \subset \mathbb{R}$ be a measurable set of positive measure. Then there is an integer $j \geq 1$ with $\mu(K \cap F_j) > 0$. Since the sum $\sum_{n \neq j} \frac{1}{2^n} f_{F_n}$ is continuous on $K \cap F_j$ and the restricted function $f_{F_j} \upharpoonright K$ is not measurable, the restricted function $f \upharpoonright K$ is not measurable. Consequently, $Z(f) = \emptyset$ and f is not integrally quasicontinuous at any point. It follows that it is not R-integrally quasicontinuous.

Theorem 4. Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be R-integrally quasicontinuous functions such that $\mu(\mathbb{R}^n \setminus C(f_k)) = 0$ for $k \ge 1$. If the sequence (f_k) uniformly converges to a function f, then f is R-integrally quasicontinuous and $\mu(\mathbb{R}^n \setminus C(f)) = 0$.

PROOF. Since uniform convergence preserves continuity,

$$C(f) \supset \bigcap_{k=1}^{\infty} C(f_k)$$
 and $\mu(\mathbb{R}^n \setminus C(f)) \leq \sum_{k=1}^{\infty} \mu(\mathbb{R}^n \setminus C(f_k)) = 0.$

So f is almost everywhere continuous. For the proof that f is R-integrally quasicontinuous fix a point x, a positive real η and an open set $U \ni x$. From the uniform convergence of (f_k) it follows that there is a positive integer k_1 such that

$$|f_{k_1}(y) - f(y)| < \frac{\eta}{3} \text{ for all } y \in \mathbb{R}^n.$$

Since f_{k_1} is R-integrally quasicontinuous at x, there is a regular domain $I \subset U$ such that

$$\left|\frac{\int_I f_{k_1}}{\mu(I)} - f_{k_1}(x)\right| < \frac{\eta}{3}.$$

The function f is almost everywhere continuous and bounded on I, so it is integrable on I in the sense of Riemann. Moreover,

$$\left| \frac{\int_{I} f}{\mu(I)} - f(x) \right| \leq \left| \frac{\int_{I} f}{\mu(I)} - \frac{\int_{I} f_{k_{1}}}{\mu(I)} \right| + \left| \frac{\int_{I} f_{k_{1}}}{\mu(I)} - f_{k_{1}}(x) \right| + \left| f_{k_{1}}(x) - f(x) \right|$$
$$< \frac{\int_{I} |f - f_{k_{1}}|}{\mu(I)} + \frac{\eta}{3} + \frac{\eta}{3} \leq \frac{\eta}{3} + \frac{2\eta}{3} = \eta,$$

so f is R-integrally quasicontinuous at x.

Theorem 5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an R-integrally quasicontinuous function and let $A \subset \mathbb{R}^n$ be a dense set. Then for each point $x \in \mathbb{R}^n$ the inequalities

$$\lim_{r \to 0^+} (\inf\{f(t); t \in A, \ |t - x| < r\}) \le f(x) \le \lim_{r \to 0^+} (\sup\{f(t); t \in A, \ |t - x| < r\})$$

are true.

PROOF. Fix a point $x \in \mathbb{R}^n$ and positive reals η and r. Since the function f is R-integrally quasicontinuous at x, there is a nondegenerate regular domain $I \subset K(x,r) = \{t; |t-x| < r\}$ such that f is integrable on I in the sense of Riemann and

$$\left| \frac{\int_I f}{\mu(I)} - f(x) \right| < \eta.$$

From the Riemann integrability of f on I it follows that $\mu(I \setminus C(f)) = 0$ and that f is bounded on I. There are points

$$u, v \in I \cap C(f)$$
 with $f(u) > f(x) - \eta$ and $f(v) < f(x) + \eta$.

But the set A is dense, so there are points $u_1, v_1 \in I \cap A$ such that

$$f(u_1) > f(x) - \eta$$
 and $f(v_1) < f(x) + \eta$.

So the inequalities from the statement of the theorem are true.

Corollary 1. Let $f: (\mathbb{R}^n \times \mathbb{R}^m) \to \mathbb{R}$ be a function such that the horizontal sections $f^y(x) = f(x,y)$, $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, are R-integrally quasicontinuous and almost everywhere continuous, and the vertical sections $f_x(y) = f(x,y)$ are Lebesque measurable. Then f is Lebesque measurable.

PROOF. By the previous theorem our corollary follows immediately from Theorem 2 from [8].

It is well known (see for example, [6]) that there are functions $f: \mathbb{R}^2 \to \mathbb{R}$ with continuous sections f_x and f^y , $x,y \in \mathbb{R}$, such that $\mu(I \cap (\mathbb{R}^2 \setminus C(f))) > 0$ for each nondegenerate regular domain I. Evidently, such functions are not R-integrally quasicontinuous. By Kempisty's theorem from [7] they are quasicontinuous. Since they are also Lebesgue measurable, by Theorem 2 they are integrally quasicontinuous.

Theorem 6. Let $f: (\mathbb{R}^n \times \mathbb{R}^m) \to \mathbb{R}$ be a function locally integrable in the sense of Riemann such that for each point $(x,y) \in \mathbb{R}^n \times \mathbb{R}^m$ there is an open set $A(x,y) \subset \mathbb{R}^n$ containing x for which the sections f_u , $u \in A(x,y)$, are R-integrally equiquasicontinuous at y; i.e., for each real $\eta > 0$ and for each open set $U \ni y$ contained in \mathbb{R}^m there is a nondegenerate regular domain $I \subset U$ such that f_u , $u \in A(x,y)$, are integrable in the sense of Riemann on I and

$$\left| \frac{\int_{I} f_{u}}{\mu(I)} - f(u, y) \right| < \eta \text{ for } u \in A(x, y).$$

If the sections f^v , $v \in \mathbb{R}^m$, are R-integrally quasicontinuous, then f is also R-integrally quasicontinuous.

PROOF. Fix a point $(x,y) \in \mathbb{R}^n \times \mathbb{R}^m$, an open set $U \ni (x,y)$ and a positive real η . Since f is locally integrable in the sense of Riemann, there is a regular domain $I \subset U$ such that f is integrable on I in the sense of Riemann and $(x,y) \in \operatorname{int}(I)$. The section f^y is R-integrally quasicontinuous at x, so there is a nondegenerate regular domain

$$J \subset A(x,y) \cap (\operatorname{int}(I))^y = A(x,y) \cap \{u \in \mathbb{R}^n; (u,y) \in \operatorname{int}(I)\}$$

such that f^{y} is integrable on J in the sense of Riemann and

$$\left| \frac{\int_J f^y}{\mu(J)} - f(x, y) \right| < \frac{\eta}{2}.$$

From the inclusion $J \times \{y\} \subset \operatorname{int}(I)$ it follows that for each point $u \in J$ there is an open regular domain $X(u) \times Y(u) \subset \mathbb{R}^n \times \mathbb{R}^m$ such that $u \in X(u)$, $y \in Y(u)$ and $X(u) \times Y(u) \subset U$. Since the set $J \times \{y\}$ is compact and

$$J \times \{y\} \subset \bigcup_{u \in I} (X(u) \times Y(u)),$$

there is a finite subset $\{u_1, u_2, \dots, u_k\} \subset J$ with

$$J \times \{y\} \subset \bigcup_{i=1}^{k} (X(u_i) \times Y(u_i)).$$

Let $Y = \bigcap_{i=1}^k Y(u_i)$. Then Y is an open regular domain containing y such that $J \times \{y\} \subset J \times Y$. Since the sections $f_u, u \in J$, are R-integrally equiquasicontinuous at y, there is a nondegenerate regular domain $K \subset Y$ such that $f_u, u \in J$, are integrable on K in the sense of Riemann and

$$\left| \frac{\int_K f_u}{\mu(K)} - f(u, y) \right| < \frac{\eta}{2} \text{ for } u \in J.$$

Let $W=J\times K$. Then $W\subset I$ is a nondegenerate regular domain, f is integrable on W in the sense of Riemann and

$$\begin{split} \left| \frac{\int_{W} f}{\mu(W)} - f(x,y) \right| &\leq \left| \frac{\int_{J} (\int_{K} f(u,v) \, dv) \, du}{\mu(W)} - \frac{\int_{J} f(u,y) \mu(K) \, du}{\mu(J) \mu(K)} \right| \\ &+ \left| \frac{\int_{J} f(u,y) \mu(K) \, du}{\mu(J) \mu(K)} - f(x,y) \right| \\ &\leq \frac{\int_{J} \left| \frac{\int_{K} f(u,v) \, dv}{\mu(K)} - f(u,y) \right| \, du}{\mu(J)} + \left| \frac{\int_{J} f(u,y) \, du}{\mu(J)} - f(x,y) \right| \\ &< \frac{\eta \int_{J} du}{2\mu(J)} + \frac{\eta}{2} = \eta \end{split}$$

Theorem 7. There is a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that the sections f_x and f^y , $x,y \in \mathbb{R}$, are continuous and R-integrally equiquasicontinuous and which is not locally integrable in the sense of Riemann.

248 Zbigniew Grande

PROOF. Let $A \subset [0,1]$ be a nowhere dense perfect set of positive measure such that $0,1 \in A$ and let $((a_k,b_k))_k$ be an enumeration of all components of the set $[0,1] \setminus A$ such that $(a_k,b_k) \cap (a_i,b_i) = \emptyset$ for $k \neq i$. For each $k \geq 1$ there is a strictly decreasing sequence $(c_{k,i})$ with $\lim_{i \to \infty} c_{k,i} = a_k$ and $c_{k,i} \in (a_k,b_k)$ for $i \geq 1$. The set N of all positive integers is the union of an infinite family of pairwise disjoint infinite subsets $N_{k,s}$, where $k,s \geq 1$. Evidently, for all integers $k,m,i \geq 1$ the sequence $(c_{k,j})_{j \in N_{m,i}}$ is strictly decreasing and converges to a_k . For each point $c_{k,i}$ put

$$r(c_{k,i}) = \frac{\inf(\inf\{|c_{k,i} - c_{k,j}|; j \neq i \text{ and } j \geq 1\}, |c_{k,i} - b_k|)}{3}.$$

Moreover, for all pairs $(c_{k,i}, c_{s,t})$ let

$$I_{c_{k,i},c_{s,t}} = [c_{k,i} - r(c_{k,i}), c_{k,i} + r(c_{k,i})] \times [c_{s,t} - r(c_{s,t}), c_{s,t} + r(c_{s,t})].$$

Now we will define a function f. On the rectangles $I_{c_{k,i},c_{s,i}}$, where $i \in N_{k,s}$, $k, s \ge 1$, we define f in such a way that f is continuous on $I_{c_{k,i},c_{s,i}}$,

$$f(u,v) = 0$$
 on $I_{c_{k,i},c_{s,i}} \setminus \operatorname{int}(I_{c_{k,i},c_{s,i}})$

and $f(I_{c_{k,i},c_{s,i}}) = [0,1]$. Moreover, on the set $\mathbb{R}^2 \setminus \bigcup_{k,s=1}^{\infty} \bigcup_{i \in N_{k,s}} I_{c_{k,i},c_{s,i}}$ we put f(u,v) = 0. For each point $x \in \mathbb{R}$ the set of all pairs $(c_{k,i},c_{s,i})$ $(k,s \geq 1, i \in N_{k,s})$ giving a nonempty intersection

$$\{(x,v);v\in\mathbb{R}\}\cap I_{c_{k,i},c_{s,i}}\neq\emptyset,$$

is empty or contains only one pair. Similarly, for each point $y \in \mathbb{R}$ the set of all pairs $(c_{k,i}, c_{s,i})$ giving a nonempty intersection

$$\{(u,y); u \in \mathbb{R}\} \cap I_{c_{k,i},c_{s,i}} \neq \emptyset,$$

is empty or contains only one pair.

So the sections f_x and f^y are continuous. Since

$$\{(x,y); f(x,y) \neq 0\} \subset \bigcup_{k,s=1}^{\infty} \bigcup_{i \in N_{k,s}} I_{c_{k,i},c_{s,i}},$$

by the definitions of $I_{c_{k,i},c_{s,t}}$ we obtain that the sections f_x , $x \in \mathbb{R}$, and f^y , $y \in \mathbb{R}$, are integrally equiquasicontinuous at all points. Moreover,

$$\mathbb{R}^2 \setminus C(f) = A \times A$$

and consequently f is not locally R-integrable at some points of $A \times A$.

Observe that the function f from the proof of the last theorem is R-integrally quasicontinuous.

Problem 1. Suppose that the sections f_x , $x \in \mathbb{R}^n$, of a function $f: (\mathbb{R}^n \times \mathbb{R}^m) \to \mathbb{R}$ are R-integrally equiquasicontinuous and the sections f^y , $y \in \mathbb{R}^m$, are R-integrally quasicontinuous. Is the function f R-integrally quasicontinuous?

Finishing, we will prove a natural characterization of the classes $Q_{r,s}$ and $Q_{r,o}$.

Theorem 8. A function $f : \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_{r,s}$ (resp. to $Q_{r,o}$) if and only if $\mu(D(f)) = 0$ and $f \in Q_s$ (resp. $f \in Q_o$).

PROOF. Let $f \in Q_{r,o} \subset Q_{r,s}$. Assume, to a contradiction, that $\mu(\mathbb{R}^n \setminus C(f)) > 0$. Since Lebesgue's density theorem is true for the topologies T_{sd} and T_{od} (see [1] or [10], IV § 10, Th. (10.1)), there is a nonempty set $U \in T_{sd}$ contained in $\mathbb{R}^n \setminus C(f)$. Since for each point $x \in U$ and for each regular domain I with $U \cap \text{int}(I) \neq \emptyset$ the restricted function $f \upharpoonright I$ is not integrable in the sense of Riemann, we obtain a contradiction. So, $\mu(\mathbb{R}^n \setminus C(f)) = 0$. Immediately from the definition it follows that, if $f \in Q_{r,s}$ (resp. $f \in Q_{r,o}$), then $f \in Q_s$ (resp. $f \in Q_o$).

Now we will prove that, if $\mu(D(f)) = 0$ and $f \in Q_s$ (resp. $f \in Q_o$), then $f \in Q_{r,s}$ (resp. $f \in Q_{r,o}$). For this fix a function $f \in Q_s$, a point x, a set $U \in T_{sd}$ containing x and a real $\eta > 0$. Since $f \in Q_s$, there is an open set W such that $W \cap U \neq \emptyset$ and

$$\left| \frac{\int_{U \cap W} f}{\mu(W \cap U)} - f(x) \right| < \eta.$$

For each point $u \in W \cap C(f)$ there is a nondegenerate closed box $I(u) \subset W$ whose vertexes have rational coordinates such that $u \in \operatorname{int}(I(u))$ and f is integrable on I(u) in the sense of Riemann. Since $\mu(D(f)) = 0$, there is a regular domain $I \subset W$ being the finite union of some family $(I(u_i))_{i \leq k}$, where $u_i \in W \cap C(f)$, such that $\operatorname{int}(I) \cap U \neq \emptyset$ and

$$\left| \frac{\int_{U \cap I} f}{\mu(U \cap I)} - f(x) \right| < \eta.$$

Evidently, $f \upharpoonright I$ is integrable in the sense of Riemann and the proof in this case is completed. For the case $f \in Q_o$ the proof is analogous.

In the definitions of the classes $Q_{r,s}$ and $Q_{r,o}$ we use the integral of Lebesgue. For locally bounded functions we have a characterization in which only the integral of Riemann is used.

The present form of Theorem 9 and its proof is an idea of the referee.

Theorem 9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a locally bounded function. The function f belongs to $Q_{r,s}$ (resp. to $Q_{r,o}$) if and only if it satisfies the following condition

(a) for each point $x \in \mathbb{R}^n$, for each set $U \ni x$ belonging to T_{sd} (resp. to T_{od}), for each open set $Z \ni x$ and for each real $\eta > 0$ there is a nondegenerate regular domain $I \subset Z$ such that $f \upharpoonright I$ is integrable in the sense of Riemann, $\operatorname{int}(I) \cap U \neq \emptyset$, $\mu(I \setminus U) < \eta\mu(I \cap U)$ and

$$\left| \frac{\int_I f}{\mu(I)} - f(x) \right| < \eta.$$

PROOF. Fix a point x, a set $U \ni x$ belonging to T_{sd} , an open set $Z \ni x$ and a positive real η . Since f is locally bounded, there are an open set $V \ni x$ contained in Z and a real M > 0 with |f(t)| < M for $t \in V$. Let $U_1 = V \cap U$. If $f \in Q_{r,s}$, then there is a nondegenerate regular domain I such that $\operatorname{int}(I) \cap U_1 \neq \emptyset$ and

$$\left| \frac{\int_{I \cap U_1} f}{\mu(I \cap U_1)} - f(x) \right| < \eta.$$

f is measurable by Theorem 8 and bounded on V. Hence we find an open set W, $\operatorname{int}(I) \cap U_1) \subset W \subset \operatorname{int}(I) \cap V$, that approximates $\operatorname{int}(I) \cap U_1$ from outside such that

$$\left| \frac{\int_W f}{\mu(W)} - f(x) \right| < \eta$$

and $\mu(W \setminus U_1) < \eta \mu(W \cap U_1)$. The last estimate gives $\mu(W \setminus U) < \eta \mu(W \cap U)$, because $W \cap U_1 = W \cap (V \cap U) = W \cap U$ and similarly $W \setminus U_1 = W \setminus U$, and in particular $W \cap U \neq \emptyset$.

Since $\mu(D(f)) = 0$ by Theorem 8, we obtain, as in the previous proof, a nondegenerate regular domain $J \subset W$ with $\operatorname{int}(J) \cap U \neq \emptyset$, $\mu(J \setminus U) < \eta\mu(J \cap U)$, and

$$\left| \frac{\int_J f}{\mu(J)} - f(x) \right| < \eta.$$

This proves (a).

On the other hand, if f satisfies condition (a), then there is a nondegenerate regular domain $I \subset V$ such that $\operatorname{int}(I) \cap U \neq \emptyset$, $\mu(I \setminus U) < \frac{\eta}{4M} \mu(I \cap U)$, $f \upharpoonright I$ is integrable in the sense of Riemann, and

$$\left| \frac{\int_I f}{\mu(I)} - f(x) \right| < \frac{\eta}{2}.$$

Then

$$\begin{split} \left| \frac{\int_{I \cap U} f}{\mu(I \cap U)} - f(x) \right| &\leq \left| \frac{\int_{I \cap U} f}{\mu(I \cap U)} - \frac{\int_{I} f}{\mu(I)} \right| + \left| \frac{\int_{I} f}{\mu(I)} - f(x) \right| \\ &< \left| \int_{I \cap U} \left(\frac{f}{\mu(I \cap U)} - \frac{f}{\mu(I)} \right) - \int_{I \setminus U} \frac{f}{\mu(I)} \right| + \frac{\eta}{2} \\ &\leq \left| \left(\frac{1}{\mu(I \cap U)} - \frac{1}{\mu(I)} \right) \int_{I \cap U} f \right| + \left| \frac{1}{\mu(I)} \int_{I \setminus U} f \right| + \frac{\eta}{2} \\ &\leq \left(\frac{1}{\mu(I \cap U)} - \frac{1}{\mu(I)} \right) M \mu(I \cap U) + \frac{1}{\mu(I)} M \mu(I \setminus U) + \frac{\eta}{2} \\ &\leq \left(\frac{\mu(I)}{\mu(I)} - \frac{\mu(I \cap U)}{\mu(I)} + \frac{\mu(I \setminus U)}{\mu(I)} \right) M + \frac{\eta}{2} \\ &= 2 \frac{\mu(I \setminus U)}{\mu(I)} M + \frac{\eta}{2} \leq 2 \frac{\mu(I \setminus U)}{\mu(I \cap U)} M + \frac{\eta}{2} \\ &< 2 \frac{\eta}{4M} M + \frac{\eta}{2} = \eta. \end{split}$$

This yields $f \in Q_{r,s}$.

The equivalence of the inclusion $f \in Q_{r,o}$ with the respective version of (a) can be proved in the same way.

Acknowledgement. I would like to thank the referee for his valuable remarks which allowed me to correct many mistakes in the first version of the paper. I am especially grateful to him for the correction of condition (a) in Theorem 9

References

- [1] A. M. Bruckner, Differentiation of Integrals, Amer. Math. Monthly, 78(9) (1971), Part II, 1–50 (MR 0293044).
- [2] A. M. Bruckner, *Differentiation of Real Functions*, Lecture Notes in Math. 659, Springer-Verlag, Berlin, (1978), (MR 0507448).
- [3] C. Goffman, C. J. Neugebauer, T. Nishiura, *Density Topology and Approximate Continuity*, Duke Math. J., **28** (1961), 497–505 (MR 0137805).
- [4] Z. Grande, Sołtysik L., Some Remarks on Quasicontinuous Real Functions, Problemy Matematyczne, 10 (1990), 79–86 (MR 1068297).
- [5] Z. Grande, E. Strońska, On the Integral Quasicontinuity, submitted to J. Appl. Anal.

252 ZBIGNIEW GRANDE

[6] Z. Grande, Une Caractérisation des Ensembles des Points de Discontinuité des Fonctions Linéairement-Continues, Proc. Amer. Math. Soc., 52 (1975), 257–262 (MR 0374349).

- [7] S. Kempisty, Sur les Fonctions Quasicontinues, Fund. Math., 19 (1932), 184–197.
- [8] E. Marczewski, Cz. Ryll-Nardzewski, Sur la Mesurabilité des Fonctions de Plusieurs Variables, Ann. Soc. Polon. Math., 25 (1953), 145–154 (MR 0055413).
- [9] T. Neubrunn, Quasi-Continuity, Real Anal. Exchange, 14(2) (1988–89), 259–306 (MR 0995972).
- [10] S. Saks, Theory of the Integral, Warsaw 1937 (MR 0167578).
- [11] W. Sierpiński, Sur une Propriété des Ensembles F_{σ} -Linéaires, Fund. Math., **14** (1929), 216–220.
- [12] F. D. Tall, The Density Topology, Pacific J. Math., 62 (1976), 275–284 (MR 0419709).
- [13] Z. Zahorski, Sur la Première Dérivée, Trans. Amer. Math. Soc., 69 (1950), 1–54 (MR 0037338).