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Abstract

Let SZ,D, Ext, and Ext denote respectively the spaces of Sierpinski-
Zygmund functions, Darboux functions, extendable connectivity func-
tions, and uniform limits of sequences of extendable connectivity func-
tions, with the metric of uniform convergence on them. We show that
the subspaces SZ N D and SZ N Ext are each porous in the space SZ,
but SZ N Ext is not porous in the space Ext. We also show that
every real function can be expressed as a sum of two Sierpinski-Zygmund
functions one of which belongs to Ext. Ciesielski and Natkaniec show in
[4] that if R is not the union of less than ¢-many nowhere dense subsets,
then there exist Sierpinski-Zygmund bijections f,g : R — R such that
f7' £SZ and g~! € SZ, but here we can additionally have f and g
belonging to Ext.

A Sierpinski-Zygmund (SZ) function f : R — R has the property that
all restrictions f [ g to subsets B of cardinality ¢ are discontinuous. This is
equivalent to having card(f Ng) < ¢ for all continuous functions g defined on
G subsets of R [12].

A function h : R — R is called extendable connectivity if there is a function
F :Rx[0,1] — R such that F(z,0) = h(z) for all z € R and F | ¢ is connected
for each connected set C' C R x [0, 1], and such a function kA must be Darbouz,
which means h(K) is connected for each connected subset K of R.

According to [7], if an extendable connectivity function h has a dense graph
in R?, then there exists a decomposition of R into a sequence {4,}°, of the
following “special sets”: Ay is a dense G subset of R that is h-negligible with
respect to Fxt. This means that if h is arbitrarily redefined just on Ay, the
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resulting function still belongs to Ext. Moreover, R\ Ay = US2, A, where
the sets A,,, n > 1, are pairwise disjoint and nowhere dense in R and therefore
h-negligible.

In [10], we show that under MA, SZ N Ext cannot be characterized by
pre-images of sets. We obtain more results starting with the porosity of the
function space SZ N Ext.

1 Porosity.

The porosity of a subspace M in a metric space X is a measurement of how
thin M is in X. In a metric space (X, d), B(x,r) denotes the open ball centered
at x with radius r > 0. For xz € X let

y(x,r, M) = sup{s > 0: 3z € X such that B(z,s) C B(z,r) \ M}

M is porous at x if

x,r, M
p(x) = limsup vlw,r, M)
r—0+ r
is a positive real number. M is porous in X if M is porous at each z € X. A
set M porous in X is a boundary set in X, which means X \ M = X.
Each function space has on it the metric d of uniform convergence defined
by

A(f,9) = min{1, sup{|f(x) - g(x)] : v € R} }.

See [9] for some results on the porosity of Darboux-like function spaces.

According to [11], SZ N Exzt = ( but in [10, Theorem 1], it is shown
there exists a function f € SZ N Ext whose graph is dense in R2. Balcerzak,
Ciesielski and Natkaniec show in [1] that in ZFC an extra hypothesis is needed
in order to have SZ N D # (.

Theorem 1. SZ N Ext is not porous in Ext but is a boundary set in Fxt.

PROOF. Let g € SZ N Ext have a dense graph in R? and let 0 < r < 1. Pick
an arbitrary ¢ € B(g,7) C Ext and an arbitrary positive number s < r such
that B(p,s) C B(g,r). Then there exists h € Ext such that d(p,h) < § on
R. Notice the graphs of ¢ and h are dense in R? just like g. Let {A,}52, be
a decomposition of R into those h-negligible special sets described above. Let
R = {z4 : @ < ¢} and henceforth let Cg, = {go : @ < ¢} be an enumeration
of all continuous functions defined on Gy subsets of R. Define a function

f:R—Rin SZ so that f(z4) € R\ {ge(za) : £ < a} but we require

|[f(@a) = h(za)| <

s
whenever z,, € A,, for some n > 0.
m + 2 «@ n =
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Then
f on AO
ho =
h onR \ AQ
is in Ezt, and for n > 1,
o f on A,
" Vh,.1 onR \ A,

is in Fxt. Since f is the uniform limit of h,, we have f € Fxt. But f €
B(p,s)NSZ N Ext since

d(p, f) < d(p,h) +d(h, f) < §+§<sonR.
So
r}/(gﬂra SZHW) = Sup@ = —00 and p(g) = —00.

This shows SZ N Ext cannot be porous in Ext at any function g in SZ N Ext
with graph dense in R2.

To see SZN Ext is a boundary set in Ext, let f € SZN Ext, which implies
f is a uniform limit of a sequence h,, in Fat C Exzt\ SZ. That is, every
open neighborhood of f in Ext contains all but finitely many h,, and therefore
meets Ext \ SZ. O

Theorem 2. SZND and SZ N Ext are each porous in SZ.

ProoF. If SZ N D = (), the first result is true because the porosity of fis1
everywhere in SZ. Therefore suppose f € SZND C SZN D, where closure
is taken in SZ. For sufficiently small r with 0 < r < 1, there exist numbers

a < b such that 2 < ‘f(a) - f(b)’ < g and we may suppose f(a) < f(b). Let

r

B = (a,b) mfl((f(a) + % £(b) 16)) = {za:a<c}
Define g : R — R by g(z) = f(x) if x € R\ B, and for every a < ¢, pick
g(aa) € (f(), F5)) \ ((f(a) 150 F0) = 15) U{ge(aa) s € < a}).

Then g £ D and g € B(f, %) because |f(a) — f(b)| < 3, and B(g, %) C
B(f,r)\ D because |f(a) — f(b)| > %.
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To see g € SZ, suppose X C R and card X = ¢. Either (1) card(X\B) =¢
or (2) card(XNB) = c. If (1) holds, then g [ (x\p) = f [ (x\p) is discontinuous.
If (2) holds, then

{xeXﬂB:g(a:):gg(ac)}C{J;EB:g(x):gg(a:)}C{xa:a<£},

which has cardinality < ¢, and therefore g [ (xnp) is discontinuous. This
shows g € SZ \ D. Since y(f,r,SZ N D) > 16
SZnD 1
p(f) zlimsupM >—>0
r—0+ r 16
and so SZ N D is porous at f. SZ N Ext is porous in SZ because it is a

subspace of SZ N D, which is porous in SZ according to the above argument
with D in place of D. O

It is left as an open problem whether or not SZ N D, if nonempty, is porous
in D.

Theorem 3. SZN D is a boundary set in D.

PROOF. Assume f € SZND C SZ N D, where closure is taken in D. Given
0 <7 <1, there exist a,b € R such that 0 < s = %ﬂa) < r. Define the
continuous function

z+s if z < f(a)
g(w) = § HHE it f(a) <o < [ ()
r—s if x > f(b).

Since d(g, identity) = s, d(go f, f) = s < r. The Darboux function g o f
is constant (hence continuous) on f~1((f(a), f(b))) which has cardinality c.
Therefore go f € D\ SZ. This shows SZ N D is a boundary set of D. O

2 Sums of Functions.

In [3], Ciesielski and Natkaniec show that every real function can be expressed
as the sum of two SZ functions. In [6], Plotka shows that under CH, every
function f : R — R can be represented as a sum of an almost continuous
(AC) function and an SZ function. (Each open neighborhood of the graph
of an almost continuous function f : R — R in R? contains the graph of a
continuous function defined on R.) As a corollary to a theorem in [1] about
the existence of a model with no Darboux SZ function, Plotka obtains the
equality R® = AC + SZ is independent of ZFC. According to the following
first corollary, RF = (SZ N %) +5Z.
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Theorem 4. For each family F C R® with card F < ¢, there exists g € Ext
such that g+ F C SZ.

PROOF. Let Cgy={ga : v <c}, R:gxa ca<ch, and F={f, : a<c}. There
exists h € Ext with graph dense in R? [5], [8], and so there is a decomposition
of R into a sequence {A,,}22, of h-negligible special sets. For every a < c,
pick g(zo) € R\ {gy(za) — f3(za) : B,7 < @} as done in [6], but here we
require

9(za) ~ (o)

1
< —— whenever z, € A,, for some n > 0.
n+1

Then g € Ext and for every 3,7 < c,
{x tg(z) + fa(x) = g.y(:c)} - {za Ta< max{ﬁ,’y}},

which has cardinality < c¢. Since card((g + fg) Ngy) < ¢ for all 3,7 < ¢,
g+ fz € SZ for every 3 < c. O

Letting 7 = {0, f} in Theorem 4 gives the next result.

Corollary 1. Each function f € R® is the sum of a function in SZ N Ext
and a function in SZ.

As in [6], for 7y and F, C R¥, define Add(F,F2) = min({card F : F C
R® and there exists no g € F such that g + F C F2}U{(2)"}). This is a gen-
eralization for 7 C R¥ of

A(F)=min{card F : FCRX and there is no g € R¥ such that g + F C F}.

It turns out ¢t < A(Ewt) < 2°. There is no g € Fxt such that g + Ext C SZ
because g — g =0 £ SZ, and also card(Ext) = 2¢. Therefore by Theorem 4,
we have the following.

Corollary 2. ¢© < Add(Ezt, SZ) < 2°.

3 Inverses of Uniform Limits.

In [4], Ciesielski and Natkaniec verify these two facts:

Fact 1: There exists a one-to-one SZ function f : R — R such that f~! :
f(R) — R does not belong to SZ.

Fact 2: Assume R cannot be covered by less than ¢-many meager sets. Then
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(a) there exists an SZ bijection f: R — R such that f= £ SZ;
(b) there exists an SZ bijection f : R — R such that f~! = f.

Theorem 5. In each of the above two facts, f can be constructed to belong to
Ext.

PrOOF. We show how to modify Ciesielski and Natkaniec’s proof to make f €
Ext in Fact 1 and leave how to in Fact 2 to the reader. Let C¢,, = {ga : @ < ¢}
be the collection of all nowhere constant continuous functions defined on Gy
subsets of R = {z, : @ < ¢}, and let ¢ : [0,1] — [0,1] be a nowhere constant
continuous function like that given in [2, p. 222] such that ¢(0) =0, (1) =1,
and card(cpfl(y)) = ¢ for every y € [0,1]. Extend ¢ to a continuous function
g : R — R by defining g(z) = ¢(x —n) + n on [n,n + 1] for each integer n.
Let b : R — R be an extendable connectivity function having a dense graph in
R2, and let {A4,}5°, be a decomposition of R into those special h-negligible
subsets.
Define f : R — R by

g_l(xa)\({yg (B <afU{gs(za):B< a}) if xo € Ao

IO R (fyp B < b lmplen) sp<a)) it eRVA

such that if zo € A, and n > 0, then |f(zq) — h(za)| < %ﬂ which implies
f € Ext. Because f : R — R is one-to-one and card(f N g,) < ¢ for each
ga € Cg,, [ is a Sierpiniski-Zygmund function according to [4, Lemma 1]. So
f€SZNExt,and f~! ¢ SZ because f~1(yo) = Ta = 9(ya) if T4 € Ao.
Note that f preserves nowhere dense sets C' C Ag. For g=1(C) is closed and
nowhere dense in R because g(g*l(é)) C g(g~*(C)) = C and the nowhere

constant function g maps connected sets to connected sets. Since C' C Ap and
f(C) c f(C) c g=1(C), f(C) is nowhere dense in R. O
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