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ON THE MEASURABILITY OF
FUNCTIONS SATISFYING SOME
APPROXIMATE QUASICONTINUITY
CONDITIONS

Abstract

In this article we investigate the smallest (in the sense of inclusion)
o-field of subsets of R in which all functions of some families of functions
from R to R satisfying some approximate quasicontinuity conditions
introduced in [2] are measurable.

Let R be the set of all reals and H a family of functions f : R — R. Then
there is the smallest (in the sense of inclusion) o-field A(H) of subsets of R
such that each function f € H is A(H)-measurable; i.e., for every Borel set
U C R the preimage f~1(U) € A(H).

It is evident that for each family H of Borel measurable functions from R
to R containing all continuous functions the o-field A(H) is the o-field B of
all Borel subsets of R.

Remark 1. Suppose that T is an ideal of subsets of R and that B(Z) is the
o-field generated by the union BUZ. If H is the family of all functions f :
R — R such that the set D(f) of all discontinuity points of f belongs to T,
then A(H) C B(Z).

Proor. f U C R is an open set and f € H, then for each point = €
F~HU) N C(f) (C(f) denotes the set of all continuity points of f) we have
z € int(f~1(U)), where int denotes the interior operation. So f~1(U) \
int(f~1(U)) € B(Z) and consequently f~Y(W) € B(Z) for every Borel set
W e B. O
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Now we will consider some families of functions introduced in [2].

For this denote by p the Lebesgue measure in R and by p. the outer
Lebesgue measure in R. For a set A C R and a point x we define the upper
(lower) outer density D, (A, x) (D;(A,x)) of the set A at the point = as

/~Le(Am [(E - hax"i_h})

lim su
h%()*p 2h
P /Le(Aﬂ[l‘—h,l‘—‘th :
(l}ln_1) %)Iif 5T respectively).

A point x is said to be an outer density point (a density point) of a set
A if Di(A,x) = 1 (if there is a Lebesgue measurable set B C A such that
DL(B, LL‘) = 1)

The family Ty of all sets A for which the implication

x € A = x is a density point of A

is true, is a topology called the density topology ([1, 8]).

The sets A € T, are Lebesgue measurable ([1, 8]).

Let T, be the Euclidean topology in R. The continuity of maps f from
(R, Ty) to (R, T:) is called approximate continuity ([1, 8]).

For an arbitrary function f : R — R denote by C,,(f) the set of all
approximate continuity points of f. Moreover let D, (f) = R\ Cop(f).

In [2] the following properties were investigated.

A function f : R — R has the property (sg) (resp. (s5)) at a point z
(f € so(z) or resp. f € s5(x)) if for each real r > 0 and for each set U € Ty
containing x there is a point t € U N C(f) (resp. t € U N Cyp(f)) with
() — f@)] <.

A function f : R — R has the property (s1) (resp. (s3)) at a point z
(f € si(x) or resp. f € sz(x)) if for each positive real r and for each set
U € T4 containing z there is an open interval I such that § # INU C C(f)
(resp. 0 £ INU C Cup(f)) and |f(t) — f(x)| < r for all points t € INU.

A function f has the property (s;), where ¢ = 0,1,3,5, if f € s;(x) for
every point x € R.

A function f : R — R has the property (s2) (resp. (s4)) if for each
nonempty open set U € Ty there is an open interval I such that ) # I NU C
C(f) (resp. 0 £ INU C Cup(f)).

Evidently each function f having the property (s1) has also properties (sz),
(s3), (s4) and (sg). Moreover the property (s3) implies properties (so) ([2]),
(s4) and (ss).

For each function f having the property (s2) the set D(f) = R\ C(f)
is nowhere dense and of Lebesgue measure 0. But the closure cl(D(f)) of
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some functions f having the property (s1) may be of positive measure. For
example, if A C (0,1) is a Cantor set of positive measure, (I,,) is a sequence
of all components of the set (0,1) \ A with I,, # I,,, for n # m and (J,,) is a
sequence of closed nondegenerate intervals J,, C I, with the same centers as
I,, and such that

1
#Jn) < — for n=1,2,...,
w(ln) —n
then the function
1
flx)=— for z € J,, n=1,2,..., and f(x) =0 otherwise on R

n

has the property (s1) but p(
cd(D(f))) > 0.

From [2] (p. 172) and [5] it follows that for each function f having property
(so) the measure u(D(f)) = 0.

Let S;, 2 =0,1,2,3,4,5 be the family of all functions f : R — R having
property (s;) and let Py denote the family of all functions f with u(D(f)) = 0.

Theorem 1. Fori=0,1,2,3 the equalities
A(S;) = A(Fo)

are true. Moreover, we have A(Py) = B(Zy), where Iy is the o-ideal of all
subsets A C R such that there are F,-sets E C R of measure 0 with A C E.

Proor. The inclusions
A(S;) C A(Py) C B(Zy) for i =0,1,2,3,

follow from the inclusions S; C P,.

The identity id(x) = z for € R is continuous and for every Borel set A
we have id™*(A) = A, so the inclusion B C A(S;) is true.

Let E C R be a set such that u(cl(E)) = 0 (¢l denotes the closure opera-
tion). We will prove that there is a function f € Sy such that f~1(0) = E.

In this construction we apply the following lemma from [4].

Lemma 1. If A C R is a nonempty compact set of Lebesque measure zero,
U D A is an open set, then there is a family {K; ;;i,j = 1,2,...} of pairwise
disjoint nondegenerate closed intervals K; ; C U\ A such that for each positive
integer i and for each point x € A the upper density

o]
Du(U Kw»,x) =1
j=1

and for each positive real r the set of all pairs (i,j) for which there are points
te K;; and x € A with |t — x| > r is empty or finite.
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Continuation of the proof of Theorem 1.
In the beginning we suppose that the set E is bounded. By Lemma 1 there
is a family of pairwise disjoint closed intervals

Ki,j CR \ Cl(.E)7

i,7 =1,2,... such that for each i = 1,2,... and for each x € cl(E) the upper
o0
density D, (|J K; j,x) = 1 and for each positive real r the set of pairs (i, j)

J=1
such that there are points z € cl(E) and y € K, ; with | —y| > r is empty or
finite.

In the interiors int(K; ;) we find closed intervals I; ; C int(K; ;) such that
for each point x € cl(F) and for each integer i = 1,2,... the upper density

Du(U Ii,j,(E) =1.
j=1

Let ¢ : R — R be defined by

% fOI‘xGIi,j, Z’j:1727

1 forzeR\ (I(E)U U int(K,,))
g9(x) = Hi=t

1 forzxecl(E)\E

0 forxeF,

and let g be linear on all components of the sets K; ; \ int(f; ;), 4,5 =1,2,....
We will prove that the function g has the property (s1). For this, fix a
positive real r, a point € R and a set U € T, containing z. If z € R\ cl(E),
then g is continuous at x and consequently g € s1(x).
If x € cl(E) \ E, then

g(x) =1 and D“(U I j,z) =1
j=1

So there is an index jo such that UNint([; ;) # 0. Since g(t) =1 for ¢t € I j,,
we have g € s1(x).
If 2 € E, then g(x) = 0 and there is a positive integer i; with % < r. Since

1 oo
g(t) = i for t e U I;, ;s
j=1
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and
oo
Du(U Ii17j7$) =1,
j=1
there is an index j; with
un int(lihh) #0
and

1
lg(t) — g(x)| = g(t) = o <r for t e int(l;, ;).
1

So g e Si.
Up to now we have supposed that the set F is bounded. Now we consider
the general case. We have

oo

R= U [Tk, Tot1],

k=—o0
where x, € R\ cl(E) and
—00 — T < T_pp1 < - <o < -+ T < Thy1 — OO,

For every integer k = 0,1,—1,2,—2,... there is a function gy : [zk, Tr+1] —
[0, 1] having property (s1) such that

95 ' (0) = EN [y, xp41] and D(gx) = cl(E) N (zg, 2x41)-
Putting
f(z) = gi(x) for = € [xg,xp41), £=0,1,-1,2,-2,...

we obtain a function g having property (s;) such that g=1(0) = E.
Since each set F with p(cl(F)) = 0 belongs to A(S7) and since B C A(S1),
we obtain

BUZy C A(S1),

and consequently

B(Zo) C .A(Sl)
But A(S7) C A(S;) for i =0,1,2,3, so the proof is completed. O

Now we will describe the field A(Sy). For this we put

I ={ACR:ifTy; > B C cl(A), then AN B is nowhere dense in B}.
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Evidently Z; is an ideal of subsets of R (see [6]), but it is not an o-ideal. Let
I be the smallest o-ideal generated by Z;. Since each closed set of measure
zero belongs to Z;, we have Zy C Zs.

Example. If C C (0,1) is a Cantor set of positive measure and A is the set
of the centers of all components of the set (0,1) \ C, then cl(A) > C and
u(cl(A)) > 0. Consequently, A is not in Zy, but evidently A € Z; C Zo.

Since the sets belonging to Z; are nowhere dense and of measure zero, we
have Zo € M N L, where M (and resp. L) denotes the o-field of all subsets
with the Baire property (resp. the o-field of all subsets which are measurable
in the Lebesgue sense).

Theorem 2. There are sets H € (M N L)\ B(Z4).

PRrOOF. Let C' C (0,1) be a nowhere dense closed set of positive measure, let
A={xeC:D|(C,z) =1}

and let B C cl(A) be a Gs-set of measure zero dense in A. Assume the
Continuum Hypothesis (CH) and enumerate all uncountable Borel subsets of
B in a transfinite sequence

Ao,Al,...,Aa,..., o < wi,
(w1 denotes the first uncountable ordinal), such that
Aq # Ag for a < < ws.

Now, by transfinite induction, we construct two disjoint sets H, G C B such
that for each o < wy we have

Ay NH#0 and A, NG # 0.

Then the set H is nowhere dense set of measure zero, so it belongs to M N L.
Observe that B is a residual subset of cl(A) and H, G are of the second
category in cl(A).
We will prove that H is not in B(Z;). Assume to the contrary that H €
B(Il) Then
H=(HU...UH,U...)UE,

where F is a Borel set and H,, € Z; for n > 1. Since G C B\ H cuts each
uncountable Borel subset of B, the set E must be countable. But H is of the
second category in cl(A), so there is a positive integer k such that the set Hy
also is of the second category in cl(A). Thus there is an open interval J such
that

JNHg#0 and JNcl(A) C cl(J N Hy).
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Then T; 3 ANJ C cl(Hp N J) and consequently Hj is not in Z;. This
contradiction finishes the proof. O

In the proof of the next theorem we will use the following lemma.

Lemma 2. If A C R is a Borel set such that each point x € A is a density
point of A and if f : A — R is a function approximately continuous at each
point x € A, then f is a Borel function on A.

PRrROOF. Without loss of generality we can assume that f is bounded, since in
the opposite case we can consider the function arctan(f).
Let
g(xz) = f(z) for z € A andlet g(z) =0 for e R\ A

and let

Then the functions

are continuous and for x € A we have
f(z) = F'(z) = lim F,(z),
so f is a Borel function on A. O

Theorem 3. The equality
A(Sy) = B(Z4)

s true.
PROOF. For the proof of the inclusion
B(Il) C A(S4)

observe that

BC A(Sl) C A(S4)7
and that for each set A € Z; the function

f(x)=1 for x € A, and f(z)=0 for e R\ A
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belongs to Sy. Of course, fix a nonempty set B € T,;. If B\ cl(A) # (), then
there is an open interval J such that J\ cl(A) = @ and BN J # (). Evidently
fI(JNnB) =0.

If B C cl(A), then the set BN A is nowhere dense in B and there is an open
interval J such that J N B # @ and J N A = ). Consequently, f|(J N B) = 0.
This proves that f € S;. Consequently A = f~1(1) € A(Sy).

For the proof of the inverse inclusion assume that f € Sy is a function and
that a is a real. We apply transfinite induction.

Let

Ap = int(Cyp(f)), and By =R\ Ao.

If u(B1) > 0, then the set
Fi = {’l} € By : Dl(Bl,x) = 1} ey

Since E1 # () and f € Sy, there is an open interval K with rational endpoints
such that

0 75 KiNnE; C Cap(f)
If Bo = By \ Ky and p(Bs) > 0, then we put

= {.7} € By : DI(BQ7.’E) = 1}

and observe that ) # Fy € T,;. Since f € Sy, there is an open interval Kj
with rational endpoints such that

0 7é KonEy C Cap(f).

Suppose that o < wy (w; denotes the first uncountable ordinal) and for each
ordinal # with § < « there is an open interval Kg with rational endpoints
such that the set

Bs = B\ U Ky
v<B

is of positive measure and for the set
Eg = {l‘ € Bﬂ : Dl(Bﬁ,iL') = 1}
we have
0+ KgNEgC Cap(f).

If the set

Bo =B\ | J Ks
B<a
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is of positive measure, then we put
E,={x € By : D|(Bgy,z) =1}.

Since f € Sy and () # E, € Ty, there is an open interval K, with rational
endpoints such that
0 # KoNEy C Coplf).

But the family of all open intervals with rational endpoints is countable, so
the smallest ordinal oy such that p(B,,) = 0 is countable.

Since the set of all density points of a Borel set is a Borel set (see [7]), for all
ordinals o < ag the set E,, is a Borel set. By Lemma 2 the restricted functions
fI(KaNE,), a < ap, are Borel measurable. Consequently, for a@ < aq the sets

Go={xeK,NE,: f(z)<a}

are Borel sets and the set

AU | Ga
a<oag
is the same.
Let
H=(R\A)\ |J (KanE,).

a<ag

If u(cl(H)) = 0, then evidently H € Z;. So we assume that u(cl(A4)) > 0. We
will prove that H € Z;. For this let U C cl(H) be a nonempty set belonging
to T;. Evidently U N Ay = 0. Let J be an open interval with U; = U N J # (.
Let a1 < «g be the first ordinal with

K., NU; # 0.
If there is a point
S (Koq n Ul) \ qu

then
Du( | Ka,2) >0, and Dy(Uy,z) =1,

a<og

and consequently, there is an ordinal as < a7 with H N K,, # 0. This
contradicts to the choice of a;. So,

UlﬁKal CU1mKalﬂEa1 CUl\H,

and
UNHNK,, =UNJNHNK,, =0.
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Consequently H NU is a nowhere dense subset of U and H € 7.
Since

{zr eR:f(z) <al={z € Ag: f(z) < a}U U GoU{z € H: f(z) <a}eB(Zy),

a<oo
the proof is finished. O

In article [3] it is proved that the o-field A(S5) coincides with the o-field
L of all Lebesgue measurable subsets of R.
There are sets belonging to I \ Iy (see example in [6], pp. 310-311).
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