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Abstract: We exhibit a large class of symbols m : Rd → C for which the corre-
sponding Fourier multipliers Tm satisfy the following restricted weak-type estimates:

if A ⊂ Rd has finite Lebesgue measure, then

||TmχA||p,∞ ≤
p

2
e(2−p)/p||χA||p, p ≥ 2.

In particular, this leads to novel sharp estimates for the real and imaginary part of
the Beurling–Ahlfors operator on C. The proof rests on probabilistic methods: we

exploit a stochastic representation of the multipliers in terms of Lévy processes and

appropriate sharp inequalities for differentially subordinated martingales.
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1. Introduction

A linear (or sublinear) operator T defined on Lp(Rd) and taking values
in Lp,∞(Rd) is said to be of restricted weak type (p, p), if there is a
constant C such that for every measurable set A ⊂ Rd of finite Lebesgue
measure |A|, we have

||TχA||Lp,∞(Rd) ≤ C||χA||Lp(Rd).
Here the weak p-th norm, 1 < p <∞, is defined by

||f ||Lp,∞(Rd) := sup

{
1

|E|1−1/p

∫
E

|f(x)|dx
}
,

where the supremum is taken over all measurable E ⊂ Rd with 0 <
|E| <∞. In most cases, restricted weak type estimates are easier to ob-
tain than the usual strong type inequalities, since the functions involved
are bounded and two-valued instead of arbitrary measurable. On the
other hand, a pair of restricted weak type estimates is usually powerful
enough to imply strong type estimates on intermediate spaces, by means
of standard interpolation arguments (see e.g. Corollary 1.4.21 in [19]).
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The purpose of this paper is to study restricted weak-type inequalities
for a certain class of Fourier multipliers, with the particular emphasis on
the size of the constants. We will show how such estimates can be de-
duced from appropriate sharp inequalities for differentially subordinated
martingales.

To formulate our main results, we need to introduce the necessary
background and notation. Suppose that d ≥ 1 is a fixed integer. For any
bounded measurable function m : Rd → C, there is a unique bounded
linear operator Tm on L2(Rd), called the Fourier multiplier with the

symbol m, which is given by the identity T̂mf = mf̂ on Fourier trans-
forms. By Plancherel’s theorem, the norm of Tm on L2(Rd) is equal
to ||m||L∞(Rd) and there is a natural problem of characterizing those
m, for which the corresponding Fourier multiplier extends to a bounded
linear operator on Lp(Rd), 1 < p < ∞. The motivation for this ques-
tion comes from the analysis of classical examples: the collection of
Riesz transforms {Rj}dj=1 on Rd and the Beurling–Ahlfors operator B
on C. Recall that for any 1 ≤ j ≤ d, the Riesz transform Rj in Rd
is the Fourier multiplier corresponding to the symbol m(ξ) = −iξj/|ξ|,
ξ ∈ Rd \ {0}. Furthermore, the Beurling–Ahlfors transform is an op-
erator acting on functions on C ' R2, corresponding to the symbol
m(ξ) = ξ/ξ, ξ ∈ C \ {0}. One of the motivations for investigating sharp
estimates for these operators comes from the papers of Donaldson and
Sullivan [15], and Iwaniec and Martin [20], [21], in which it was pointed
out that good estimates for the Lp norm of these objects have important
consequences in the study of quasiconformal mappings, related nonlinear
geometric PDEs as well as in the Lp-Hodge decomposition theory. This
justifies our interest in restricted weak-type bounds and, in particular,
in obtaining sharp versions of such results.

We will consider the following class of symbols, introduced by Bañue-
los and Bogdan in [4]. Assume that ν is a Lévy measure on Rd, i.e., a
nonnegative Borel measure on Rd such that ν({0}) = 0 and∫

Rd
min{|x|2, 1}ν(dx) <∞.

Assume further that µ is a finite nonnegative Borel measure on the unit
sphere S of Rd and fix two Borel functions φ on Rd and ψ on S which
take values in the unit ball of C. We define the associated multiplier m =
mφ,ψ,µ,ν on Rd by

(1.1) m(ξ) =
1
2

∫
S〈ξ, θ〉

2ψ(θ)µ(dθ) +
∫
Rd [1− cos〈ξ, x〉]φ(x)ν(dx)

1
2

∫
S〈ξ, θ〉2µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]ν(dx)
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if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for
the scalar product in Rd. This class contains many interesting examples,
we refer the interested reader to [3] and [4] for the full exposition. We
mention here that for d = 2, these include the real and imaginary part
of the Beurling–Ahlfors operator: ReB = R2

2−R2
1 and ImB = −2R1R2,

where R1, R2 are the planar Riesz transforms (i.e., Riesz transforms
in R2). See Section 4 below.

The Fourier multipliers corresponding to the above symbols can be
given a martingale representation by the use of transformations of jumps
of Lévy processes (see [3] and [4]). Combining this representation with
Burkholder’s martingale inequalities, Bañuelos and Bogdan [4] and Ba-
ñuelos, Bielaszewski, and Bogdan [3] obtained the following Lp bound.

Theorem 1.1. Let 1 < p <∞ and let m = mφ,ψ,µ,ν be given by (1.1).
Then for any f ∈ Lp(Rd) we have

(1.2) ||Tmf ||Lp(Rd) ≤ (p∗ − 1)||f ||Lp(Rd),

where p∗ = max{p, p/(p− 1)}.

We should point out here that the special case of this result, con-
cerning the multipliers R2

2 − R2
1 and −2R1R2, was obtained earlier by

Volberg and Nazarov in [30]. Consult also [5].
It turns out that the above constant p∗ − 1 cannot be replaced by a

smaller number, which has been shown recently by Geiss, Montgomery-
Smith, and Saksman [18] (see also [6]).

In fact, the martingale methods allow to establish other types of
estimates for the above class of Fourier multipliers. See e.g. [26] for
related weak-type inequalities and [27] for corresponding logarithmic
bounds. The purpose of this paper is to continue this line of research
and study the corresponding restricted weak-type estimates. By interpo-
lation, these lead to further tight bounds on various intermediate spaces.
Here is the main result of the paper.

Theorem 1.2. Suppose Tm is the Fourier multiplier corresponding to
a symbol from the class (1.1). Then for any A ⊂ Rd of finite Lebesgue
measure and any p ≥ 2 we have

(1.3) ||TmχA||Lp,∞(Rd) ≤
p

2
e(2−p)/p||χA||Lp(Rd)

and the inequality is sharp.

Here by sharpness we mean that for each p ≥ 2, each d ≥ 2, and
each ε > 0 we can find a Fourier multiplier Tm with a symbol of the
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form (1.1) and a subset A of Rd such that

||TmχA||Lp,∞(Rd) >
(p

2
e(2−p)/p − ε

)
||χA||Lp(Rd).

Actually, these extremal multipliers will be of the form R2
1−R2

2; thus, in
particular, we will obtain that (1.3) is sharp for the real and imaginary
parts of the Beurling–Ahlfors operator (it is easy to show that 2R1R2

and R2
1−R2

2 have the same restricted weak-type constants, see Section 4).
Unfortunately, we have been unable to find a sharp version of the

above statement for 1 < p < 2. To explain the reason for this, we
need to say a few words about our approach. Roughly speaking, any
inequality for Fourier multipliers with symbols as in (1.1) gives rise to
a corresponding estimate for differentially subordinate martingales (see
Section 2 for the necessary definitions). There is a beautiful method, in-
vented by Burkholder (see [11], [12], and [25]) for proving probabilistic
results of this type: the validity of a given martingale inequality (un-
der differential subordination) is equivalent to the existence of a certain
special function, satisfying appropriate majorization and concavity prop-
erties. In this paper, we will exploit this technique; however, we have
managed to find the special function corresponding to the martingale
version of (1.3) only for p ≥ 2. Nonetheless, the results obtained in [26]
allow us to write

(1.4) ||TmχA||Lp,∞(Rd)≤
[

1

2
Γ

(
2p− 1

p− 1

)](p−1)/p
||χA||Lp(Rd), 1<p<2,

where Γ denotes Euler’s gamma function: in fact, this holds true if we
replace χA by an arbitrary function f ∈ Lp(Rd). Unfortunately, the
above constant does not seem to be the best possible.

Consider the following application (cf. [28]). Let Tm be a Fourier
multiplier on Rd, with a symbol of the form (1.1). Then for any real-
valued function f ∈ Lp,1(Rd), p ≥ 2, we have

||Tmf ||Lp,∞(Rd) ≤ 2−1/pe(2−p)/2||f ||Lp,1(Rd).

To see this, assume first that f =
∑N
j=1 ajχEj , where a1 > a2 > · · · >

aN > 0 and Ej are pairwise disjoint subsets of Rd of finite measure. Let
F0 = ∅ and Fj = E1 ∪ E2 ∪ · · · ∪ Ej , j = 1, 2, . . . , N . Then f can be
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rewritten in the form f =
∑N
j=1(aj − aj+1)χFj , where aN+1 = 0, and

||Tmf ||Lp,∞(Rd) ≤
N∑
j=1

(aj − aj+1)||TmχFj ||Lp,∞(Rd)

≤ p

2
e(2−p)/p

N∑
j=1

(aj − aj+1)||χFj ||p

=
p

2
e(2−p)/p

N−1∑
j=0

aj+1

(
|Fj+1|1/p − |Fj |1/p

)
=

1

2
e(2−p)/p||f ||Lp,1(Rd).

By standard approximation, the above inequality extends to any nonneg-
ative f ∈ Lp,∞(Rd). To pass to general real-valued functions, it suffices
to use the decomposition f = f+− f− and the inequality ||f+||Lp,1(Rd) +

||f−||Lp,1(Rd) ≤ 21−1/p||f ||Lp,1(Rd).
We conclude this section by indicating an important connection be-

tween the subject of this paper and the theory of quasiconformal map-
pings. Recall that a homeomorphism F : C → C is said to be K-qua-
siconformal, K ≥ 1, if F ∈ W 1,2

loc (C,C) and |∂F (z)| ≤ K−1
K+1 |∂F (z)| for

almost all z ∈ C. In the fifties, Bojarski [8], [9] applied the Lp-bounded-
ness of the Beurling–Ahlfors operator B to prove that partial derivatives
of K-quasiconformal maps, which are a priori locally square integrable,
belong in fact to Lploc for some p > 2 depending only on K. By Hölder’s
inequality, this stronger integrability yields the distortion of area by
quasiconformal maps. Formally, if F (0) = 0 and F (1) = 1, then for all
measurable subsets E of the unit disc D = {z ∈ C : |z| < 1} we have

(1.5) |F (E)| ≤ C|E|κ,

where the constants C and κ depend only on K. Gehring and Reich
conjectured in [17] that the least possible κ for which (1.5) holds is
equal to 1/K. This conjecture was open for about 25 years, and was
finally proved to be true by Astala [1] two decades ago. This result
is strictly related to the following estimate. The weak-type (1, 1) and
L2 boundedness of the Beurling–Ahlfors operator imply the existence of
some universal constants c and α such that for any subset E of the unit
disc,

(1.6)

∫
D

|BχE | ≤ α|E| log
c

|E|
.
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Gehring and Reich [17] proved that their conjecture is strictly related to
the optimal value of the constant α: roughly speaking, the conjecture is
equivalent to saying that the best α equals 1. The results of this paper
yield the following related statement showing how the size of E controls
the integral

∫
D
|BχE |. Since the real and imaginary parts of B have

symbols as in (1.1), inequality (1.3) implies∫
D

|BχE | ≤ pe(2−p)/pπ1−1/p|E|1/p, 2 ≤ p <∞.

Similarly, (1.4) gives the following version for 1 < p < 2:∫
D

|BχE | ≤ 21/pΓ

(
2p− 1

p− 1

)(p−1)/p

|E|1/p.

The paper is organized as follows. The next section contains the
main probabilistic part of the paper: we study there appropriate sharp
inequalities for martingales, the stochastic versions of (1.3). In Sec-
tion 3 we combine these estimates with Bañuelos–Bogdan representa-
tion of Fourier multipliers (1.1) and thus obtain (1.3). The final part
is devoted to the optimality of the constant p

2e
(2−p)/p. This is accom-

plished by the analysis of the so-called laminates, important family of
probability measures on R2×2. A clever combination of these objects
with Burkholder’s special functions can lead to sharp lower bounds for
R2

1 − R2
2 and −2R1R2, as was first observed by Boros, Székelyhidi Jr.,

and Volberg in [10]. We extend the argument from that paper and ob-
tain the sharpness of (1.3) for d = 2; to handle the higher dimensional
case, we apply a certain transference-type argument.

2. A new martingale inequality

As mentioned in the introduction, the results of this paper depend
heavily on certain inequalities for differentially subordinated martin-
gales. To study them, let us begin with the necessary definitions and no-
tation. Assume that (Ω,F ,P) is a complete probability space, equipped
with (Ft)t≥0, a nondecreasing family of sub-σ-fields of F , such that
F0 contains all the events of probability 0. Let X, Y be two adapted
cádlág martingales, i.e., with right-continuous trajectories that have lim-
its from the left. We assume further that X takes values in the inter-
val [0, 1], while Y is Rν-valued; here ν ≥ 1 is a given integer. The
symbols [X,X] and [Y, Y ] stand for the square brackets of X and Y ,
respectively; see e.g. [14] for the definition in the real-valued case, and
extend the notion to the vector setting by [Y, Y ] =

∑ν
k=1[Y k, Y k], where
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Y k is the k-th coordinate of Y . Following Bañuelos and Wang [7] and
Wang [31], we say that Y is differentially subordinate to X, if the pro-
cess ([X,X]t−[Y, Y ]t)t≥0 is nonnegative and nondecreasing as a function
of t. For example, let f = (fn)n≥0, g = (gn)n≥0 be a pair of adapted
discrete-time martingales and let us treat them as continuous-time pro-
cesses (via Xt = fbtc, Yt = gbtc, t ≥ 0). Then the above domination
amounts to saying that |dgn| ≤ |dfn| for all n, which is the original
definition of differential subordination, due to Burkholder [11]. Here
(dfn)n≥0, (dgn)n≥0 stand for the difference sequences of f and g, given
by df0 = f0, dfn = fn − fn−1 (n ≥ 1), and similarly for dg.

The main result of this section can be stated as follows.

Theorem 2.1. Assume that X, Y are martingales taking values in [0, 1]
and Rν , respectively. If Y is differentially subordinate to X, then for
any λ ≥ 1/2 we have

(2.1) sup
t≥0

E(|Yt| − λ)+ ≤
e1−2λ

2
EX0.

The inequality is sharp, even in the discrete-time setting: for any ε > 0
there is a martingale f taking values in [0, 1] and a real-valued martin-
gale g which is differentially subordinate to f , satisfying

sup
n≥0

E(|gn| − λ)+ >

(
e1−2λ

2
− ε
)
Ef0.

As we have already mentioned in the previous section, the proof is
based on Burkholder’s method and exploits the properties of a certain
special function. To introduce this object, fix λ ≥ 1/2 and let us first
distinguish the following subsets of the strip [0, 1]× Rν :

D0 =
{

(x, y) : |y| ≤ min{x, 1− x}
}
,

D1 = {(x, y) : 0 ≤ x ≤ 1/2, x < |y| < x+ λ− 1/2},
D2 = {(x, y) : 1/2 < x ≤ 1, 1 < x+ |y| < λ+ 1/2},
D3 =

(
[0, 1]× Rν

)
\ (D0 ∪D1 ∪D2).

Now, let U : [0, 1]× Rν → R be given by

U(x, y) =



1
2 exp(1− 2λ)(|y|2 − x2 + x) if (x, y) ∈ D0,

1
2x exp

(
2|y| − 2x− 2λ+ 1

)
if (x, y) ∈ D1,

1
2 (1− x) exp

(
2|y|+ 2x− 2λ− 1

)
if (x, y) ∈ D2,

1
2

[
(|y| − λ+ 1/2)2 − x2 + x

]
if (x, y) ∈ D3.
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We will also need the following auxiliary function c : [0, 1]×Rν → [0,∞):

c(x, y) =


exp(1− 2λ) if (x, y) ∈ D0,

exp(2|y| − 2x− 2λ+ 1) if (x, y) ∈ D1,

exp(2|y|+ 2x− 2λ− 1) if (x, y) ∈ D2,

1 if (x, y) ∈ D3.

In the lemma below, we study the key properties of U . We use the
dot · to denote the scalar product in Rν ; in addition, for k ∈ Rν , we
write

〈kUyy(x, y), k〉 =

ν∑
i,j=1

Uyiyj (x, y)kikj .

Lemma 2.2. The function U satisfies the following properties.

(i) It is of class C1 in (0, 1) × Rν . Furthermore, if (x, y) belongs to
the interior of one of the sets Di, then U is infinitely many times
differentiable at (x, y).

(ii) If (x, y) belongs to the interior of one of the sets Di, then for
any h ∈ R and k ∈ Rν we have

(2.2) Uxx(x, y)h2 + 2Uxy(x, y)h ·k+ 〈kUyy(x, y), k〉 ≤ c(x, y)(|k|2−h2).

(iii) For any x ∈ [0, 1] and y ∈ Rν we have

(2.3) U(x, y) ≥ (|y| − λ)+.

Proof: (i) The property formulated in the second sentence is evident.
The property from the first sentence is straightforward and reduces to
the tedious verification that the function U and its partial derivatives
match appropriately at the common boundaries of the sets Di. The
details are left to the reader.

(ii) The inequality is obvious for Do
0, the interior of D0: actually, we get

equality here. It is also easy to see the validity of (2.2) in the interior
of D3. Indeed, on this set we have

2U(x, y) = |y|2 − x2 + x− 2|y|(λ− 1/2) + (λ− 1/2)2.

If the term 2|y|(λ − 1/2) were absent, we would have equality in (2.2);
since λ ≥ 1/2, the function (x, y) 7→ 2|y|(λ − 1/2) is convex and hence
the desired bound is preserved. Next, we turn to the case when (x, y) ∈
Do

1. Then it can be computed that the left-hand side of (2.2) is equal
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to c(x, y) + I + II, where

I = exp
(
2|y| − 2x− 2λ+ 1

)
(2x− 1)

(
y · k
|y|
− h
)2

,

II = exp
(
2|y| − 2x− 2λ+ 1

)
(x/|y| − 1)

(
|k|2 − (y · k)2

|y|2

)
.

By the definition of D1, we have x ≤ 1/2 and x ≤ |y|, which implies that
both I and II are nonpositive; thus (2.2) follows. Finally, to show the
bound for Do

2, we observe that U(x, y) = U(1 − x, y), so the inequality
follows at once from the calculations for Do

1.

(iii) The conditions (i) and (ii) we have just proved yield the following
property of U : if k ∈ Rν is an arbitrary vector of norm not exceeding 1,
then for any y ∈ Rν the function t 7→ U(t, y + tk), t ∈ [0, 1] is concave.
Consider the analogous function for the right-hand side of (2.3), i.e.,
t 7→ (|y + tk| − λ)+, t ∈ [0, 1]. This function is convex, so it is enough
to check the majorization for x ∈ {0, 1}. But U(x, y) = U(1 − x, y) for
all x ∈ [0, 1], y ∈ Rν , so all we need is the validity of (2.3) for x = 0. If
x = 0 and |y| ≤ λ− 1/2, then both sides of (2.3) are equal to 0. On the
other hand, if x = 0 and |y| > λ− 1/2, we obtain an inequality which is
equivalent to the trivial bound (|y| − λ− 1/2)2 ≥ 0. This completes the
proof.

Proof of (2.1): The proof rests on an application of Itô’s formula to
the function U and the martingales X, Y . Since U does not have the
necessary smoothness, we need some additional regularization of this
function. We split the argument into two parts, for the sake of the
clarity.

Step 1. A mollified function: Consider a C∞ function g : R × Rν →
[0,∞), supported on the unit ball and satisfying

∫
R×Rν g = 1. Given

δ ∈ (0, 1/2), let U δ : [δ, 1− δ]× Rν → R be given by the convolution

Uδ(x, y) =

∫
[−1,1]×[−1,1]ν

U(x+ δu, y + δv)g(u, v) dudv.

Of course, this function is of class C∞. Furthermore, in a sense, it
inherits the property studied in Lemma 2.2(ii). Namely, using the first
part of the lemma and integrating by parts we obtain, for x ∈ [−δ, 1− δ]
and y ∈ Rν , that

U δxx(x, y) =

∫
[−1,1]×[−1,1]ν

Uxx(x+ δu, y + δv)g(u, v) dudv,
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with similar identities for Uδxy and Uδyy. Consequently, U δ satisfies the
inequality (2.2) for x ∈ [−δ, 1− δ] and y ∈ Rν , with

cδ(x, y) =

∫
[−1,1]×[−1,1]ν

c(x+ δu, y + δv)g(u, v) dudv.

This has the following further consequence: for any y ∈ Rν and any
vector k ∈ Rν of norm not exceeding one,

(2.4) the function t 7→ Uδ(t, y + tk), t ∈ [δ, 1− δ], is concave.

Step 2. An application of Itô’s formula: Fix δ ∈ (0, 1/2). Take martin-
gales X, Y as in the statement of the theorem. Let us modify slightly
these processes so that the pair takes values in the set {(x, y) : δ ≤ x ≤
1 − δ, |y| ≥ δ} (then we will be able to compose the martingales with

the function U δ). To accomplish this, put X̃ =
(
δ + (1− 2δ)Xt

)
t≥0 and

Ỹ =
(
(1− 2δ)Yt

)
t≥0; clearly, the martingale Ỹ is differentially subordi-

nate to X̃.
Let us recall several well-known fact from stochastic analysis. First,

there exist a unique continuous local martingale parts X̃c of X̃ and Ỹ c

or Ỹ satisfying

[X̃, X̃]t = |X̃0|2 + [X̃c, X̃c]t +
∑

0<s≤t

|∆X̃s|2

for all t ≥ 0, and similarly for Ỹ . Here ∆X̃s = X̃s − X̃s− denotes the

jump of X̃ at time s. Furthermore, we have [X̃c, X̃c] = [X̃, X̃]c, the

pathwise continuous part of [X̃, X̃]. Here is Lemma 1 from [31].

Lemma 2.3. If X and Y are semimartingales, then Y is differentially
subordinate to X if and only if Y c is differentially subordinate to Xc,
the inequality |∆Yt| ≤ |∆Xt| holds for all t > 0 and |Y0| ≤ |X0|.

We come back to the proof of (2.1). An application of Itô’s formula
yields

(2.5) U δ(X̃t, Ỹt) = Uδ(X̃0, Ỹ0) + I1 + I2/2 + I3,
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where

I1 =

∫ t

0+

Uδx(X̃s−, Ỹs−) dX̃s +

∫ t

0+

U δy (X̃s−, Ỹs−) dỸs,

I2 =

∫ t

0+

Uδxx(X̃s−, Ỹs−) d[X̃, X̃]cs

+ 2

∫ t

0+

U δxy(X̃s−, Ỹs−) d[X̃, Ỹ ]cs +

∫ t

0+

Uδyy(X̃s−, Ỹs−) d[Ỹ , Ỹ ]cs,

I3 =
∑

0<s≤t

[
U δ(X̃s, Ỹs)− U δ(X̃s−, Ỹs−)

− U δx(X̃s−, Ỹs−)∆X̃s − U δy (X̃s−, Ỹs−)∆Ỹs

]
.

Let us analyze the terms I1 through I3 separately. Both summands in I1
have mean zero, by the property of stochastic integrals. The term I2 is
nonpositive: let 0 ≤ s0 < s1 ≤ t. For any j ≥ 0, let (ηji )1≤i≤ij be a

sequence of nondecreasing finite stopping times with ηj0 = s0, ηjij = s1

such that limj→∞max1≤i≤ij−1 |η
j
i+1 − ηji | = 0. Keeping j fixed, we

apply, for each i = 0, 1, 2, . . . , ij , the inequality (2.2) (or rather its version

for Uδ) to x = X̃s0−, y = Ỹs0−, and h = hji = X̃ηji+1
− X̃ηji

, k = kji =

Ỹηji+1
− Ỹηji . Summing the obtained ij +1 inequalities and letting j →∞

yields

U δxx(X̃s0−, Ỹs0−)[X,X]s1s0 + 2

ν∑
m=1

U δxym(X̃s0−, Ỹs0−)[X,Y m]s1s0

+

ν∑
m=1

ν∑
n=1

Uδymyn(X̃s0−, Ỹs0−)[Y m, Y n]s1s0

≤ cδ(X̃s0−, Ỹs0−)
(
[Y, Y ]s1s0 − [X,Y ]s1s0

)
,

where we have used the notation [S, T ]s1s0 = [S, T ]s1 − [S, T ]s0 . By

the differential subordination of Ỹ to X̃ and the condition cδ ≥ 0,
the left-hand side above is nonpositive; hence, approximating I2 by
discrete sums, we obtain I2 ≤ 0. Finally, each summand appearing
in I3 is nonpositive: this follows immediately from (2.4) and the in-

equality |∆Ỹs| ≤ |∆X̃s|, guaranteed by Lemma 2.3. Taking expecta-
tion of both sides of (2.5) and using the above properties of I1, I2,

and I3, we get the estimate EU δ(X̃t, Ỹt) ≤ EUδ(X̃0, Ỹ0). Now we
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let δ → 0: then Uδ(X̃t, Ỹt) → Uδ(Xt, Yt) almost surely. By the dif-

ferential subordination we have |Ỹ0| ≤ X̃0 ≤ 1, so EUδ(X̃0, Ỹ0) →
EU(X0, Y0), in view of Lebesgue’s dominated convergence theorem. Fur-
thermore, since U is bounded from below, so is U δ and thus Fatou’s
lemma yields the estimate EU(Xt, Yt) ≤ EU(X0, Y0). But, by (2.3),
we have U(Xt, Yt) ≥ (|Yt| − λ)+; furthermore, directly from the for-
mula for U and the bound |Y0| ≤ X0 from Lemma 2.3, we see that

U(X0, Y0) ≤ e1−2λ

2 X0. This yields the desired inequality.

Sharpness of (2.1): To prove the optimality of the constant e1−2λ/2,
we will construct appropriate discrete-time martingales f = (fn)n≥0,
g = (gn)n≥0 such that g is differentially subordinate to f . When λ = 1/2,
the martingales f , g are very simple: put f0 = κ ∈ (0, 1/2), let f1 be a
mean-κ random variable taking values 0 and 1, set f1 = f2 = f3 = · · ·
and g = f . Then both sides of (2.1) are equal:

E(|g1| − λ)+ =
1

2
P(g1 = 1) =

κ

2
=
e1−2λ

2
||f ||1.

Suppose now that λ > 1/2, let N be a large positive integer and
introduce the parameter δ = (λ − 1/2)/(2N). For a fixed κ ∈ (0, 1/2),

consider a sequence (ξn)2N+2
n=0 of independent random variables with the

following distributions: we have ξ0 = κ with probability 1; P(ξ1 = 1/2−
κ) = 1− P(ξ1 = −κ) = 2κ; for n = 1, 2, . . . , N , we have

P(ξ2n = −δ) = 1− P(ξ2n = 1/2) = (1 + 2δ)−1

and
P(ξ2n+1 = δ) = 1− P(ξ2n+1 = δ − 1/2) = 1− 2δ;

finally, P(ξ2N+2 = −1/2) = P(ξ2N+2 = 1/2). We easily see that for n ≥ 1

the variables ξn have mean zero, so the process (ξ0 + ξ1 + · · ·+ ξn)2N+2
n=0

is a martingale (with respect to its natural filtration). Introduce the
stopping time τ = inf{n : ξ0 + ξ1 + · · · + ξn ∈ {0, 1}}; it is easy to
see that τ is finite almost surely. Then, by Doob’s optional sampling
theorem, the processes

fn = ξ0+ξ1+ξ2+· · ·+ξτ∧n, gn = ξ0+ξ1−ξ2+ξ3−ξ4+· · ·+(−1)n+1ξτ∧n,

where 0 ≤ n ≤ 2N+2, are also martingales (note that the first term in gn
is ξ0, not −ξ0). To gain some intuition about (f, g), let us look at its
evolution. The pair starts from the point (κ, κ); then it moves to (0, 0)
or to (1/2, 1/2). If it went to (0, 0), it stays there forever; if it jumped
to (1/2, 1/2), it moves to (1, 0) (and stops), or to (1/2 − δ, 1/2 + δ). If
the latter possibility occurs, then it moves to (0, 2δ) (and stays there
forever) or to (1/2, 1/2 + 2δ). The pattern of the movement is then
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repeated; after 2N + 1 steps we have two possibilities: either f entered
the set {0, 1} (and then g belongs to the interval [0, λ−1/2)) or we have
(f2N+1, g2N+1) = (1/2, λ). If the second possibility takes place, the final
move of (f, g) is to jump to (0, λ+ 1/2) or to (1, λ− 1/2).

Clearly, the martingale g is differentially subordinate to f : indeed, we
have |dgn| = |dfn| for 0 ≤ n ≤ 2N + 2. Next, we have ||f ||1 = Ef0 = κ
and

E(|g2N+2| − λ)+ = P(g2N+2 = λ+ 1/2)/2 = P(A)/2,

where A = {ξ1 = 1/2 − κ, ξ2 = −δ, ξ3 = δ, ξ4 = −δ, ξ5 = δ, . . . , ξ2N =
−δ, ξ2N+1 = δ, ξ2N+2 = −1/2)}. Since ξ1, ξ2, . . . , ξ2N+2 are indepen-
dent, we obtain

(2.6) E(|g2N+2| − λ)+ =
κ

2

(
1− 2δ

1 + 2δ

)N
.

Now if we let N →∞ and recall that δ = (λ− 1/2)/(2N), we see that

E(|g2N+2| − λ)+
||f ||1

→ e1−2λ/2,

and the sharpness follows.

The final result of this section is a corollary which contains, in a sense,
a probabilistic version of the inequality (1.3).

Corollary 2.4. Suppose that X, Y are as in Theorem 2.1. Then for
any E ∈ F , t ≥ 0, and λ ≥ 1/2 we have

(2.7) E|Yt|1E ≤
e1−2λ

2
EX0 + λP(E).

Proof: We have E = E+ ∪ E−, where E+ = E ∩ {|Yt| ≥ λ} and E− =
E ∩ {|Yt| < λ}. Observe that by (2.1),

E(|Yt| − λ)1E+ ≤ E(|Yt| − λ)+ ≤
e1−2λ

2
EX0

and, obviously, E(|Yt| − λ)1E− ≤ 0. Adding the two inequalities above
yields the claim.

3. Proof of (1.3)

We start by recalling the martingale representation of the multipliers
from the class (1.1). This is described in full detail in [3] and [4], so we
shall be brief. Let m be the multiplier as in (1.1), with the corresponding
parameters φ, ψ, µ, and ν. Assume in addition that ν(Rd) is finite and
nonzero. Then for any s < 0 there is a Lévy process (Xs,t)t∈[s,0] with
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Xs,s ≡ 0, for which Lemmas 3.1 and 3.2 below hold true. To state
these, we need some notation. For a given f ∈ L∞(Rd), define the
corresponding parabolic extension Uf to (−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, fix x ∈ Rd, s < 0 and let f, φ ∈ L∞(Rd). We introduce the

processes F = (F x,s,ft )s≤t≤0 and G = (Gx,s,f,φt )s≤t≤0 by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
(Fu − Fu−) · φ(Xs,u −Xs,u−)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v−+z)−Uf (v, x+Xs,v−)

]
φ(z)ν(dz) dv.

(3.1)

Now, fix s < 0 and define the operator S = Ss,φ,ν by the bilinear form

(3.2)

∫
Rd
Sf(x)g(x) dx =

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx,

where f, g ∈ C∞0 (Rd). We have the following facts, proved in [3] and [4].

Lemma 3.1. For any fixed x, s, f , φ as above, the processes F x,s,f ,
Gx,s,f,φ are martingales with respect to (Ft)s≤t≤0 = (σ(Xs,t : s ≤
t))s≤t≤0. Furthermore, if ||φ||∞ ≤ 1, then Gx,s,f,φ is differentially sub-
ordinate to F x,s,f .

Let us stress here that φ, and hence also G, are complex valued. The
aforementioned representation of Fourier multipliers in terms of Lévy
processes is as follows.

Lemma 3.2. Let 1 < p < ∞ and d ≥ 2. The operator Ss,φ,ν is well
defined and extends to a bounded operator on Lp(Rd), which can be ex-
pressed as a Fourier multiplier with the symbol

M(ξ) = Ms,φ,ν(ξ)

=

[
1−exp

(
2s

∫
Rd

(1−cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1−cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1−cos〈ξ, z〉)ν(dz)

if
∫
Rd(1− cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise.
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We are ready to establish the inequality (1.3). We may and do assume
that at least one of the measures µ, ν is nonzero. It is convenient to split
the reasoning into two parts.

Step 1: First we show the estimate for the multipliers of the form

(3.3) Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
.

Assume that 0 < ν(Rd) < ∞, so that the above machinery using Lévy
processes is applicable. Fix s < 0 and functions f, g ∈ C∞0 (Rd) such
that f takes values in [0, 1], while g takes values in the unit ball of C and
is supported on a certain set E of finite Lebesgue measure. Of course,
then the martingale F x,s,f takes values in [0, 1]. By Fubini’s theorem
and (2.7), we have, for any λ ≥ 1/2,∣∣∣∣∫

Rd
E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx

∣∣∣∣ ≤ ∫
Rd

E|Gx,s,f,φ0 |1{x+Xs,0∈E} dx

≤ e1−2λ

2

∫
Rd

E|F x,s,f0 |dx

+ λ

∫
Rd

P(x+Xs,0 ∈ E) dx

=
e1−2λ

2
||f ||L1(Rd) + λ|E|.

Plugging this into the definition of S and taking the supremum over all g
as above, we obtain

(3.4)

∫
E

|Ss,φ,νf(x)|dx ≤ e1−2λ

2
||f ||L1(Rd) + λ|E|.

Now if we let s → −∞, then Ms,φ,ν converges pointwise to the multi-
plier Mφ,ν given by (3.3). By Plancherel’s theorem, Ss,φ,νf → TMφ,ν

f

in L2(Rd) and hence there is a sequence (sn)∞n=1 converging to −∞
such that limn→∞ Ssn,φ,νf → TMφ,ν

f almost everywhere. Thus Fatou’s
lemma combined with (3.4) yields the bound∫

E

|TMφ,ν
f(x)|dx ≤ e1−2λ

2
||f ||L1(Rd) + λ|E|.

Now, assume that |E| ≤ ||f ||L1(Rd) and minimize the right-hand side
over λ. A straightforward analysis of the derivative shows that the min-
imum is attained for λ =

[
1 + log(||f ||L1(Rd)/|E|)

]
/2, and we obtain the
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estimate∫
E

|TMφ,ν
f(x)|dx ≤

(
1 +

1

2
log
||f ||L1(Rd)

|E|

)
|E|

=

(
|E|1/p +

|E|1/p

2
log
||f ||L1(Rd)

|E|

)
|E|1/q.

But the expression in the above parentheses does not exceed
p
2e

(2−p)/p||f ||1/p
L1(Rd), which again can be verified by the straightforward

manipulations with the derivative. Consequently, we have proved that

(3.5)

∫
E

|TMφ,ν
f(x)|dx ≤ p

2
e(2−p)/p||f ||1/p

L1(Rd)|E|
1/q.

On the other hand, if the measure of E is larger than ||f ||L1(Rd), then

we apply Schwarz inequality and the L2 bound for TMφ,ν
to get∫

E

|TMφ,ν
f(x)|dx =

∫
Rν
|TMφ,ν

f(x)|χE(x) dx

≤
(∫

Rν
|TMφ,ν

f(x)|2 dx

)1/2

|E|1/2

≤ ||f ||L2(Rd)|E|1/2 ≤ ||f ||L1(Rd)|E|1/2.

But this is not larger than p
2e

(2−p)/p||f ||1/p
L1(Rd)|E|

1/q, i.e., (3.5) holds

true; to prove this bound, rewrite it in the form

||f ||1/2−1/p
L1(Rd) ≤

p

2
e(2−p)/p|E|1/q−1/2

and note that ||f ||1/2−1/p
L1(Rd) ≤ |E|1/2−1/p = |E|1/q−1/2 and p

2e
(2−p)/p ≥

p
2 ·

2
p = 1.

Finally, using some standard approximation arguments, we see that
(3.5) can be applied to f = χA (where A is a measurable subset of Rd,
satisfying |A| <∞), and we obtain

(3.6) ||TMφ,ν
χA||Lp,∞(Rd) ≤

p

2
e(2−p)/p||χA||Lp(Rd).

Step 2: Now we deduce the result for the general multipliers as in (1.1)
and drop the assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a
Lévy measure νε in polar coordinates (r, θ) ∈ (0,∞)× S by

νε(dr dθ) = ε−2δε(dr)µ(dθ).
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Here δε denotes Dirac measure on {ε}. Next, consider a multiplier
Mε,φ,ψ,µ,ν as in (3.3), in which the Lévy measure is 1{|x|>ε}ν+νε and the
jump modulator is given by 1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). Note that
this Lévy measure is finite and nonzero, at least for sufficiently small ε.
If we let ε→ 0, we see that∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =

∫
S
〈ξ, θ〉2φ(θ)

1− cos〈ξ, εθ〉
〈ξ, εθ〉2

µ(dθ)

→ 1

2

∫
S
〈ξ, θ〉2φ(θ)µ(dθ)

and, consequently, Mε,φ,ψ,µ,ν → mφ,ψ,µ,ν pointwise. Thus (3.6) yields
(1.3). Indeed, using Plancherel’s theorem as above, we see that there is a
sequence (εn)n≥1 converging to 0 such that TMεn,φ,ψ,µ,ν

χA → Tmφ,ψ,µ,νχA
almost everywhere. It suffices to apply Fatou’s lemma.

This completes the proof of the desired bound.

In the remainder of this section we will show how to extend (1.3) to the
vector-valued setting. For any bounded functionm = (m1,m2, . . . ,mn) :
Rd → Cn, we may define the associated Fourier multiplier acting on com-
plex valued functions on Rd by the formula Tmf=(Tm1

f, Tm2
f, . . . ,Tmnf).

The above reasoning can be easily modified to yield the following state-
ment.

Theorem 3.3. Let ν, µ be two measures on Rd and S, respectively,
satisfying the assumptions of Theorem 1.2. Assume further that φ, ψ are
two Borel functions on Rd taking values in the unit ball of Cn and let
m : Rd → Cn be the associated symbol given by (1.1). Then for any
A ⊂ Rd of finite Lebesgue measure and any p ≥ 2 we have

(3.7) ||TmχA||Lp,∞(Rd;Cn) ≤
p

2
e(2−p)/p||χA||Lp(Rd)

and the inequality is sharp.

Proof: Suppose first that ν is finite. For a given C∞ function f : Rd →
[0, 1], we introduce martingales F and G = (G1, G2, . . . , Gn) by the
formula (3.1). It is easy to check that G is differentially subordinate to F ,
arguing as in [3] or [4]. Note that F is [0, 1]-valued, while G takes values
in Cn ' R2n. Applying the representation (3.2) to each coordinate of G
separately, we obtain the associated multiplier S = (S1,S2, . . . ,Sn),
where Sj has symbol Ms,φj ,νj as in Lemma 3.2. Now we repeat the

reasoning leading to (3.4), with a vector valued function g : Rd → Cn (the

expression Gx,s,f,φ0 g(x+Xs,0) should be replaced with the corresponding
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scalar product). An application of (2.1), or rather (2.7), gives∫
E

|Sf(x)|dx ≤ e1−2λ

2
||f ||L1(Rd) + λ|E|,

and letting s→ −∞ yields the corresponding bound for T =(T 1, T 2, . . . ,
T n), where T j has symbol Mφj ,νj as in (3.3). By standard approxima-
tion, we may replace f with χA, and it suffices to apply the optimization
procedure over λ and |E| to get the claim for these special multipliers.
The passage to general m as in (1.1) is carried over in the same manner
as in the scalar case.

4. Sharpness of (1.3)

We turn to the final part of the paper in which we will show that
the constant p

2e
(2−p)/p in (1.3) is the best possible. Specifically, we will

prove that for any d ≥ 2, the inequality

(4.1) ||(R2
1 −R2

2)χA||Lp,∞(Rd) ≤
p

2
e(2−p)/p||χA||Lp(Rd)

is sharp. The proof will be a combination of various analytic and prob-
abilistic facts, and it is convenient to split this section into a several
separate parts.

4.1. Beurling–Ahlfors operator and its action on the indica-
tor function of a ball. Recall that Beurling–Ahlfors operator can
be defined as the Fourier multiplier with the symbol m(ξ) = (ξ/|ξ|)2,
ξ ∈ C \ {0} (with the standard identification C ' R2). Alternatively,
B can be expressed as the singular integral

Bf(z) = −p.v.
1

π

∫
C

f(w)

(z − w)2
dw, z ∈ C,

where the integration is with respect to the Lebesgue’s measure on the
complex plane. This operator plays a fundamental role in the study
of quasiconformal mappings, partial differential equations and complex
analysis. Its importance lies in the fact that it changes the complex
derivative ∂ into ∂. Formally, we have

(4.2) B(∂w) = ∂w

for every w in the Sobolev space W 1,2(C,C).
The operator B can be expressed in terms of second-order planar Riesz

transforms. To see this, rewrite its symbol in the form

(4.3) m(ξ) =
ξ2

|ξ|2
=
ξ21 − ξ22
ξ21 + ξ22

+ i
2ξ1ξ2
ξ21 + ξ22
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and observe that mRe(ξ) = (ξ21 − ξ22)/(ξ21 + ξ22) is the symbol of R2
2 −R2

1

and mIm(ξ) = 2ξ1ξ2/(ξ
2
1 + ξ22) is the symbol of −2R1R2. An impor-

tant link with the results of this paper states that these multipliers have
symbols belonging to the class (1.1). For instance, the choice d = 2,
µ = δ(1,0) + δ(0,1), ψ(1, 0) = −1 = −ψ(0, 1), and ν = 0 gives Tm = ReB;

likewise, d = 2, µ = δ(1/
√
2,1/
√
2) + δ(1/

√
2,−1/

√
2), ψ(1/

√
2, 1/
√

2) = 1 =

−ψ(1/
√

2,−1/
√

2), and ν = 0 leads to Tm = ImB. Furthermore, note
that there is a rotation r such that mRe ◦ r = mIm; consequently, the
restricted constants of ReB and ImB are the same. Therefore, hav-
ing proved (4.1) for d = 2, we automatically get that p

2e
(2−p)/p is the

restricted weak constant for both these operators.
We conclude this subsection by recalling a well known fact concerning

the action of the operator B on indicator function of balls. Throughout
this section, B ⊂ C denotes the ball of center 0 and radius 1. Then we
have

(4.4) BχB(z) = − 1

z2
χC\B(z).

This follows at once from (4.2), by applying it to the function w(z) =
zχB + z−1χC\B. It will important to us later that in particular, (R2

2 −
R2

1)χB vanishes on B.

4.2. Laminates: necessary definitions. Assume that Rm×n denotes
the space of all real matrices of dimension m × n and let Rn×nsym be the

subclass of Rn×n which consists of all real symmetric n× n matrices.

Definition 4.1. A function f : Rm×n → R is said to be rank-one convex,
if t 7→ f(A+ tB) is convex for all A,B ∈ Rm×n with rank B = 1.

Let P = P(Rm×n) stand for the class of all compactly supported prob-
ability measures on Rm×n. For ν ∈ P, we denote by ν =

∫
Rm×n X dν(X)

the center of mass or barycenter of ν.

Definition 4.2. We say that a measure ν ∈ P is a laminate (and write
ν ∈ L), if

f(ν) ≤
∫
Rm×n

f dν

for all rank-one convex functions f . The set of laminates with barycen-
ter 0 is denoted by L0(Rm×n).

Laminates can be used to obtain lower bounds for solutions of certain
PDEs, as was first noticed by D. Faraco in [16]. Furthermore, laminates
arise naturally in several applications of convex integration, where can
be used to produce interesting counterexamples, see e.g. [2], [13], [23],
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[24], and [29]. We will be particularly interested in the case of 2×2 sym-
metric matrices. The important fact is that laminates can be regarded
as probability measures that record the distribution of the gradients of
smooth maps, see Corollary 4.6 below. Let us briefly explain this; de-
tailed proofs of the statements below can be found for example in [22],
[24], and [29].

Definition 4.3. Let U ⊂ R2×2 be a given set. Then PL(U) denotes the
class of prelaminates in U , i.e., the smallest class of probability measures
on U which

(i) contains all measures of the form λδA + (1 − λ)δB with λ ∈ [0, 1]
and satisfying rank(A−B) = 1;

(ii) is closed under splitting in the following sense: if λδA + (1 − λ)ν
belongs to PL(U) for some ν ∈ P(R2×2) and µ also belongs to
PL(U) with µ = A, then also λµ+ (1− λ)ν belongs to PL(U).

It follows immediately from the definition that the class PL(U) con-
tains atomic measures only. Also, by a successive application of Jensen’s
inequality, we have the inclusion PL ⊂ L. Let us state two well-known
facts (see [2], [22], [24], and [29]).

Lemma 4.4. Let ν =
∑N
i=1 λiδAi ∈ PL(R2×2

sym) with ν = 0. Moreover,

let 0 < r < 1
2 min |Ai −Aj | and δ > 0. For any bounded domain Ω ⊂ R2

there exists u ∈W 2,∞
0 (Ω) such that ‖u‖C1 < δ and for all i = 1, . . . , N∣∣{x ∈ Ω : |D2u(x)−Ai| < r}

∣∣ = λi|Ω|.

Lemma 4.5. Let K ⊂ R2×2
sym be a compact convex set and ν ∈ L(R2×2

sym)

with supp ν ⊂ K. For any relatively open set U ⊂ R2×2
sym with K b U

there exists a sequence νj ∈ PL(U) of prelaminates with νj = ν and

νj
∗
⇀ ν.

Combining these two lemmas and using a simple mollification, we
obtain the following statement, proved by Boros, Székelyhidi, Jr., and
Volberg [10]. It exhibits the connection between laminates supported on
symmetric matrices and second derivatives of functions, and will play a
crucial role in our argumentation below.

Corollary 4.6. Let ν ∈ L0(R2×2
sym). Then there exists a sequence uj ∈

C∞0 (B) with uniformly bounded second derivatives, such that

(4.5)
1

|B|

∫
B
φ(D2uj(x)) dx→

∫
R2×2
sym

φ dν

for all continuous φ : R2×2
sym → R.
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Let us stress here that the corollary works for laminates of barycen-
ter 0. This will give rise to some small technical difficulties, as “natural”
laminates do not have this property; see below.

4.3. Biconvex functions and a special laminate. In the next step
in our analysis, we introduce a certain special laminate. To do this, we
need some additional notation. A function ζ : R × R → R is said to be
biconvex if for any fixed z ∈ R, the functions x 7→ ζ(x, z) and y 7→ ζ(z, y)
are convex. Now, for λ ≥ 1/2, let f , g be martingales of Section 2, which
exhibit the sharpness of (2.1) (if λ is strictly larger than 1/2, then there
is a whole family of examples, corresponding to different choices of κ
and N – these two parameters will be specified later). Consider the
R2-valued martingale

(F,G) :=

(
f + g

2
− κ, f − g

2

)
.

We subtract κ on the first coordinate to ensure that the pair (F,G) has
mean (0, 0). This sequence has the following zigzag property: for any
0 ≤ n ≤ 2N + 1 we have Fn = Fn+1 with probability 1 or Gn = Gn+1

almost surely; that is, in each step (F,G) moves either vertically, or
horizontally. Indeed, this follows directly from the construction that for
each n we have P(dfn = dgn) = 1 or P(dfn = −dgn) = 1. This property
combines nicely with biconvex functions: if ζ is such a function, then a
successive application of Jensen’s inequality gives

Eζ(F2N+2, G2N+2) ≥ Eζ(F2N+1, G2N+1) ≥ · · ·
≥ Eζ(F0, G0) = ζ(0, 0).

(4.6)

Now, the martingale (F,G), or rather the distribution of its terminal
variable (F2N+2, G2N+2), gives rise to a probability measure ν on R2×2

sym:
put

ν (diag(x, y)) = P
(
(F2N+2, G2N+2) = (x, y)

)
, (x, y) ∈ R2.

Here and below, diag(x, y) denotes the diagonal matrix
(
x 0
0 y

)
. The key

observation is that ν is a laminate of barycenter 0 (actually, it can be
shown that it is even a prelaminate, but we will not need this). To
prove this property, note that if ψ : R2×2 is a rank-one convex, then
(x, y) 7→ ψ(diag(x, y)) is biconvex and thus, by (4.6),∫

R2×2

ψ dν = Eψ(diag(F2N+2, G2N+2) ≥ ψ(diag(0, 0)) = ψ(ν).
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Finally, note that P
(
F2N+2 + G2N+2 ∈ {−κ, 1 − κ}

)
= P(f2N+2 ∈

{0, 1}) = 1, and hence the support of ν is contained in

(4.7) K =
{

diag(x, y) : x+ y ∈ {−κ, 1− κ}
}
.

4.4. Sharpness of (1.3), the case d = 2. For the convenience of
the reader, let us sketch the idea behind the arguments below. We
start with the application of Corollary 4.6 to the laminate ν: let (uj)j≥1
be the corresponding sequence of smooth functions. As we have just
observed above, the support of ν is contained in K given by (4.7). Since
the distribution of uj is close to ν (in the sense of Corollary 4.6), we
expect that ∆uj , essentially, takes only values close to −κ or close to
1 − κ. Thus, if we define vj = ∆uj + κχB for j = 1, 2, . . . , then vj is
close to an indicator function of a certain set A. Thus, to prove the
sharpness of (4.1), one can try to study this estimate with χA replaced
by vj . We will look separately at the action on R2

1−R2
2 on ∆uj and κχB;

to handle the Laplacian, we will use the arguments from the previous
two subsections, and κχB will be dealt with by the facts presented in
Subsection 4.1.

Step 1: We start from the specification of the parameters N and κ. For
a given p ≥ 2, let λ = (p−1)/2 and pick an arbitrary number M smaller
than e1−2λ/2: thus, M = 1

2e
1−2λ · η for some η < 1. Let κ ∈ (0, 1/2) be

arbitrary and choose N so that E(|g2N+2| − λ)+ > MEf0 = Mκ. This
is possible, in view of the results of Section 2. Furthermore, let ε be an
arbitrary positive number (which will eventually be sent to 0). In what
follows, we will use the following convention: C1, C2, C3, . . . will denote
constants which depend only on κ and N .

Step 2: Consider a continuous function φ : R2×2
sym → R given by

φ(diag(x, y)) = |x+ y + κ|. By Corollary (4.6), we have

1

|B|

∫
B
|vj | =

1

|B|

∫
B
φ(D2uj)

j→∞−−−→
∫
R2×2
sym

φ dν

= E|F2N+2 +G2N+2 + κ| = κ,

so for sufficiently large j we have

(4.8)
1

|B|

∫
B
|vj | ≤ κ(1 + ε).

Step 3: Consider a continuous function φ : R2×2
sym → [0, 1], satisfying

φ(diag(x, y)) = 1 when |x + y − 1 + κ| > ε and |x + y + κ| > ε, and
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φ(diag(x, y)) = 0 if x+ y + κ ∈ {0, 1}. By Corollary 4.6,

(4.9)
1

|B|

∫
B
φ(D2uj)→

∫
R2×2

sym

φ dν = 0,

since P(F2N+2 +G2N+2 + κ ∈ {0, 1}) = 1. Consider the sets

A = {x ∈ B : |∆uj(x)− 1 + κ| ≤ ε}, Ã = {x ∈ B : |∆uj(x) + κ| ≤ ε}.

Then (4.9) implies that

(4.10)
|B \ (A ∪ Ã)|

|B|
< ε for sufficiently large j.

Step 4: Next, consider a continuous function φ : R2×2
sym → [0, 1], satisfying

φ(diag(x, y)) = 1 if x+y+κ = 1 and φ(diag(x, y)) = 0 if |x+y+κ−1| > ε.
Then

|A| ≥
∫
B
φ(D2uj)

j→∞−−−→ |B|
∫
R2×2

sym

φdν = |B|P(F2N+2 +G2N+2 = 1− κ),

and the number on the right depends only on N and κ; thus, for large j,

(4.11) |A| is bounded from below by C1.

Consequently, for any 1 ≤ q <∞ and large j,

||vj − χA||qLq(R2) = ||∆uj + κ− χA||qLq(B)

=

∫
A

|∆uj + κ− χA|q +

∫
Ã

|∆uj + κ− χA|q

+

∫
B\(A∪Ã)

|∆uj + κ− χA|q

≤ εq|A|+ εq|Ã|+ ε|B|(sup
B
|∆uj |+ κ).

Here in the last passage we have used the definition of A, Ã, and (4.10).
Combining this with (4.11) (and the fact that the second-order partial
derivatives of uj are uniformly bounded by C2, see Corollary 4.6), we
get that for sufficiently large j,

(4.12) ||vj − χA||qLq(R2) ≤ C3ε|A|.
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In other words, the function vj is close to the indicator function of A.

Step 5: Next, consider the function φ : R2×2
sym → R given by φ(diag(x, y))=

(|x− y| − λ)+. By the choice of κ, N , and (4.8),

1

|B|

∫
B
φ(D2uj)

j→∞−−−→
∫
φdν = E(|g2N+2| − λ)+

> Mκ

≥ M

1 + ε
· 1

|B|

∫
B
|vj |

≥ M

1 + ε
· 1

|B|

(
|A| −

∫
B
|vj − χA|

)
.

Now multiply throughout by |B| and apply (4.12) with q = 1; we get
that for sufficiently large j,∫

B
φ(D2uj) ≥

M

1 + ε
(1− C3ε)|A|.

However, observe that

φ(D2uj) = (|∂11uj − ∂22uj | − λ)+

= (|(R2
1 −R2

2)∆uj | − λ)+ = (|(R2
1 −R2

2)vj | − λ)+

on B, since (R2
1 − R2

2)χB = 0 on B (see Subsection 4.1). Therefore, the
preceding considerations yield that for large j,

M

1 + ε
(1− C3ε)|A| ≤

∫
B

(|(R2
1 −R2

2)vj | − λ)+

≤
∫
B

(|(R2
1 −R2

2)χA| − λ)++

∫
B
|(R2

1 −R2
2)(vj − χA)|.

However, the norm of R2
1−R2

2 as an operator on L2(R2) is bounded by 1:
see (1.2). Consequently, by Schwarz inequality, (4.12), and then (4.11),∫
B
|(R2

1−R2
2)(vj−χA)| ≤ ||vj−χA||2|B|1/2 ≤ C4ε

1/2|A|1/2 ≤ C5ε
1/2|A|.

Plugging this into the above inequality, we get that if j is sufficiently
large, then ∫

B
(|(R2

1 −R2
2)χA| − λ)+ ≥

M

1 + ε
(1− C6ε

1/2)|A|.
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Therefore, if we let E = {x ∈ B : |(R2
1 − R2

2)χA| > λ} and recall that
M = 1

2e
1−2λ · η, then∫
E

|(R2
1 −R2

2)χA| ≥
M

1 + ε
(1− C6ε

1/2)|A|+ λ|E|

≥ (1− C4ε
1/2)η

1 + ε

[
e1−2λ

2
|A|+ λ|E|

]
.

However, we have λ = (p − 1)/2. Plugging this above and applying
Young inequality, we see that the right-hand side is not smaller than

(1− C4ε
1/2)η

1 + ε
· p

2
e(2−p)/p||χA||Lp(R2)|E|1−1/p.

Using the fact that η < 1 and ε > 0 were arbitrary, we obtain that the
constant p

2e
(2−p)/p is indeed the best possible in (1.3).

4.5. Sharpness of (1.3), the case d ≥ 3. Suppose that for a fixed p ≥
2 and some positive constant C we have

(4.13)

∫
E

|(R2
1 −R2

2)χA(x)|dx ≤ C||χA||Lp(Rd)|E|1−1/p

for all measurable subsets A, E of Rd of positive and finite Lebesgue
measure. For t > 0, define the dilation operator δt as follows: for any
function g : R2 × Rd−2 → R, we let δtg(ξ, ζ) = g(ξ, tζ); for any A ⊂
R2 × Rd−2, let δtA = {(ξ, tζ) : (ξ, ζ) ∈ A}. Note that the function δtχA
is supported on δ−1t A and hence, by (4.13), the operator Tt := δ−1t ◦
(R2

1 −R2
2) ◦ δt satisfies∫
E

|TtχA(x)|dx= td−2
∫
δ−1
t E

|(R2
1 −R2

2) ◦ δtχA(x)|dx

≤C

(
td−2

∫
δ−1
t A

|δtχA(x)|p dx

)1/p(
td−2|δ−1t E|

)1−1/p
=C||χA||Lp(Rd)|E|1−1/p.

(4.14)

It is straightforward to check that the Fourier transform F satisfies the
identity F = td−2δt ◦ F ◦ δt, so the operator Tt enjoys the condition

T̂tχA(ξ, ζ) = − ξ21 − ξ22
|ξ|2 + t2|ζ|2

χ̂A(ξ, ζ), (ξ, ζ) ∈ R2 × Rd−2.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂tχA(ξ, ζ) = T̂0χA(ξ, ζ)
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in L2(Rd), where T̂0χA(ξ, ζ) = (ξ22 − ξ21)f̂(ξ, ζ)/|ξ|2. By Plancherel’s
theorem and Fatou’s lemma, we see that (4.14) implies

(4.15)

∫
E

|T0χA(x)|dx ≤ C||χA||Lp(Rd)|E|1−1/p.

Now pick an arbitrary set Ã ⊂ R2 of non-zero and finite Lebesgue mea-
sure and put A = Ã × [0, 1]d−2. Denoting by R1 and R2 the planar
Riesz transforms, we see that T0χA(ξ, ζ) = (R2

1 −R2
2)χÃ(ξ)1[0,1]d−2(ζ),

because of the identity

T̂0χA(ξ, ζ) = −ξ
2
1 − ξ22
|ξ|2

χ̂Ã(ξ) ̂1[0,1]d−2(ζ).

Plug this into (4.15) with the choice E = Ẽ × [0, 1]d−2, where Ẽ is an

arbitrary subset of R2 with 0 < |Ẽ| <∞. As the result, we obtain∫
Ẽ

|(R2
1 −R2

2)χÃ(ξ)|dξ ≤ C||χÃ||Lp(R2)|Ẽ|1−1/p.

However, we have shown in the previous subsection that this implies
C ≥ pe(2−p)/p/2. The proof is complete.
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