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1. Introduction

It is known that the α-dimensional packing measure of a compact
set A in Rm and its α-dimensional packing premeasure will coincide if the
packing premeasure of A is finite (see [14]). In order to construct pack-
ing measure from packing premeasure a procedure known as method I
is used. In this paper we study a similar question for the discrete mini-
mum energy limits, namely, under what conditions the lower limit of the
normalized discrete minimum Riesz energy (the quantity g

s,α
(A) defined

in (3) below) will coincide with the outer measure of A constructed using
method I from the set function g

s,α
.

Another result obtained in this paper is related to the results by Kol-
mogorov and Tikhomirov [27] and by Hardin and Saff [22], [23]. The
asymptotic behavior as ε tends to 0 of the ε-complexity of a Jordan mea-
surable compact set A in Rd was found in [27, Theorem IX]. The asymp-
totic behavior as N grows of the minimum Riesz s-energy of N -points
restricted to a compact set A ⊂ Rd of positive Lebesgue measure (s > d)
is also known (see [23, Theorem 2.2]). A compact set in Rd can be
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placed inside a cube, and the cube in turn, can be considered as a self-
similar set. We obtain analogs of these results when the compact set A
is contained in a given self-similar set in Rd that satisfies the open set
condition. Since the upper and the lower limits of the normalized Riesz
energy and best-packing may differ on some self-similar sets, we consider
the upper and the lower limit separately. Our result may be applied to
estimating the Hausdorff probability measure of a compact subset A of
a self-similar set K. To do this one could minimize on A and on K the
Riesz energy of N -point configurations for some “large” value of N and
the value of s greater than the Hausdorff dimension of K and then find
the ratio of the two energies. We remark that methods of computing
the Hausdorff and packing measure of a whole self-similar set, which use
other ideas were considered in [33].

The paper is structured as follows. In Section 2 we introduce the
general notation and definitions. In Section 3 we review known results
for the minimum energy and best-packing problem on rectifiable sets. In
Section 4 we recall the definitions related to self-similar sets and formu-
late the asymptotic results for the minimum energy and the best-packing
radius on compact subsets of self-similar sets. In Section 5 we formulate
the result concerning the outer measures constructed from the limits of
the normalized values of the minimum energy and best-packing. In Sec-
tion 6 we obtain a regularity result, which is used in Sections 7 and 8 to
prove the main results of this paper.

2. Setting of the problems, notation and definitions

Let m ∈ N and s > 0. For an arbitrary collection of points ωN :=
{x1, . . . , xN} ⊂ Rm, N ∈ N, N ≥ 2, its Riesz s-energy is defined to be

Es(ωN ) :=
∑

1≤i 6=j≤N

1

|xi − xj |s

where |·| stands for the Euclidian distance in Rm. The discrete minimum
Riesz N -point s-energy of a given set A in Rm is defined as

(1) Es(A,N) := inf
ωN⊂A

#ωN=N

Es(ωN ),

where #X denotes the cardinality of a set X. The case of m = 3, s = 1,
and A being a sphere in R3 corresponds to the classical Thomson’s prob-
lem of finding the ground state configurations of N classical electrons on
the sphere. For the exact results on Thomson’s problem and further
reviews see [43], [3], [28], [9], and references therein.
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In known cases when s is greater than the Hausdorff dimension of A,
interactions between points located close to each other on A determine
the main term of the energy sum as N →∞. This case is referred to as
the case of short range interactions on A.

The limiting case of the minimum s-energy problem as s → ∞, is
the best-packing problem, which we will state next. For a configuration
ωN = {x1, . . . , xN} ⊂ Rm, denote

δ(ωN ) := min
1≤i 6=j≤N

|xi − xj |.

The best-packing N point distance on the set A is defined as

(2) δN (A) := sup
ωN⊂A

#ωN=N

δ(ωN ).

A configuration ωN ⊂ A attaining the supremum on the right-hand side
of (2) is called a best-packing configuration. Without loss of generality,
we can consider only compact sets A in both problems, since for an un-
bounded set, the minimal energy is zero and the best-packing distance
equals infinity. Moreover, for any set and its closure, the minimal ener-
gies have the same value and the best-packing distances coincide as well.
When A is compact, there always exists an optimal N -point configura-
tion in (1) and (2) and the infimum (supremum) can be replaced by the
minimum (maximum). Formulated for the sphere in R3 the problem of
finding quantity (2) is known as the Tammes problem. For notable re-
sults and reviews on this problem see [13], [37], [10], [4], [21], and [15].
It is not difficult to see that for every N fixed,

lim
s→∞

Es(A,N)1/s =
1

δN (A)
.

The best-packing problem is dual to the ε-complexity problem, which was
first considered in [26] and [27]. For every ε > 0, the ε-complexity Cε(A)
of a compact set A ⊂ Rm is defined as

Cε(A) = max{#X : X ⊂ A, and ∀ x 6= y ∈ X, |x− y| ≥ ε}.

The quantity log2 Cε(A) is known as ε-capacity of the set A and finds its
applications in the information theory. The problem about ε-complexity
also has applications in the theory of dynamical systems (see for exam-
ple [1] and [2]).
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Let 0 < α ≤ m and s > α. Denote

(3) g
s,α

(A) := lim inf
N→∞

Es(A,N)

N1+s/α
, gs,α(A) := lim sup

N→∞

Es(A,N)

N1+s/α
,

and

(4) gs,α(A) := lim
N→∞

Es(A,N)

N1+s/α
,

provided that the limit in (4) exists. For every α ∈ (0,m], let

g∞,α(A) := lim inf
N→∞

δN (A) ·N1/α = lim inf
ε→0

ε · Cε(A)1/α,

g∞,α(A) := lim sup
N→∞

δN (A) ·N1/α = lim sup
ε→0

ε · Cε(A)1/α.

Denote also

(5) g∞,α(A) := lim
N→∞

δN (A) ·N1/α = lim
ε→0

ε · Cε(A)1/α,

provided that these limits exist. We remark that

(6) lim
s→∞

(
g
s,α

(A)
)1/s

=
1

g∞,α(A)
and lim

s→∞

(
gs,α(A)

)1/s
=

1

g∞,α(A)
.

The proof of this fact can be found, for example, in [7]. We say that
a sequence of configurations ωN = {x1,N , . . . , xN,N}, N ∈ N, N ≥ 2,
on A is asymptotically distributed according to a given Borel probabil-
ity measure µ supported on A, if for every Borel subset B of A whose
boundary relative to A has µ-measure zero, there holds

lim
N→∞

#(ωN ∩B)

N
= µ(B).

In this case we will write

ν(ωN )
∗→ µ, N →∞.

A sequence {ωN}N∈N of N -point configurations on A is called asymp-
totically s-energy minimizing, if

lim
N→∞

Es(ωN )

Es(A,N)
= 1,

and it is called asymptotically best-packing if

lim
N→∞

δ(ωN )

δN (A)
= 1.
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Let Hα, 0 < α ≤ m, be the α-dimensional Hausdorff measure in Rm
and let dimA be the Hausdorff dimension of the set A. In what follows,
when α = d ∈ N, the measureHd will be normalized so that the isometric
copy of the cube [0, 1]d embedded in Rm has measure 1. Given a compact
set A ⊂ Rm with 0 < Hλ(A) < ∞, 0 < λ ≤ m, let hλ = hλ,A be the
probability measure supported on A such that for every Hλ-measurable
subset B ⊂ A,

hλ,A(B) :=
Hλ(B)

Hλ(A)
.

A set A ⊂ Rm is called d-rectifiable, d ∈ N, d ≤ m, if it is an image of a
bounded set from Rd with respect to some Lipschitz mapping ϕ : Rd →
Rm.

3. Known asymptotic results for rectifiable sets

For a closed d-rectifiable set A ⊂ Rm with Hd(A) > 0, the minimal
discrete s-energy has the following asymptotic behavior (cf. [22] or [23]
and [5]):

(7) gs,d(A) = lim
N→∞

Es(A,N)

N1+s/d
=

Cs,d
Hd(A)s/d

, s > d.

For the best-packing distance and the ε-complexity of A, we also have

(8) g∞,d(A) = C∞,dHd(A)1/d,

see [27] for the case d = m and A being Jordan measurable and [7]
for the case d ≤ m and A being d-rectifiable. Here Cs,d and C∞,d are
positive constants independent of A. The sequences of optimal N -point
configurations for both problems are asymptotically distributed accord-
ing to the measure hλ,A. When the compact set A is a countable union
of d-rectifiable sets, these relations remain true if Hd(A) equals the d-di-
mensional Minkowski content of A (cf. [7]).

We remark that Cs,1 =2ζ(s), s > 1, where ζ(s)=
∑∞
k=1 k

−s is the clas-

sical Riemann zeta-function [31], and C∞,1 = 1, C∞,2 = (2/
√

3)1/2 [13],

and C∞,3 = 6
√

2 [21]. The value of Cs,d in all other cases is still un-
known (see [8] for estimates for these constants). Asymptotic results for
the quantization problem on rectifiable sets were obtained in [36] (see
also references therein).

We also remark that in the case of long range interactions, i.e. when
0 < s < dimA, we always have Es(A,N) � N2, N →∞ (see e.g. [30]).
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4. Minimal Riesz energy on compact subsets of a
self-similar set

According to relations (7) and (8), restrictions of the set functions
gs,d(·)−d/s and g∞,d(·)d to the class of d-rectifiable sets in Rm coincide
with constant multiples of the Hausdorff measure. In this section we
show that the restrictions of the set functions gs,d(·)−d/s and g∞,d(·)d
to the family of compact subsets of a given self-similar set of Hausdorff
dimension α satisfying the open set condition coincide with constant
multiples of Hα.

Basic definitions and properties. Recall that a mapping S : Rm →
Rm is called a contracting similitude if there is a constant σ ∈ (0, 1) such
that for every x, y ∈ Rm,

|S(x)− S(y)| = σ |x− y| .
Given a finite system of contracting similitudes S1, . . . , Sp : Rm → Rm,
there exists a unique non-empty compact set K ⊂ Rm such that

(9) K =

p⋃
i=1

Si(K),

see [25]. If with λ = dimK we have Hλ (Si(K) ∩ Sj (K)) = 0 for ev-
ery i 6= j, the compact set K is called self-similar (see e.g. [32, p. 67]).

Following [34] we say that a collection of contracting similitudes
S1, . . . , Sp satisfies the open set condition (OSC) if there is a non-empty
open set O ⊂ Rm such that

(10)

p⋃
i=1

Si(O) ⊂ O, and Si(O) ∩ Sj(O) = ∅, i 6= j.

Self-similar sets, for which (10) holds, have the following proper-
ties [25] (this result is also cited in [11] and [32]).

Theorem 1. If a collection of p contracting similitudes with contraction
coefficients σ1, . . . , σp satisfies the OSC, then the corresponding compact
invariant set K is self-similar, and the Hausdorff dimension of K equals
the unique number λ such that

(11)

p∑
i=1

σλi = 1.

Moreover, we have 0 < Hλ(K) < ∞ and there are positive and finite
numbers a and b such that

(12) arλ≤Hλ(K∩B(x, r))≤brλ, for every x∈K, and 0<r≤1.
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It was also proved by Schief [38] that if a system of contracting simili-
tudes S1, . . . , Sp generating a self-similar set K, and a positive number λ
are such that (11) holds and Hλ(K) > 0, then the system S1, . . . , Sp sat-
isfies the OSC.

In what follows, λ will denote the Hausdorff dimension of the self-
similar set K.

Known asymptotic results for self-similar sets. The asymptotic
behavior of best-packing distance and ε-complexity on a self-similar
set K satisfying the OSC was studied in the paper [29]. This paper
in particular showed that if the contraction coefficients σ1, . . . , σp of the
similitudes are such that the additive group generated by lnσ1, . . . , lnσp
is dense in R, then for λ = dimK, we have 0 < g∞,λ(K) = g∞,λ(K) <
∞.

Paper [29] also proves that any sequence {ωε}, ε > 0, of ε-complexity
configurations on a self-similar set K satisfying the OSC will have lim-
iting measure hλ,K as ε → 0. This does not always hold for sequences
of best-packing configurations on K whose cardinality tends to infin-
ity. To construct a counterexample one can take K to be the classical
Cantor subset of [0, 1] and N = {2m + 2m−1 : m ∈ N}. There ex-
ists a sequence {ωN}N∈N , of best-packing N -point configurations on K,
which has 2m points on K ∩

[
0, 13
]

and 2m−1 points on K ∩
[
2
3 , 1
]

for
every m ∈ N.

Limit (4) does not always exist on self-similar sets. It was shown in [7],
that if the contraction coefficients of the similitudes S1, . . . , Sp are the
same and the images S1(K), . . . , Sp(K) are pairwise disjoint, then for
every s sufficiently large,

(13) 0 < g
s,λ

(K) < gs,λ(K) <∞.

Under the assumption that the images S1(K), . . . , Sp(K) are pairwise
disjoint, a recent result in [16] finds the cases when the equality g

s,λ
(K)=

gs,λ(K) holds and the limiting measure for the optimal configurations
is hλ,K . We remark that the asymptotic quantization problem for self-
similar probabilities was studied in [18] (see also references therein).

Our result stated below, describes the limits of the normalized mini-
mal energy on compact subsets of K.

Theorem 2. Let K be a self-similar set generated by a system of con-
tracting similitudes satisfying the OSC and s > λ = dimK. Consider a
non-empty compact subset A of K. There holds

(14) lim inf
N→∞

Es(A,N)

N1+s/λ
=

g
s,λ

(K)

hλ,K(A)s/λ
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and

(15) lim sup
N→∞

Es(A,N)

N1+s/λ
=

gs,λ(K)

hλ,K(A)s/λ
.

Assume that Hλ(A) > 0. If g
s,λ

(K) = gs,λ(K), then for any asymptoti-

cally s-energy minimizing sequence {ωN}∞N=2 of N -point configurations
on A, we have

(16) ν(ωN )
∗→ hλ,A, N →∞.

In the case g
s,λ

(K) < gs,λ(K) the following holds. If N ⊂ N is an

infinite sequence and {ωN}N∈N , #ωN = N , N ∈ N , is a sequence of
point configurations on A such that

lim
N3N→∞

Es(ωN )

N1+s/λ
= g

s,λ
(A),

then we have

(17) ν(ωN )
∗→ hλ,A, N 3 N →∞.

If Hλ(A) = 0, the quantity hλ,K(A)−s/λ is understood to be ∞.

Remark 1. Relations (14) and (15) imply that the ratio
gs,λ(A)

g
s,λ

(A) , s > λ,

Hλ(A) > 0, does not depend on the compact set A. In particular, if the
limit

gs,λ(K) = lim
N→∞

Es(K,N)

N1+s/λ

exists for a self-similar set K with dimK = λ satisfying the OSC
(gs,λ(K) will then be finite and positive), then the limit gs,λ(A) will ex-
ist as a finite and positive number for any compact subset A ⊂ K with
Hλ(A) > 0. If the limit gs,λ(K) does not exist, then the limit gs,λ(A)
does not exist for any compact subset A ⊂ K with Hλ(A) > 0.

Remark 2. If K is a cube in Rd containing the compact set A of positive
d-dimensional Lebesgue measure, Theorem 2 gives a different method
(than the one used in [23]) to derive (7) for A provided that (7) is
proved for K.

As we mentioned above, in the paper [29] the limiting distribution of
ε-complexity configurations is obtained on the whole self-similar set K.
The statement below gives the asymptotic behavior of best-packing con-
figurations on every compact subset of K of positive Hλ-measure.
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Corollary 1. Let K be a self-similar set generated by a system of con-
tracting similitudes satisfying the OSC and λ = dimK. Consider a
non-empty compact subset A ⊂ K. There holds

(18) g∞,λ(A)=hλ,K(A)1/λg∞,λ(K) and g∞,λ(A)=hλ,K(A)1/λg∞,λ(K).

Assume that Hλ(A) > 0. If g∞,λ(K) = g∞,λ(K), then for any asymp-

totically best-packing sequence {ω̃N}∞N=2 of N -point configurations on A,
we have

(19) ν(ω̃N )
∗→ hλ,A, N →∞.

In the case g∞,λ(K) < g∞,λ(K) the following holds. If N ⊂ N is an

infinite sequence and {ω̃N}N∈N , #ω̃N = N , N ∈ N , is a sequence of
point configurations on A such that

lim
N3N→∞

δ(ω̃N ) ·N1/λ = g∞,λ(A),

then we have

(20) ν(ω̃N )
∗→ hλ,A, N 3 N →∞.

5. The minimum Riesz energy on sets of finite packing
premeasure

This section studies the outer measures constructed using method I
from the lower limit of normalized minimal Riesz energy or the upper
limit of normalized ε-complexity (best-packing distance). Throughout
the rest of the paper we will agree that g

s,α
(∅)−α/s = g∞,α(∅)α = 0.

Basic definitions. Set functions g
s,α

(A)−α/s, s > α, and g∞,α(A)α are

subadditive (see [23, Lemma 3.2] and [6]), but not countably subadditive
since each of these quantities has the same value on a set and its closure
and both quantities equal zero on singletons. One can still obtain a
countably sub-additive set function from g

s,α
(A)−α/s and g∞,α(A)α by

using method I: denote

νs,α(A) := inf

{∑
i

g
s,α

(Ai)
−α/s : A ⊂

⋃
i

Ai

}
, s > α,

and

ν∞,α(A) := inf

{∑
i

g∞,α(Ai)
α

: A ⊂
⋃
i

Ai

}
.

Recall that a non-negative set function ν defined on all subsets of Rm is
called an outer measure (see e.g. [32]) if
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(1) ν(∅) = 0.
(2) For every sets A,B ⊂ Rm such that A ⊂ B we have ν(A) ≤ ν(B).
(3) For any set A and at most a countable collection of sets {Ai} in Rm

such that A ⊂
⋃
i

Ai we have ν(A) ≤
∑
i

ν(Ai).

Hence, the set function νs,α(A), s ∈ (α,∞] will be an outer measure.
The σ-algebra of measurable sets with respect to νs,α, is non-trivial
since it contains all sets for which νs,α(A) = 0 and complements of such
sets in Rm. We do not know if the σ-algebra of measurable sets in the
case s < ∞ contains other sets. We remark that this question in the
case s =∞ was studied by O. Zindulka.

The idea of defining the dimension of a set using covering by sets
of vanishing diameter was first introduced in [35]. The notion of the
packing measure recalled below, and the notion of the packing dimen-
sion were first studied in the papers [39]–[42]. For every set A ⊂ Rm
and α, δ > 0, define the quantity

Pαδ (A) := sup
∑
i

(diamBi)
α,

where the supremum is taken over all collections {Bi} of pairwise dis-
joint closed balls centered at points of the set A with diameters not
exceeding δ. The α-dimensional packing premeasure of A is defined as

Pα(A) := lim
δ→0

Pαδ (A) = inf
δ>0

Pαδ (A).

Using method I one can obtain an outer measure from Pα by letting

Pα(A) := inf

{∑
i

Pα(Ai) : A ⊂
⋃
i

Ai

}
.

The set function Pα is known as the packing measure. It is a Borel
regular measure.

The quantity g∞,α(A)α is known as the α-dimensional Hewitt-Strom-

berg content. The α-dimensional Hewitt-Stromberg measure is also con-
structed using method I [24, Exercise 10.51]:

µα(A) = inf

{∑
i

g∞,α(Ai)
α : A ⊂

⋃
i

Ai

}
.

Its properties were first studied in [19]. Some applications of the Hewitt-
Stromberg measure were considered in [44].
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Our result. It was proved in [14] that for every compact set in A ⊂
Rm such that Pα(A) < ∞, there holds Pα(A) = Pα(A). Below, we
obtain an analogue of this result for the outer measures constructed
from premeasures g

s,α
(A)−α/s and g∞,α(A)α using method I.

Theorem 3. Let m ∈ N and 0 < α ≤ m. Then for every compact
set A ⊂ Rm with Pα(A) <∞, we have

g
s,α

(A) = νs,α(A)−s/α, α < s <∞,

and
g∞,α(A) = ν∞,α(A)1/α.

Known results for compact d-rectifiable sets in Rm (d ≤ m) obtained
in [27], [22], [23], [7], and [5] express the normalized limits of the min-
imum Riesz energy and ε-complexity via the d-dimensional Hausdorff
measure. Our result implies that on the class of compact sets of finite
d-dimensional packing premeasure the lower limit of the minimum Riesz
energy coincides with a certain outer measure.

Remark 3. The assumption Pα(A) < ∞ cannot be replaced with the
assumption g

s,α
(A)−α/s < ∞. As a counterexample one can take the

set Aq = { 1
nq : n ∈ N} ∪ {0}, q > 0, and α ∈ (0, 1). Since the Minkowski

content of dimension 1/(q + 1) of the set Aq is finite and positive, we,

in particular, have g
s,α

(A)−α/s > 0 and g∞,α(A)α > 0. On the other

hand,

νs,α(A) ≤
∞∑
n=1

g
s,α

({1/n})−α/s + g
s,α

({0})−α/s = 0

and

ν∞,α(A) ≤
∞∑
n=1

g∞,α({1/n})α + g∞,α({0})α = 0,

which contradicts to the equalities asserted by Theorem 3.

Remark 4. If one applies method I to the set function (premeasure)
τ(A) = gs,α(A)−α/s, then for the resulting outer measure

τs,α(A) = inf

{∑
i

gs,α(Ai)
−α/s : A ⊂

⋃
i

Ai

}
, s > α,

all Borel sets will be measurable. Indeed, the set function gs,α(·)−α/s
is monotone and supadditive on metrically separated sets, i.e. for every
sets A,B ⊂ Rm such that dist(A,B) > 0, we have (see [23, Lemma 3.3])

(21) gs,α(A ∪B)−α/s ≥ gs,α(A)−α/s + gs,α(B)−α/s, s > α.
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By the general result of Haase [20, Theorem 2], the outer measure τs,α
coincides with the method II outer measure constructed from the pre-
measure gs,α(·)−α/s. It is a metric outer measure, which implies the
measurability of all Borel sets.

6. Auxiliary statements

The following regularity result for the packing premeasure was proved
in [14, Lemma 2.1].

Lemma 1. Let m ∈ N, 0 < α ≤ m, and K be a compact set in Rm with
Pα(K) <∞. Then for every subset F ⊂ K and every ε > 0, there exists
an open set Uε ⊂ Rm containing F such that

Pα(K ∩ Uε) < Pα(F ) + ε.

Using Lemma 1 we prove an analogous regularity result for the lim-
its involving the minimum Riesz energy. We recall that Es(A,N) =
Es(A,N).

Lemma 2. Let m ∈ N, 0 < α ≤ m, s > α, and K be a compact set
in Rm with Pα(K) <∞. Then for every compact subset F ⊂ K,

(22) g
s,α

(F ) = sup
U⊃F
U-open

g
s,α

(K ∩ U)

and

(23) gs,α(F ) = sup
U⊃F
U-open

gs,α(K ∩ U).

Lemma 2 is used in the proof of Theorems 2 and 3. We prove this
lemma combining the ideas from [14] and [5]. We first verify the follow-
ing statement.

Proposition 1. Let m ∈ N, 0 < α ≤ m, ε > 0, G ⊂ H ⊂ Rm be
two compact sets such that Pα(H) < Pα(G) + ε and δ > 0 be such that
Pαδ (H) ≤ Pα(H) + ε. Let XM := {z1, . . . , zM} be a collection of points
in H such that |zi − zj | ≥ δ, 1 ≤ i 6= j ≤ M , and YM = {z ∈ XM :
dist(z,G) < δ}. Then # (XM \ YM ) ≤ 3 · 2αεδ−α.

Proof of Proposition 1: Let {Di} be a collection of pairwise disjoint
closed balls centered at points of G with diameters at most δ/2 such
that

(24)
∑
i

(diamDi)
α > Pαδ/2(G)− ε ≥ Pα(G)− ε.
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Let B[a, r] denote the closed ball in Rm of radius r centered at point a.
For every x 6= y ∈ XM \ YM , by assumption we have |x− y| ≥ δ and

B[x, δ/4] ∩B[y, δ/4] = ∅.

Balls from collection {Di} (their centers are in G and diameters are at
most δ/2) do not intersect balls B[x, δ/4], x ∈ XM \ YM , since their
centers are at least δ from G. Hence, {Di} ∪ {B[x, δ/4]}x∈XM\YM is a
collection of pairwise disjoint closed balls centered in H with diameters
at most δ/2 and we obtain∑

i

(diamDi)
α + 2−α

∑
x∈XM\YM

δα ≤ Pαδ/2(H).

Then taking into account (24) we get

2−αδα#(XM \ YM ) ≤ Pαδ (H)−
∑
i

(diamDi)
α

≤ Pα(H) + ε− Pα(G) + ε < 3ε.

Hence, #(XM \ YM ) ≤ 3 · 2αεδ−α, which proves Proposition 1.

For every ε ∈
(
0, 1

44α

)
, denote by Uε an open set in Rm containing the

compact subset F ⊂ K such that

Pα(K ∩ Uε) < Pα(F ) + ε

(such a set Uε exists in view of Lemma 1). Let [t] denote the largest
integer not exceeding t. The following statement is true.

Proposition 2. Let C be a positive and finite number and ε ∈
(
0, 1

44α

)
be such that χε(C) := 1−ε s

4α (C+1)−3ε1/2 > 0. If N ⊂ N is an infinite
subset such that the following limit

lim
N3N→∞

Es(K ∩ Uε, N)

N1+s/α

exists and does not exceed C, then

C ≥
(

1− 4ε1/(4α)
)s
χε(C)1+s/α lim sup

N3N→∞

Es(F, [χε(C)N ])

[χε(C)N ]
1+s/α

.

Proof of Proposition 2: Let ω∗N := {x1,N , . . . , xN,N}, N ∈ N , be a se-

quence of energy minimizing configurations on K ∩ Uε. Denote h :=
ε1/(4α), ri,N := min

j:j 6=i
|xi,N − xj,N |, i = 1, . . . , N , and let

ω1
N := {xi,N ∈ ω∗N : ri,N ≥ hN−1/α}.
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We next show that ω1
N contains sufficiently many points. We have

Es(K ∩ Uε, N) =

N∑
i=1

N∑
j=1
j 6=i

1

|xi,N − xj,N |s
≥

N∑
i=1

1

rsi,N
≥

∑
xi,N∈ω∗

N\ω1
N

1

rsi,N

≥
∑

xi,N∈ω∗
N\ω1

N

h−sNs/α = #
(
ω∗N \ ω1

N

)
h−sNs/α.

By assumption, for N ∈ N sufficiently large, we have

Es(K ∩ Uε, N) ≤ (C + 1)N1+s/α.

Hence, #
(
ω∗N \ ω1

N

)
≤ hs(C + 1)N and

(25) #ω1
N ≥ (1− hs(C + 1))N.

Let now

ω2
N := {x ∈ ω1

N : dist(x, F ) < 2h2N−1/α}.
We next show that the collection ω2

N contains sufficiently many elements.

Applying Proposition 1 with G = F , H = K ∩ Uε, XM = ω1
N , YM = ω2

N ,

δ = 2h2N−1/α, and taking into account that h ∈
(
0, 14
)
, for N ∈ N

sufficiently large, we get that

#(ω1
N \ ω2

N ) ≤ 3εh−2αN = 3ε1/2N

and hence,

#ω2
N ≥ (1− hs(C + 1)− 3ε1/2)N = χε(C)N.

For every x ∈ ω2
N let yx be an element in F such that dist(x, yx) <

2h2N−1/α. Denote ωF := {yx : x ∈ ω2
N}. Note that for every x 6= z ∈

ω2
N , we have |x− z| ≥ hN−1/α and

|yx − yz| ≥ |x− z| − |x− yx| − |z − yz|

≥ |x− z| − 4h2N−1/α ≥ (1− 4h) |x− z| > 0,
(26)

since h ∈ (0, 1/4). Then we have #ωF = #ω2
N . By the assumptions of

the lemma, taking into account (26), we obtain

C ≥ lim
N3N→∞

Es(ω
∗
N )

N1+s/α
≥ lim sup
N3N→∞

Es(ω
2
N )

N1+s/α
≥ (1− 4h)s lim sup

N3N→∞

Es(ωF )

N1+s/α

≥ (1− 4h)sχε(C)1+s/α lim sup
N3N→∞

Es(F, [χε(C)N ])

[χε(C)N ]
1+s/α

,

which completes the proof of Proposition 2.
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Proof of Lemma 2: Denote

C0 := sup
U⊃F
U-open

g
s,α

(K ∩ U).

By monotonicity of the Riesz s-energy, C0 ≤ g
s,α

(F ). If C0 = ∞,

then g
s,α

(F ) = ∞ and (22) holds trivially. Assume that C0 < ∞. For

every ε ∈
(
0, 4−4α

)
such that χε(C0 + ε) > 0, let N ⊂ N be an infinite

subsequence such that

g
s,α

(K ∩ Uε) = lim
N3N→∞

Es(K ∩ Uε, N)

N1+s/α
< C0 + ε.

Using Proposition 2 we obtain

C0 + ε ≥
(

1− 4ε1/(4α)
)s
χε(C0 + ε)1+s/α lim sup

N3N→∞

Es(F, [χε(C0 + ε)N ])

[χε(C0 + ε)N ]
1+s/α

≥ (1− 4ε1/(4α))sχε(C0 + ε)1+s/αg
s,α

(F ).

Since C0 does not depend on ε, we have χε(C0 + ε)→ 1, ε→ 0. Hence,
C0 ≥ gs,α(F ) and we get equality (22).

Analogously, we now let

C1 := sup
U⊃F
U-open

gs,α(K ∩ U).

We have again, C1 ≤ gs,α(F ) and it remains to consider the case C1 <∞.
Let N1 ⊂ N be an infinite subset such that

gs,α(F ) = lim
N13N→∞

Es(F,N)

N1+s/α
.

Let ε∈
(
0, 4−4α

)
be sufficiently small so that 0 < χε(C1+ε) < 1. Then for

every M ∈ N1, there is a number NM ∈ N such that [χε(C1 + ε)NM ] =
M . Let N2 = {NM}M∈N1

. All partial limits of the sequence

Es(K ∩ Uε, N)

N1+s/α
, N ∈ N2,

belong to the interval [0, C1]. Denote by N an infinite subset of N2 such
that the limit

lim
N3N→∞

Es(K ∩ Uε, N)

N1+s/α
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exists. It will not exceed C1 + ε. By Proposition 2, we have

C1 + ε ≥
(

1− 4ε1/(4α)
)s
χε(C1 + ε)1+s/α lim sup

N3N→∞

Es(F, [χε(C1 + ε)N ])

[χε(C1 + ε)N ]
1+s/α

=
(

1− 4ε1/(4α)
)s
χε(C1 + ε)1+s/α lim

N13N→∞

Es(F,N)

N1+s/α

= (1− 4ε1/(4α))sχε(C1 + ε)1+s/αgs,α(F ).

Letting ε→ 0, we get that χε(C1 + ε)→ 1. Hence, C1 ≥ gs,α(F ) and we
get equality (23). Lemma 2 is proved.

We will also need the following statement, see [23, Lemma 3.2]. The
assumption of boundedness of B and D as well as the assumption that
λ is an integer made in [23] are not essential.

Lemma 3. Let m ∈ N, 0 < λ ≤ m, s > λ and B and D be arbitrary
sets in Rm. Then

g
s,λ

(B ∪D)−λ/s ≤ g
s,λ

(B)−λ/s + g
s,λ

(D)−λ/s.

Furthermore, if g
s,λ

(B), g
s,λ

(D) > 0 and at least one of these quantities

is finite, then for any infinite subset N ⊂ N and sequence {ωN}N∈N of
N -point configurations in B ∪D such that

lim
N3N→∞

Es(ωN )

N1+s/λ
=
(
g
s,λ

(B)−λ/s + g
s,λ

(D)−λ/s
)−s/λ

holds, we have

(27) lim
N3N→∞

#(ωN ∩B)

N
=

g
s,λ

(D)λ/s

g
s,λ

(B)λ/s + g
s,λ

(D)λ/s
.

In the case g
s,λ

(D) =∞ the right-hand side of relation (27) is under-

stood to be 1 and we agree that ∞−λ/s = 0 and 0−s/λ =∞.

7. Proof of Theorem 2

We start by verifying the following basic statement.

Proposition 3. Let K ⊂ Rm be a self-similar set satisfying the OSC
and having Hausdorff dimension λ. Then for every s > λ,

0 < g
s,λ

(K) ≤ gs,λ(K) <∞.
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Proof of Proposition 3: Let {x1,N , . . . , xN,N}, N ∈ N, N ≥ 2, be an
s-energy minimizing configuration on K. Denote

ri,N =
1

2
min
j:j 6=i

|xi,N − xj,N |, i = 1, . . . , N.

Since K is compact, the number LN of indices i, for which ri,N > 1,

stays bounded. Using the convexity of the function y(t) = t−s/λ, we
have

Es(K,N) =

N∑
i=1

N∑
j=1
j 6=i

1

|xi,N − xj,N |s
≥

N∑
i=1

1

(2ri,N )s
≥

∑
i:ri,N≤1

1

(2ri,N )s

= 2−s(N − LN ) · 1

N − LN
·
∑

i:ri,N≤1

(
rλi,N

)−s/λ

≥ 2−s(N − LN )1+s/λ

 ∑
i:ri,N≤1

rλi,N

−s/λ .
By Theorem 1, there is a number a > 0 such that

lim inf
N→∞

Es(K,N)

N1+s/λ
≥2−s lim inf

N→∞

1

a

∑
i:ri,N≤1

Hλ (K ∩B(xi,N , ri,N ))

−s/λ

=2−sas/λ lim inf
N→∞

(
Hλ
(
K∩

(
∪i:ri,N≤1B(xi,N , ri,N )

)))−s/λ
≥2−sas/λHλ(K)−s/λ.

Since by Theorem 1, 0 < Hλ(K) <∞, we get that

g
s,λ

(K) ≥ 2−sas/λHλ(K)−s/λ > 0, s > λ.

Corollary 1 of Theorem 4 in [5] implies that whenever compact set K
has positive Hλ-measure, there exists a finite and positive constant C =
C(K,λ, s) such that for every N sufficiently large,

Es(K,N) ≤ CN1+s/λ, s > λ.

Hence, gs,λ(K) ≤ C <∞. Proposition 3 is proved.

For every positive integer n and every vector of indexes i={i1, . . . , in},
ij = 1, . . . , p, j = 1, . . . , n, let

Ki = Si1 ◦ · · · ◦ Sin(K).
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Denote by Fn(K) the family of all sets Ki, where i ∈ {1, . . . , p}n. It is
not difficult to see that for every n ∈ N,

K =
⋃

i∈{1,...,p}n
Ki.

Denote also by C(K) the family of all non-empty compact subsets of
the set K. Our proof relies on the following statement, which could be
considered as an analogue of the result in [25] about the unicity of the
invariant measure.

Lemma 4. Let K ⊂ Rm be a self-similar set such that 0 < Hλ(K) <
∞. There exists a unique non-negative functional ψ defined on C(K)
satisfying the following properties:

(1) For any compact subsets A ⊂ B ⊂ K, there holds ψ(A) ≤ ψ(B).

(2) For every n ∈ N and i = {i1, . . . , in} ∈ {1, . . . , p}n, there holds

ψ(Ki) = σλi1 · . . . · σ
λ
in .

(3) For any n ∈ N and any collection of pairwise distinct sets F1, . . . ,
Fk ∈ Fn(K), there holds

ψ

(
k⋃
i=1

Fi

)
=

k∑
i=1

ψ(Fi).

(4) For every A ∈ C(K) and every ε > 0, there is an open set U such
that A ⊂ U and

ψ(U ∩K) ≤ ψ(A) + ε.

Note that the assumptions of this lemma imply that ψ(K) = 1.

Proof of Lemma 4: The existence follows from the fact that the func-
tional ψ such that

ψ(A) = hλ,K(A), A ∈ C(K),

satisfies properties (1)–(4).
Show uniqueness. Let ψ1 and ψ2 be arbitrary functionals satisfying

properties (1)–(4). Choose any set A ∈ C(K). For every ε > 0, let U be
an open set containing A such that

ψ2(K ∩ U) ≤ ψ2(A) + ε.

Then, there exists a δ-neighborhood Uδ of the set A, so that Uδ ∩K ⊂
K ∩ U and

ψ2(K ∩ Uδ) ≤ ψ2(A) + ε.
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Let S1, . . . , Sp be the contracting similitudes defining the set K and
σ1, . . . , σp be their contraction coefficients. Denote σ = max{σ1, . . . , σp}.
Choose n to be a sufficiently large positive integer so that σn·diamK < δ.
Denote by Z the set of vector indices i = (i1, . . . , in) ∈ {1, . . . , p}n such
that

A ∩Ki 6= ∅.

Then

(28) A ⊂
⋃
i∈Z

Ki ⊂ Uδ ∩K.

Taking into account (28), we get

ψ1(A) ≤ ψ1

⋃
i∈Z

Ki

 =
∑
i∈Z

ψ1(Ki) =
∑
i∈Z

σλi1 · . . . · σ
λ
in

=
∑
i∈Z

ψ2(Ki) = ψ2

⋃
i∈Z

Ki

 ≤ ψ2(Uδ ∩K) ≤ ψ2(A) + ε.

Letting ε → 0, we get ψ1(A) ≤ ψ2(A). Since ψ1 and ψ2 were chosen
arbitrarily, we can do the same proof to show the opposite inequality.
Lemma 4 is proved.

We now proceed with the proof of Theorem 2. For s > λ, let us show
that the following functional

ψ(A) =

(
g
s,λ

(A)

g
s,λ

(K)

)−λ/s
satisfies properties (1)–(4) in Lemma 4. In view of Proposition 3, the
functional ψ is well defined. Whenever A ⊂ B ⊂ Rm, we have

Es(A,N) ≥ Es(B,N), N ≥ 2,

which implies property (1). If S : Rm → Rm is a similitude with the
contraction coefficient σ, then for every set A ⊂ Rm,

Es(S(A), N) = σ−sEs(A,N), N ≥ 2.

This implies property (2). Lemma 3 shows that ψ is a finitely sub-
additive set function. If now, H is any collection of pairwise distinct sets
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from Fn(K) and G is the collection of the remaining sets from Fn(K),
then taking into account property (2) and relation (11), we obtain

1 = ψ(K) ≤ ψ

( ⋃
B∈H

B

)
+ ψ

( ⋃
B∈G

B

)
≤
∑
B∈H

ψ(B) +
∑
B∈G

ψ(B)

=
∑

B∈Fn(K)

ψ(B) =

p∑
i1=1

· · ·
p∑

in=1

σλi1 · . . . · σ
λ
in = 1.

Hence, the equality sign must be everywhere in the above relation and
we get that

ψ

( ⋃
B∈H

B

)
=
∑
B∈H

ψ(B),

which proves property (3). Relation (12) from Theorem 1 implies that
Pλ(K) < ∞ and property (4) for the functional ψ will follow from
relation (22) in Lemma 2. Since hλ,K also satisfies properties (1)–(4), in
view of the uniqueness, we get that

(29) ψ(A) =

(
g
s,λ

(A)

g
s,λ

(K)

)−λ/s
= hλ,K(A), A ∈ C(K),

and relation (14) will follow.
To prove relation (15) we will need a stronger statement than rela-

tion (21) for compact subsets of a self-similar set.

Lemma 5. Let K be a self-similar set of Hausdorff dimension λ sat-
isfying the OSC and s > λ. Then for every compact subsets B and D
of K such that Hλ(B ∩D) = 0, there holds

gs,λ(B ∪D)−λ/s ≥ gs,λ(B)−λ/s + gs,λ(D)−λ/s.

Proof of Lemma 5: If gs,λ(B) = ∞ or gs,λ(D) = ∞, then the assertion
of Lemma 5 holds trivially. Assume that gs,λ(B), gs,λ(D) < ∞. If
B ∩ D = ∅, then the assertion of Lemma 5 follows from (21). Assume
that B ∩ D 6= ∅. From relation (14), since hλ,K(B ∩ D) = 0, we get
g
s,λ

(B ∩D) =∞. Then from Lemma 2 it follows that

sup
U⊃B∩D
U-open

g
s,λ

(U ∩K) =∞.

For every k ∈ N, let Uk be an open set containing B ∩D such that

g
s,λ

(Uk ∩K) > k.
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Since dist(B \ Uk, D \ Uk) > 0, by relation (21) we have

gs,λ(B ∪D)−λ/s ≥ gs,λ((B \ Uk) ∪ (D \ Uk))−λ/s

≥ gs,λ(B \ Uk)−λ/s + gs,λ(D \ Uk)−λ/s.
(30)

Denote by ω̃N , N ∈ N, N ≥ 2, a sequence of s-energy minimizing
configurations on B such that #ω̃N = N , N ≥ 2. Let also aN =
#(ω̃N ∩ Uk),

βk = lim sup
N→∞

aN
N
,

and N ⊂ N be an infinite sequence such that

lim
N3N→∞

aN
N

= βk.

If βk > 0, then

Es(B,N) = Es(ω̃N ) ≥ Es(ω̃N ∩Uk) ≥ Es(B ∩Uk, aN ) ≥ Es(K ∩Uk, aN ),

and

gs,λ(B) ≥ lim sup
N3N→∞

Es(B,N)

N1+s/λ
≥ lim sup
N3N→∞

Es(K ∩ Uk, aN )

a
1+s/λ
N

·
(aN
N

)1+s/λ
≥ g

s,λ
(Uk ∩K)β

1+s/λ
k > kβ

1+s/λ
k .

Hence, βk <
(
gs,λ(B)/k

)1/(1+s/λ)
including the case βk = 0. Assume

k to be sufficiently large so that γk = 1 − βk − 1
k > 0 and let bN =

#(ω̃N \ Uk), N ∈ N, N ≥ 2. Then bN ≥ γkN for N sufficiently large,
and we obtain

gs,λ(B) = lim sup
N→∞

Es(ω̃N )

N1+s/λ
≥ lim sup

N→∞

Es(ω̃N \ Uk)

N1+s/λ

≥ lim sup
N→∞

Es(B \ Uk, bN )

N1+s/λ

≥ lim sup
N→∞

Es(B \ Uk, [γkN ])

[γkN ]
1+s/λ

·
(

[γkN ]

N

)1+s/λ

≥ gs,λ(B \ Uk)γ
1+s/λ
k .

(31)

Using analogous argument, one can show that there is a sequence θk → 1,
k →∞, such that

(32) gs,λ(D) ≥ gs,λ(D \ Uk)θ
1+s/λ
k .
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Then from (30), taking into account (31) and (32) we get

gs,λ(B ∪D)−λ/s ≥ gs,λ(B)−λ/sγ
1+λ/s
k + gs,λ(D)−λ/sθ

1+λ/s
k .

Since γk, θk → 1, letting k →∞ we obtain the assertion of Lemma 5.

Let now

ϕ(A) =

(
gs,λ(A)

gs,λ(K)

)−λ/s
, A ∈ C(K).

Proposition 3 implies that the set function ϕ is well-defined. Proper-
ties (1) and (2) are proved in the same way as they were proved for ψ.
Property (4) follows from relation (23) of Lemma 2. By Lemma 5, if
H is any collection of pairwise distinct sets from Fn(K) and G is the
collection of the remaining sets from Fn(K), then the intersection of the
unions of these two collections has Hλ-measure zero, and we obtain

1 = ϕ(K) ≥ ϕ

( ⋃
B∈H

B

)
+ ϕ

( ⋃
B∈G

B

)
≥
∑
B∈H

ϕ(B) +
∑
B∈G

ϕ(B)

=
∑

B∈Fn(K)

ϕ(B) =

p∑
i1=1

· · ·
p∑

in=1

σλi1 · . . . · σ
λ
in = 1.

Hence, the equality sign must be everywhere in the above relation and
we get that

ϕ

( ⋃
B∈H

B

)
=
∑
B∈H

ϕ(B),

which proves property (3). Then, by Lemma 4, we will have

ϕ(A) =

(
gs,λ(A)

gs,λ(K)

)−λ/s
= hλ,K(A), A ∈ C(K),

which will prove (15).
To prove relations (16) and (17) consider an arbitrary infinite sub-

set N ∈ N and an arbitrary sequence {ωN}N∈N of N -point configura-
tions on A such that

(33) lim
N3N→∞

Es(ωN )

N1+s/λ
= g

s,λ
(A).

In the case g
s,λ

(K) = gs,λ(K), in view of (14) and (15), the limit gs,λ(A)

exists and any asymptotically energy minimizing sequence {ωN}N∈N will
satisfy (33) with N = N. Therefore, we let N = N in this case.
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Let B ⊂ A be any non-empty subset such that the boundary ∂AB
of B relative to A has hλ,A-measure zero. Then hλ,K(∂AB) = 0 and in
view of (14), we obtain

lim
N3N→∞

Es(ωN )

N1+s/λ
= g

s,λ
(A) = g

s,λ
(K)(hλ,K(B) + hλ,(A \B))−s/λ

= g
s,λ

(K)(hλ,K(B) + hλ,K(A \B))−s/λ

=
(
g
s,λ

(B)−λ/s + g
s,λ

(A \B)−λ/s
)−s/λ

=
(
g
s,λ

(B)−λ/s + g
s,λ

(A \B)−λ/s
)−s/λ

.

Since hλ,K(B), hλ,K(A \ B) < ∞ and at least one of these quantities
is positive, by (14), we have g

s,λ
(B), g

s,λ
(A \ B) > 0 and at least one

of these quantities is finite. Then we can apply Lemma 3. From this
lemma and relation (14) we obtain

lim
N3N→∞

#(ωN ∩B)

N
=

g
s,λ

(A \B)λ/s

g
s,λ

(B)λ/s + g
s,λ

(A \B)λ/s
= hλ,A(B),

which implies relations (16) and (17). Theorem 2 is proved.

Proof of Corollary 1: Relations (14) and (15) together with equalities (6)
imply relations (18). The proof of relations (19) and (20) can be done
analogously to the proof of relations (16) and (17). Let N ⊂ N be ar-
bitrary infinite subsequence and {ω̃N}N∈N be any sequence of N -point
configurations on A such that

(34) lim
N3N→∞

δ(ω̃N ) ·N1/λ = g∞,λ(A).

In the case g∞,λ(K) = g∞,λ(K), in view of (18), the limit g∞,λ(A) exists

and any asymptotically best-packing sequence {ω̃N}N∈N will satisfy (34)
with N = N. Therefore, we let N = N in this case.
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Let B⊂A be any subset such that hλ,A(∂AB)=0. Then hλ,K(∂AB) =
0 and in view of (18), we will have

lim
N3N→∞

δ(ω̃N ) ·N1/λ = g∞,λ(A) = g∞,λ(K)hλ,K(A)1/λ

= g∞,λ(K) (hλ,K(B) + hλ,K(A \B))
1/λ

= g∞,λ(K)
(
hλ,K(B) + hλ,K(A \B)

)1/λ
=
(
g∞,λ(K)λhλ,K(B)+g∞,λ(K)λhλ,K(A \B)

)1/λ
=
(
g∞,λ(B)λ + g∞,λ(A \B)λ

)1/λ
=
(
g∞,λ(B)λ + g∞,λ(A \B)λ

)1/λ
.

This shows that the sequence {ω̃N}N∈N satisfies relation (16) in Lem-
ma 3.1 from [6]. Applying relation (15) from that lemma, relation (18)
proved above and the fact that hλ,K(∂AB) = 0 and 0 < g∞,λ(K) < ∞,
we will obtain

lim
N3N→∞

#(ω̃N ∩B)

N
=

g∞,λ(B)λ

g∞,λ(B)λ + g∞,λ(A \B)λ

=
hλ,K(B)

hλ,K(B) + hλ,K(A \B)
= hλ,A(B),

which completes the proof of relations (19) and (20). Corollary 1 is
proved.

8. Proof of Theorem 3

To prove Theorem 3 in the case s ∈ (α,∞), we will need Lemma 2
and in the case s =∞, we will use its analogue given below.

Lemma 6. Let m ∈ N, 0 < α ≤ m, and K be a compact set in Rm with
Pα(K) <∞. Then for every compact subset F ⊂ K we have

g∞,α(F ) = inf
U⊃F
U-open

g∞,α(K ∩ U).

Proof of Lemma 6: Let

C0 := inf
U⊃F
U-open

g∞,α(K ∩ U).
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Clearly, g∞,α(F ) ≤ C0. Assume to the contrary that g∞,α(F ) < C0.

This will imply that at least C0 > 0. Choose any ε ∈
(

0, (C0/8)
2α
)

and

let Uε be the set from Lemma 1. Denote by N an infinite subset of N
such that

lim
N3N→∞

δN (K ∩ Uε)N1/α = g∞,α(K ∩ Uε) ≥ C0 > 0,

and let ω∗N = {x1,N , . . . , xN,N}, N ∈ N , be a sequence of best-packing

configurations on K ∩ Uε. Note that for any N ∈ N sufficiently large
and any x 6= y ∈ ω∗N we have |x− y| ≥ C0

2 N
−1/α. Denote ρ := ε

1
2α and

let

ω′N := {x ∈ ω∗N : dist(x, F ) < 2ρN−1/α}.
Applying Proposition 1 with G = F , H = K ∩ Uε, XM = ω∗N , YM = ω′N
and δ = 2ρN−1/α, we obtain that for N sufficiently large

#(ω∗N \ ω′N ) ≤ 3ερ−αN = 3ε1/2N

and hence,

#ω′N ≥ (1− 3ε1/2)N =: Nε.

For every x ∈ ω′N let yx be an element in F such that dist(x, yx) <

2ρN−1/α. Denote ωF := {yx : x ∈ ω′N}. Note that for every x 6= z ∈ ω′N ,

and N ∈ N sufficiently large, we have |x− z| ≥ C0

2 N
−1/α and

|yx − yz| ≥ |x− z| − |x− yx| − |z − yz|

≥ |x− z| − 4ρN−1/α ≥ (1− 8ρ/C0) |x− z| > 0.

Here we have 8ρ < C0by the choice of ε. Then we get that #ωF = #ω′N
and

C0 ≤ g∞,α(K ∩ Uε) = lim
N3N→∞

δN (K ∩ Uε) ·N1/α

= lim
N3N→∞

δ(ω∗N ) ·N1/α ≤ lim sup
N3N→∞

δ(ω′N ) ·N1/α

≤ (1− 8ρ/C0)−1 lim sup
N3N→∞

δ(ωF ) ·N1/α

≤ (1− 8ρ/C0)−1(1− 3ε1/2)−1/α lim sup
N3N→∞

δ[Nε](F ) · [Nε]1/α

≤ (1− 8ρ/C0)−1(1− 3ε1/2)−1/αg∞,α(F ).

Letting ε → 0 we get that C0 ≤ g∞,α(F ) which contradicts to our
assumption. Hence, C0 = g∞,α(F ). Lemma 6 is proved.
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To complete the proof of Theorem 3, let s ∈ [a,∞] and define

g(A) =

{
g
s,α

(A)−α/s, α < s <∞,
g∞,α(A)α, s =∞.

The statement below is contained in Lemma 3 for s <∞ and is proved
in [19] or [6] for s =∞. In the case s =∞ one can obtain the assertion
of Lemma 7 by letting s→∞ in Lemma 3 and applying (6).

Lemma 7. Let m ∈ N, 0 < α ≤ m, s ∈ (α,∞] and B and D be any
sets in Rm. Then

g(B ∪D) ≤ g(B) + g(D).

Choose again any ε > 0. Let {Ai}i∈N be a collection of subsets of A
such that A = ∪i∈NAi and∑

i∈N
g(Ai) < νs,α(A) + ε.

Let now N ⊂ N be the set of indices i such that Ai 6= ∅. For every i ∈ N ,
let Ui,ε be an open set in Rm such that Ai ⊂ Ui,ε and

(35) g(A ∩ Ui,ε) < g(Ai) + ε/2i = g(Ai) + ε/2i.

The existence of Ui,ε is guaranteed by Lemma 2 for s < ∞ and by
Lemma 6 for s = ∞. Since the collection {Ui,ε}i∈N covers A, it has a
finite subcollection {Uik,ε}

p
k=1 that still covers A. Then using Lemma 7

and (35) we get

g(A) = g

(
p⋃
k=1

(A ∩ Uik,ε)

)
≤

p∑
k=1

g(A ∩ Uik,ε)

≤
p∑
k=1

(
g(Aik) + ε/2ik

)
≤
∞∑
i=1

g(Ai) + ε < νs,α(A) + 2ε.

In view of arbitrariness of ε, we get g(A) ≤ νs,α(A), s ∈ (α,∞]. The
opposite inequality is obvious. Theorem 3 is proved.
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