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METRIC PROPERTIES OF OUTER SPACE

Stefano Francaviglia and Armando Martino

Abstract

We define metrics on Culler-Vogtmann space, which are an ana-
logue of the Thurston metric and are constructed using stretching
factors. In fact the metrics we study are related, one being a sym-
metrised version of the other. We investigate the basic properties
of these metrics, showing the advantages and pathologies of both
choices.
We show how to compute stretching factors between marked met-
ric graphs in an easy way and we discuss the behaviour of stretch-
ing factors under iterations of automorphisms.
We study metric properties of folding paths, showing that they are
geodesic for the non-symmetric metric and, if they do not enter
the thin part of Outer Space, quasi-geodesic for the symmetric
metric.
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1. Introduction

Culler-Vogtmann space, or Outer Space as it is sometimes called, has
been the subject of intense study. Much of the direction of this work has
been to develop a theory for Outer Space, and the Outer Automorphism
group of a free group in an analogous way to the theory of Teichmüller
space and the mapping class group of a surface.

Our contribution to this effort is the study of a metric which is an
analogue of the Thurston metric, with the goal that the important fea-
tures of both Outer Space, and the automorphisms of a free group are
captured by the geometry of this metric.

After recalling the basic definitions in Section 2, we spend some time
in Section 3 defining and understanding the “one-sided” metric, from
which our metric is obtained by a “symmetrisation”. In fact, a special
case of this one-sided metric (where the objects are a rose, and its image
under an automorphism) is a quantity that has appeared in the work
of Kapovich, [11], where it is shown that the value is computable in
double exponential time (in the number of Nielsen generators). As part
of our efforts to understand our metric, and simplify many of the proofs
of its properties, we show that the calculation is considerably simpler,
Proposition 3.15, so that the calculation for a rose is actually linear in
the length of the images of the generators (so exponential in the number
of Nielsen generators) though it is exponential for more complicated
graphs.

We then study the metric itself in Section 4, and show that the metric
topology is the same as the usual length function topology, as well as
showing that the metric is proper; closed balls are compact in this space.
This is one advantage the symmetric version of the metric has over the
unsymmetric version, since for the one-sided metric not only are Cauchy
sequences not always convergent, but also points which should be at
infinite distance, namely points on the boundary of Outer Space, are
actually at finite distance from points in the interior of Outer Space.

Section 5 is concerned with the connection between the geometry of
Outer Space and the properties of the automorphisms of a free group.
Specifically, we study the behaviour of “folding paths” and their met-
ric properties. It is fairly straightforward to show that these paths are
geodesics for the one-sided metric, but it seems to be much more dif-
ficult to show that they are even quasi-geodesics for the actual metric.
However, these folding paths are shown to have good properties, such as
the “4 point property”, defined in Theorem 7.3.
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In Section 6 we show with an example that Outer Space, equipped
with the symmetric metric, is not a geodesic space. We want to stress
here that such example was suggested to the authors by Bert Wiest and
Thierry Coulbois when a previous version of this paper was posted on
the arxiv.

In Section 7, we show that if folding paths remain within the “thick
part” of Outer Space, then they will be quasi-geodesics which is a result,
definitions aside, that is very intuitive. We finish, in Section 8 by showing
that for an automorphism of exponential growth, the map from Z to
Outer Space which sends an integer, n to the nth iterate of a given
point under the automorphism is a quasi-isometry. Interestingly, while
this result is clearly false for automorphisms of polynomial growth, we
show that for a particular example of polynomial growth automorphism,
the folding path between the rose and a image of the rose under an
(arbitrary) iterate of the automorphism is a quasi-geodesic with uniform
constants.
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ropean Research Council (MEIF-CT-2005-010975 and MERG-CT-2007-
046557). The second named author gratefully acknowledges partial sup-
port from the MEC (Spain) through project BFM2003-06613.

2. Preliminaries

We refer the reader to [13] for an excellent survey and reference article
to Culler-Vogtmann space.

Our basic objects are finite marked metric graphs of some given
rank n. A graph of this type is represented as a metric graph, A —that
is, with a positive length assigned to every edge— and a marking τA
which is a homotopy equivalence from the rose with n petals, Rn to A,

τA : Rn → A.

We shall make the standard assumption that vertices have valence at
least three. Nonetheless, we notice that it is sometimes convenient to
allow vertices of valence two. When it is clear from the context, we will
not specify whether we use bi-valent vertices.

Two marked graphs A and B are equivalent if there is a homoth-
ety, h : A → B, such that the following diagram commutes up to free
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homotopy,

A
h // B

Rn

τA

``AAAAAAAA τB

>>}}}}}}}}

Alternatively, we could only consider metric graphs of volume 1 and
then the equivalence would be given by isometries in place of homoth-
eties. In either case, the resulting space of equivalence classes is called
Culler-Vogtmann space of rank n, or CVn (when bi-valent vertices are
allowed, two marked graphs are also equivalent if they have a common
finite subdivision).

Remark 2.1. In the following, if there are no ambiguities we will not
distinguish between a marked metric graph and its class.

When we will need to be precise we will refer to a metric graph as
an element of the unprojectivised CVn, and to its class as an element
of CVn.

Given any marked graph A, we can look at the universal cover TA

which is an R-tree on which π1(Rn) acts by isometries, via the mark-
ing τA. (From now on, we identify the free group of rank n, Fn, with the
fundamental group of Rn.) Conversely, given any minimal free action
of Fn by isometries on a simplicial R-tree, we can look at the quotient
object, which will be a graph, A, and produce a homotopy equivalence
τA : Rn → A via the action. Equivalence of graphs in CVn corresponds
to actions which are equivalent up to equivariant homothety.

Thus, points in CVn, can be thought of as equivalence classes of min-
imal free isometric actions on simplicial R-trees. Given an element w
of Fn and a point A of the unprojectivised CVn, with universal cover TA

whose metric we denote by dA, we may consider,

lA(w) := inf
p∈TA

dA(p, wp).

It is well known that this infimum is always achieved and that, for
a free action, it is non-zero for the non-identity elements of the group.
In this contest, lA(w) is called the translation length of the element w
in the corresponding tree and clearly depends only on the conjugacy
class of w in Fn. Thus for any point, A, in CVn we can associate the se-
quence (lA(w))w∈Fn

and it is clear that equivalent marked metric graphs
will produce two sequences, one of which is a multiple of the other by
a positive real number (the homothety constant). Moreover, it is also
the case that inequivalent points in CVn will produce sequences which
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are not multiples of each other [8]. Thus, we have an embedding of CVn

into R
Fn/ ∼, where ∼ is the equivalence relation of homothety. The

space CVn is given the subspace topology induced by this embedding.
Finally it is clear we can realise any automorphism, φ, of Fn as a

homotopy equivalence, also called φ, of Rn. Thus the automorphism
group of Fn acts on CVn by changing the marking. That is, given a
point (A, τA) of CVn the image of this point under φ is (A, τAφ).

Rn
φ //

τAφ

  
Rn

τA // A.

Since two automorphisms which differ by an inner automorphism al-
ways send equivalent points in CVn to equivalent points, we actually
have an action of Out(Fn) on CVn, and this space is often called Outer
Space for this reason.

3. Calculating stretching factors

Given two marked metric graphs, A and B, both having fundamental
group free of rank n, we would like to compute the distance between them
and, as a first step, the “right hand distance” between them, defined as
follows.

Definition 3.1 (Right hand factor). For any pair A, B of marked graphs
we set

ΛR(A,B) := sup
16=w∈Fn

lB(w)

lA(w)
.

Recall that lA(w) is the translation length of the element correspond-
ing to w in the tree TA (and hence is dependent only on the conjugacy
class of w). However, it is readily seen that this translation length is
the same as the length of the shortest representative in the free homo-
topy class of loops in A defined by the (conjugacy class of) w. We note
that this second definition means that lA(w) is easy to compute given a
particular w: we look at the image of w in A via the marking and we
“cyclically reduce” the loop in the graph by performing free cyclic re-
ductions which may, of course, change the basepoint. The length of any
cyclically reduced element in this sense, calculated simply by summing
the lengths of the edges crossed, will be lA(w). We shall also use lA
to refer to the lengths of (free homotopy classes of) loops in A in the
obvious way. We also note that saying a loop in A is cyclically reduced is
equivalent to saying that, if we consider the loop as a map from the circle
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to the graph it is an immersion. In the same spirit, a path is reduced if
it is an immersion when considered as a map from a closed interval.

While finding lengths of elements with respect to a marked metric
graph structure is straightforward, that does not indicate how to calcu-
late the supremum given above. In order to do that, we need to relate
one structure to the other. One way to do this is to find an equivariant
map from A to B, which we can simply think of as a homotopy equiva-
lence between the graphs, which respects the markings. That is, a map f
for which the following triangle commutes up to free homotopy,

A
f // B

Rn

τA

``AAAAAAAA τB

>>}}}}}}}}

In other words, f is a map homotopic to τ−1
A followed by τB , f ≃

τBτ
−1
A . Here we are abusing notation by writing τ−1

A for a homotopy
inverse as opposed to the actual inverse.

It is important to note that this is not a graph map in that edges are
not necessarily sent to edges nor vertices to vertices. We will therefore
restrict to a particular class of maps that are more easy to handle.

Definition 3.2 (PL maps). A map f : A→ B is a PL-map if it is linear
on edges. More precisely, for each edge e of A, if we parameterise f |e
with the segment [0, lA(e)], then f |e has constant speed. We denote
by Sf,e the speed of f |e (the stretching factor of e).

The stretching factor of a PL-map f , defined as the maximal speed
of f , is in fact the Lipschitz constant of f . We denote that quantity
by Sf (the notation Lf for the Lipschitz constant is more natural but
also more confusing since we already have lengths denoted by the letter l)

Sf = max{Sf,e : e edge of A} = Lip(f).

In general, given f , there is a unique PL-map f̄ which is homotopic
to f and agrees with f on vertices. It is readily checked that

(1) Sf̄ = Lip(f̄) ≤ Lip(f).

A useful observation one can make here is that Lip(f) serves as an
upper bound for ΛR(A,B). This is because, starting with a loop γ in A,
it is clear that

lB(f(γ)) ≤ Lip(f)lA(γ).

Since we can consider all loops which are cyclically reduced in A this
means that,

lB(w) ≤ Lip(f)lA(w), for all w ∈ Fn,
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and we hence proved

Lemma 3.3. For any Lipschitz map f : A → B in the homotopy class
of τBτ

−1
A

ΛR(A,B) = sup
16=w∈Fn

lB(w)

lA(w)
≤ Lip(f).

Since f is arbitrary, and because of (1), we can deduce that

(2) ΛR(A,B) = sup
16=w∈Fn

lB(w)

lA(w)
≤ inf{Sf : f is PL and f ≃ τBτ

−1
A }.

It is fairly clear that the infimum on the right hand side of equation (2)
will be realised by an actual map.

Lemma 3.4. Let A, B two marked metric graphs. Then there exists an
f∞ ≃ τBτ

−1
A such that

Sf∞ = inf{Sf : f is PL and f ≃ τBτ
−1
A } = inf{Lip(f) : f ≃ τBτ

−1
A }.

Proof: For any c, the set of c-Lipschitz maps from A to B is precompact
by Ascoli-Arzelà theorem because B is compact. Therefore a sequence of
maps fn, whose stretching factors tend to the infimum has a convergent
sub-sequence whose limit is f∞, and it is easily checked that Sf∞ =

inf{Sfn} and that, if each fn is in the same homotopy class as τBτ
−1
A ,

then so is f∞.

Remark 3.5. Equations (1) and (2), and Lemma 3.4 tell us that from
now on we can, as we do, assume that any map is a PL.

Now note that there are two obstructions to making equation (2)
an equality. While we may realise the infimum by a concrete map, f ,
we may still have that for a given loop γ, not all edges of γ may be
stretched by the same amount Sf . Thus we need the collection of edges
which are stretched maximally to be large enough as to contain a loop.
Furthermore, even if we have such a loop γ, the image f(γ) may not
be cyclically reduced in B. However, if we have a cyclically reduced
loop, γ, in A, all of whose edges are stretched by Sf and such that
f(γ) is cyclically reduced in B, then ΛR(A,B) = Sf . It will turn out
that there always exists a map f and a loop γ with these properties.
Before going into details, we need some preliminaries.

Definition 3.6. Let A, B be marked metric graphs of rank n. Given
a PL-map f ≃ τBτ

−1
A , we denote by Amax(f) the subgraph of A whose

edges are stretched maximally, by Sf .
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Definition 3.7 (Optimal maps). A PL-map f ≃ τBτ
−1
A is not optimal

if there is some vertex of Amax(f) such that all edges of Amax(f) ter-
minating at that vertex have f -image with a common terminal partial
edge.

Otherwise f is optimal.

Remark 3.8. Using the terminology of legal and illegal turns, a PL-map
is optimal if each vertex of Amax has at least one legal turn.

Suppose that a map f ≃ τBτ
−1
A is not optimal. Let v be a vertex

of Amax(f) such that all edges of Amax(f) terminating at v have f -image
with a common terminal partial edge, say α. Let star(v) denote the set of
edges emanating from v. We setN = star(v)∩Amax andK = star(v)\N .

Now, let ft be the homotopy that moves v backward along α. More
precisely, we let F : A × [0, T ] → B be the homotopy such that ft =
F (·, t) : A → B is the PL-map that agrees with f outside star(v) and
such that ft(v) ∈ α with d(ft(v), f(v)) = t. Such a homotopy exists for
small t. Moreover, for small t we have:

(1) For any e0 ∈ N and any e1 ∈ K, Sft,e1 < Sft,e0 .

(2) • Either Sft = Sf and Amax(ft) ⊂ Amax(f) (but not equal).
• Or Sft < Sf and Amax(ft) = Amax(f).

Remark 3.9. Note that by this result, an optimal map is one where
both Sf and Amax(f) are minimal.

Definition 3.10. Let t0 be the supremum of times t such that ft exists
and has the above properties. We define Nextv(f) as ft0 .

Note that Nextv(f) can be defined only for non-optimal maps. We
can now prove that the inequality (2) is an equality, as was first proved
by Tad White.

Proposition 3.11. Let A, B be marked metric graphs of rank n. Then
there exists an f ≃ τBτ

−1
A and a cyclically reduced loop γ contained

in Amax, the subgraph of maximally stretched edges of A, whose f -image
is also cyclically reduced. In particular, ΛR(A,B) = Sf for this map f .
In particular, this is true for any optimal map.

Proof: By Lemma 3.4, we may choose a map f whose stretching factor
is minimal. Moreover, we may choose such a map with the least number
of edges in Amax(f). Hence, Nextv(f) cannot exist, and therefore f is
optimal. Therefore optimal maps exist.

Now let f be any optimal map. This means that any path, p, in
Amax(f) which is mapped to a reduced path by f can be continued to a
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longer path, which is also mapped to something reduced. This is because
the obstruction to continuing p is exactly non-optimality of f . Starting
with a single edge, and since there are only finitely many oriented edges
in Amax(f), we can find a reduced path of the form eqe which is mapped
to a reduced path by f . It is then clear that γ = eq is a cyclically re-
duced loop, which is mapped to something cyclically reduced. Moreover,
lB(γ) = Sf lA(γ), and hence ΛR(A,B) = Sf as required.

Actually, one can do better.

Definition 3.12. Let f : A → B be a PL-map. For any sub-graph A0

of A, we define ∂fA0 the f -boundary of A0 as the set of vertices v of A0

such that all edges of A0 terminating at v have f -image with a common
terminal partial edge.

So, for example, a map is optimal if and only if ∂fAmax = ∅.
Proposition 3.13. Let A, B be marked metric graphs of rank n. Then
there exists an f ≃ τBτ

−1
A such that, if λ1 > · · · > λk are the stretching

factors of edges, if Ai denotes the sub-graph of edges stretched by λi,
then for all i

∂fAi ⊂ Ai−1, i ≥ 1 ∂fA1 = ∅.
(So, heuristically, Ai is a cycle relative to Ai−1.)

Proof: Once one founds optimal maps as in Proposition 3.11, choose
between them one that has the smallest λ2 and A2, argue as in Propo-
sition 3.11, and conclude inductively on i.

We note that implicit in the proof of Proposition 3.11 is a proof that
ΛR(A,B) is computable. Namely, the path γ produced at the end of
the proof can be chosen minimally, and so we may assume that it passes
through each oriented edge at most once. There are only finitely many
such paths, and we may compute their lengths in A and B (without
reference to f) as well as the maximum of the ratio of these lengths.
By the proposition, this maximum will be exactly ΛR(A,B). However,
the number of such γ will be exponential in the number of edges. We
will now show that it is always possible to find a “less complicated”
loop γ, which will cut down the computational complexity considerably.
More precisely, using Proposition 3.15, if A is a rose with n petals,
then ΛR(A,B) may be obtained by calculating the lengths of at most
2n paths.

We will approach this problem in two steps, and the idea of this
result is that we want to reduce the complexity of γ as a loop in A.
We always have in mind an optimal map f , and so we will assume that
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γ lies in Amax. We shall attempt to simplify by cutting and gluing γ
to itself. Since we will only use edges that were already in γ, we ensure
that our loops are always contained in Amax. In order for the cutting
and pasting to result in loops which still give the value for ΛR(A,B), we
need to make sure that the resulting image in B is cyclically reduced.
Therefore we always need to keep in mind that we are working at two
levels. On the one hand we have a loop, γ, thought of as a map from
the circle to A (Amax, in fact). We then compose this map with f and
the resulting loop in B is an immersion. For the first step of our result,
we prove the following “Sausages Lemma”, which says that we may take
a γ which realises ΛR(A,B) and whose shape in A is as in Figure 1.

Figure 1. Sausages.

For any oriented path γ we denote by γ its inverse.

Lemma 3.14 (Sausages Lemma). Let A, B be marked metric graphs of
rank n, and let f ≃ τBτ

−1
A be an optimal map. Then there exists a loop γ

such that lB(γ)/lA(γ) = Sf = ΛR(A,B). In particular, γ is cyclically
reduced in A and in B via f . Furthermore, γ is a sausage, i.e. γ = γ1γ2
where each γi is a path in A that can be parameterised with [0, 1] in such
a way that

• γ1 and γ2 are embeddings;
• there exists a finite family of disjoint closed intervals Ij ⊂ (0, 1),
each one possibly consisting of a single point, such that γ1(t) =
γ2(s) if and only if t = s and t belongs to {0, 1} ∪j Ij.

Proof: The content of the result is that γ = γ1γ2 has the specified prop-
erties, since everything else follows from Proposition 3.11. This will
follow from three sublemmas. First we establish some notation. We
shall think of γ as a map from S1 to A and also, via f , as a map from S1

to B. We shall subdivide S1 to give it a graph structure and so that
edges map to edges in A and vertices map to vertices in A. For sim-
plicity, although it is not really necessary, we shall assume that all the
vertices of A map to vertices of B, which we can arrange after a suitable
subdivision. Hence edges in S1 map to edges or vertices in B.
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δ1

δ2

δ3

Figure 2. Triple points.

Our first sublemma says that if three distinct points in S1 have the
same image in A, then we can choose γ to be shorter (in both A and B).
To do this, we look at three points in S1 mapped to the same point
in A. Thus we decompose γ as δ1δ2δ3 as in the picture above, where the
endpoints of each δi map to the same point in A. Our first attempt is
to try to replace γ with one of the δi, each of which is clearly a shorter
path in A, and each of which maps to a reduced path in B. The only
way that this can fail is if each δi maps to a reduced but not cyclically
reduced path in B. This means that we can write,

δ1 = e1 . . . e1

δ2 = e2 . . . e2

δ3 = e3 . . . e3,

where we are writing each δi as a concatenation of edges labelled by the
image of that edge in B. Thus we are saying that the image of δ1 in B
begins with an edge e1 and ends with the inverse edge e1. However,
we know that γ is immersed in B, so that e1 6= e2. In particular, this
implies that the loop δ1δ2 is immersed in B, and we are done.

δ1

δ2

δ3

δ4

Figure 3. Crossing points.
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For the second sublemma, we will show that we can avoid crossing
double points in γ. That is, if we can write γ as a concatenation δ1δ2δ3δ4
in S1 such that the initial points of δ1 and δ3 have the same image in A,
and the initial points of δ2 and δ4 have the same image in A, then we
may replace γ by a shorter path (shorter in both A and B).

Now we try to replace γ by one of the paths δiδi+1 (subscripts taken
modulo 4). If any of these map to cyclically reduced loops in B, we are
done. Otherwise, we get that,

δ1δ2 = e1 . . . e1

δ2δ3 = e2 . . . e2

δ3δ4 = e3 . . . e3

δ4δ1 = e4 . . . e4,

where, as before, this is a concatenation of edges in S1 labelled by the
images in B. This implies that

δi = ei . . . ei+3,

with subscripts taken mod 4. Since we know that γ is immersed in B, we
must have that e1 6= e3 and e2 6= e4. Thus it is clear that the loop δ1δ3
is immersed in B, and hence we have proven the second sublemma.

For our third and final sublemma, we wish to remove all “bad trian-
gles”. This may be slightly confusing terminology, but we wish to avoid
the situation where γ is the concatenation of 6 paths, where alternat-
ing paths in this decomposition are closed (and the other 3 form a, not
necessarily embedded, triangle). Formally, let us assume that we can
write

γ = δ1δ2δ3δ4δ5δ6,

where δ1, δ3, δ5 are closed paths, and show that this means we can
shorten γ. Note that if any of the paths δ1, δ3, δ5 are immersed in B
then we are done, simply by replacing γ. So let us assume that none of
these subpaths are immersed. Using arguments similar to those before,
this implies that δ1δ2δ3δ2 is a closed path in A whose image in B is
immersed.

We would now be done if this new path were shorter than γ. If this
fails, we apply the same argument to the path δ3δ4δ5δ4 which would now
be shorter than γ.

Armed with these sublemmas, we may remove all triple points, all
crossing points and all bad triangles since there are only finitely many
loops less than a given length in A (or B). We subdivide γ (really the
source circle S1) into edges and vertices, labelled by their image in A.
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Clearly, the labelling in S1 may give more than one edge the same label
since γ need not be embedded, however since we have removed all triple
points each label may occur at most twice. If each label occurs once,
γ is embedded and we are done. Otherwise, choose an “innermost” pair
of vertices in γ with the same label. These are points in S1 which map
to the same vertex in A (and therefore also in B). That is, choose such
a pair u, v and one of the paths between them, δ so that δ embeds in A
except at the endpoints. Note that if there is a single pair of points on S1

mapping to the same vertex in A, then γ will be a figure-eight and we
are done, whereas if no such pair exists then γ would be embedded in A
and we are also done.

Note that if we have two innermost pairs, we can assume that the
paths between them are disjoint as we have removed all crossing points.
Also, since we have removed all bad triangles, there are at most two
innermost such pairs (in fact there are exactly two, if we also keep track
of the path between them and remember that we are assuming that γ is
not embedded or a figure-eight). For each innermost pair, choose a point
between them (i.e. on the specified path). So we now have two points
on γ and therefore two subpaths, γ1, γ2 between them and γ = γ1γ2.
Since we have no bad triangles and no crossing points, both γ1 and γ2
must be embedded in A. We have also divided γ, and hence its subpaths,
according to the image in A and use this paramaterisation to finish the
lemma. Namely, the disjoint intervals Ij correspond to edges or vertices
of A which have more than one pre-image in γ. Since we have eliminated
all crossing points in γ, the intervals Ij appear in the same order in
both γ1 and γ2 are we are done.

The final step in simplifying our loop γ is to move from a collection
of sausages to at most two.

Proposition 3.15. Let A,B ∈ CVn, and let f ≃ τBτ
−1
A be an optimal

map. Then there exists a loop γ with lB(γ)/lA(γ) = Sf = ΛR(A,B) so
that either

O: γ is a simple closed curve in A,

∞: γ is an embedded bouquet of two circles, i.e. γ = γ1γ2, where γi are
simple closed curves which do not meet each other, except at a
single point, or

O-O: γ = γ1γ3γ2γ3, where γ1 and γ2 are simple closed curves which do
not meet, and γ3 is an embedded path that touches γ1 and γ2 at
their initial points only.
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In particular, there exists a finite set of loops, Γ, in A so that
lB(γ)/lA(γ) = ΛR(A,B) for some γ ∈ Γ and the set Γ can be chosen
independently of B.

Proof: We shall start by taking the loop γ = γ1γ2 supplied by Lem-
ma 3.14. If the family of intervals {Ij} is empty, then γ is a simple closed
curve; if it consists of a single interval I then γ is either an embedded
∞- or O-O-curve, depending whether I is a single point or not. In these
cases we are done.

Suppose that the family {Ij} contains at least two intervals. We show
how to reduce to the case of only one interval. Let [a, b] and [c, d] be the
two extremal intervals of {Ij}; namely, such that 0 < a ≤ b < c ≤ d < 1
and no Ij in (0, a) ∪ (d, 1). We replace the loop γ2 with the following

δ2(t) =





γ2(t) t < b

γ1(t) t ∈ [b, c]

γ2(t) t > c.

Note that δ2 is embedded in A because γ1(t) = γ2(s) if and only if
t = s (by Lemma 3.14). Also, the f -image of δ2 in B is reduced because
of the same reason and because the f -images of both γ1 and γ2 are
reduced. The new loop γ̃ = γ1δ2 is therefore a sausage-loop satisfying
lB(γ̃)/lA(γ̃) = Sf = ΛR(A,B), and the cardinality of the Ij ’s is now
one.

Another interesting consequence of Proposition 3.11 is that ΛR is al-
ways defined and finite. We note that this can also be proved directly
using the immersion of paths in the space of geodesic currents (see [9],
[12]). Indeed, the space of geodesic currents is compact, and lengths
are continuous linear functionals, so the ratio of two length functionals
always has maximum and minimum realised by some current. In partic-
ular the maximum is finite and the minimum is non-zero, and we have
additionally proved that it is realised by a rational current.

4. Metrics

We are now in a position to define a metric on CVn and our starting
point will be Definition 3.1. In fact we have both left hand and right
hand displacements (whose existence is guaranteed by Proposition 3.11
and the preceding discussion).
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Definition 4.1 (Right and left factors). For any pair A, B of marked
metric graphs of rank n we set:

ΛR(A,B) := sup
16=w∈Fn

lB(w)

lA(w)
, ΛL(A,B) := sup

16=w∈Fn

lA(w)

lB(w)
= ΛR(B,A).

Remark 4.2. Since Fn embeds in the space of geodesic currents as a dense
sub-space, we could equivalently define ΛR and ΛL taking the supremum
over the space of currents.

The reason that we wish to use both ΛR and ΛL is that they are
not symmetric functions and hence if we wish to define a genuine metric
on CVn we will need to use both of them. We are now ready to define
the metric on CVn.

Definition 4.3 (Distance). For all A,B ∈ CVn, we define

Λ(A,B) := ΛR(A,B)ΛL(A,B).

The distance between A and B is then given by,

d(A,B) = logΛ(A,B).

This is finite by Proposition 3.11.

The first remark is that if we scale the length functions lA and lB
by positive numbers, d(A,B) remains unchanged. So it is well-defined
on CVn.

Proposition 3.11 shows in fact that d(A,B) is always finite, but we
still need to show that it is indeed a metric. We begin with an elementary
observation.

Remark 4.4. Given a positive real valued function, f ,

sup
1

f(x)
=

1

inf f(x)
.

Moreover, sup 1
f(x) exists if and only if inf f(x) exists and is non-zero.

This has an easy but interesting consequence for us,

Lemma 4.5.

Λ(A,B) =
sup16=w∈F

lA(w)
lB(w)

inf16=w∈F
lA(w)
lB(w)

.

Proof: Apply the previous remark to lA(w)
lB(w) , noting that ΛR(A,B) always

exists.

It is now immediate that d will be a non-negative function.
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Corollary 4.6. For all A,B∈CVn, Λ(A,B)≥1 and hence d(A,B) ≥ 0.

Next we need to show that d is only zero when the two entries are the
same point of CVn.

Lemma 4.7. Given A,B ∈ CVn, d(A,B) = 0 if and only if A = B.

Proof: Thinking of CVn as a space of length functions, it is clear that
if the two functions, lA and lB differ by a multiplicative constant, then
Λ(A,B) = 1 and so d(A,B) = 0. Conversely, if d(A,B) = 0 then after
rescaling (by ΛR(A,B)) we get that lA = lB.

Lemma 4.8 (Triangular inequality). For all marked metric graphs A,
B, C of rank n

d(A,C) ≤ d(A,B) + d(B,C).

Proof: For any 1 6= g ∈ Fn

ΛR(A,B)ΛR(B,C) = sup
16=w∈Fn

lB(w)

lA(w)
sup

16=w′∈Fn

lC(w
′)

lB(w′)

≥ lB(g)

lA(g)

lC(g)

lB(g)

=
lC(g)

lA(g)
.

Thus ΛR(A,B)ΛR(B,C) ≥ ΛR(A,C). Using the same argument for ΛL,
we have verified the triangle inequality for d.

Since the function d is clearly symmetric, collecting previous lemmata
we have a proof of

Theorem 4.9. The function d(A,B) = logΛ(A,B) defines a metric
on CVn.

Remark 4.10. It is straightforward that automorphisms of the free group
act by isometries on CVn with respect to d.

Armed with the metric above, we clearly need to verify that the topol-
ogy it gives is the same as the one we already have on CVn.

Theorem 4.11 (The topology). The topology induced by d on CV is
the usual one.

Proof: Note that the Gromov topology, the Axes topology and the Weak
topology coincide for Culler-Vogtmann Space, and a fuller discussion
may be found here, [10].
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Marked metric graphs are characterised by their translation lengths,
so elements of CVn are characterised by the projective classes of their
translation lengths.

We show that the two topologies —the metric one and the usual
one— have the same convergent sequences, that being enough since both
topologies have countable bases.

First, we show that if d(Ak, A) → 0 then Ak → A in CVn. If
d(Ak, A)→ 0, then by Lemma 4.5 the function

sup

inf
(lAk

/lA)

uniformly converges to 1. Therefore, up possibly to rescaling, lAk
→ lA

pointwise, and thus Ak → A as elements of CVn.
Conversely, if Ak → A as elements of CVn, then, up possibly to

rescaling, the length functions of Ak tend to the length function of A.
Denote the length function of Ak by ‖.‖k and that of A by ‖.‖.

Now, consider optimal maps fk : A → Ak as in Proposition 3.11.
Now, by definition, the Lipschitz constant for fk, which we denote hk,
is realised by a loop γ in A, in the sense that hk = ‖γ‖k/‖γ‖. We need
to show that hk → 1.

By Proposition 3.15 there are in fact a finite set of loops in A from
which we can guarantee that one will realise this Lipschitz constant so we
may therefore assume that there is a single γ such that hk = ‖γ‖k/‖γ‖
for all k. However, by assumption we have that ‖γ‖k → ‖γ‖ and hence
hk → 1 as required.

Theorem 4.12 (Properness). For any X ∈ CVn, any closed d-ball cen-
tred at X is compact. Whence (CVn, d) is complete.

Proof: Let {Ai} be any sequence in CVn such that d(X,Ai) ≤ eR. We
show that it has a convergent sub-sequence. By hypothesis we have

sup

inf
(lAi

/lX) < R

and, up to possibly scaling the metric ofAi, we can suppose inf(lAi
/lX) =

1. Therefore {sup(lAi
/lX)} is a bounded sequence, and a diagonal argu-

ment now shows that, up to possibly passing to subsequences, lAi
has as

pointwise limit that we denote by l∞. Since the closure of Outer Space is
the space of “very small actions”, [8], [2], [6], l∞ corresponds to a trans-
lation length function of a minimal isometric action of the free group Fn

on an R-tree. Since the infimum of functions is upper semicontinuous,
l∞ is bounded below away from zero. We show in Lemma 4.13 that this
implies that the action given by l∞ is actually free on a simplicial tree,
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and corresponds therefore to a point A of CVn which, by Theorem 4.11
is the limit of {Ai}.

Lemma 4.13. Let l be the translation length function of a minimal
isometric action of the free group Fn on a R-tree T . If inf l > c > 0 then
T is simplicial and the action is free.

Proof: The fact that the action is free is obvious since l is bounded below
away from zero. Now suppose, by contradiction, that the action is not
simplicial. Then, there is a point x ∈ T and a sequence of segments σk,
no three of them co-linear, such that the sequence {sk} of their starting
points converges to x. Let R̃n denote the universal cover of the standard

rose Rn (i.e. R̃n is the Cayley graph of Fn) with a marked origin O, and

let f : R̃n → T be a Lipschitz, PL-map which is equivariant with respect
to the actions of Fn on Rn and T . Let yk ∈ Rn such that f(yk) = sk.
Let wk ∈ Fn be elements such that wk(yk) stay at distance less than one
from O. After passing to a subsequence, we may assume that wk(yk) is

convergent in R̃n, and hence that wk(sk) is convergent in T . Looking at
distances in T we see that,

d(wk(sk), wh(sk)) ≤ d(wk(sk), wh(sh)) + d(wh(sh), wh(sk))

= d(wk(sk), wh(sh)) + d(sh, sk).

Hence, from the remarks above, the translation length of wh
−1wk in T ,

tends to zero, as h, k →∞. Moreover, since the no three of the σk’s are
co-linear, the family {wk} is infinite and hence wh

−1wk cannot always
equal the identity. This contradicts the hypothesis that l is bounded
away from zero.

Since our metric d is the corresponding of a symmetrised version of the
Thurston metric on Teichmüller space, it is natural to ask what happens
to the non-symmetric pieces.

Definition 4.14. Given A ∈ CVn we denote by Ā its representative
which has total volume one.

Definition 4.15 (Right and left hand non-symmetric metric). For any
A,B ∈ CVn we define

dR := log(ΛR(Ā, B̄)), dL := log(ΛL(Ā, B̄)).

Since dL(A,B) = dR(B,A) we can restrict our study to the right
hand metric dR. The elementary properties require some more work
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than in the case of the symmetric metric. Also note that d(A,B) =
dR(A,B) + dR(B,A) so is a symmetrisation of the one-sided metric.

Observe that d is well-defined for marked metric graph, and it is scale-
invariant, so it descends to a metric on CVn. This property does not hold
for dR, however, which is why the normalisation to volume one is crucial.

Lemma 4.16. For any A,B ∈ CVn the right hand distance is non-
negative and vanishes only if A = B:

dR(A,B) ≥ 0 and dR(A,B) = 0⇔ A = B ∈ CVn.

Proof: Let f : Ā → B̄ be an optimal map (that exists by Proposi-
tion 3.11) then

(3) 1 = vol(B̄) = vol(Im(f)) ≤ ΛR(Ā, B̄) vol(Ā) = ΛR(Ā, B̄)

so dR(A,B) ≥ 0. If, for any edge e of Ā we denote by lĀ(e) its length
(hence

∑
lĀ(e) = 1) recalling that Sf,e denotes the stretching factor of e,

we have

(4) vol(Im(f)) =
∑

e edge of A

Sf,elĀ(e)− C

where C is a non-negative quantity that measures the overlappings of f .
Therefore, if ΛR(A,B) = 1, then the inequality of (3) is an equality, and
from (4) we get Sf,e = 1 for all edges e, and C = 0 which together imply
that f is an isometry. Thus Ā = B̄ as marked graphs, and A = B as
elements of CVn.

Ordered triangular inequality is already proven in Lemma 4.8, so we
have proved

Theorem 4.17. The function dR(A,B) defines a non-symmetric metric
on CVn.

As for the symmetric case, the topology induced by dR on CVn is the
usual one.

Theorem 4.18 (The topology). For any sequence {Ak} and A ∈ CVn

d(A,Ak)→ 0⇔ dR(A,Ak)→ 0⇔ dR(Ak, A)→ 0.

Proof: Clearly if d = dR + dL → 0 then both dR and dL go to zero.
Suppose that dR(A,Ak) → 0. Let fk : Ā → Āk be an optimal map. As
in (4) we have

1 = vol(Im(fk)) =




∑

e edge of A

Sfk,e lĀ(e)


− Ck
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with Sfk,e ≤ ΛR(A,Ak) → 1 and
∑

lĀ(e) = 1. Which implies that
fk converges to an isometry and therefore d(A,Ak) → 0. A similar
argument works for when ΛR(Ak, A)→ 1.

The first important difference between symmetric and non-symmetric
metrics is that the latter are not complete. Therefore, in general, the
fact that a sequence is a right hand Cauchy sequence does not guarantee
convergence in CVn.

Theorem 4.19 (Incompleteness). The space (CVn, dR) is not complete.
Namely there are sequences {Ak} such that dR(Ak, Ak+m)→ 0 as k →∞
which have no accumulation point. Moreover, for any A ∈ CVn and any
B ∈ CVn \CVn one has that ΛR(A,B) <∞.

Proof: Let A0 be Rn the standard n-petals rose with a uniform metric
of volume one. Let Ak be the graph obtained by multiplying the metric
of one petal by a factor 1/k and normalised to have volume one. Then,
a direct calculation shows

ΛR(Ak, Ak+m) =
((k +m)n− 1)k

(k +m)(kn− 1)

which goes to 1 as k →∞. Thus, {Ak} is a right hand Cauchy sequence,
but its only accumulation point is the standard rose with n − 1 petals
which does not belong to CVn —but it can be viewed as an element
of CVn.

In order to prove the second statement, one simply constructs a PL,
equivariant map from A to B. This is guaranteed to be Lipschitz, since
A is in CVn (for any choice of B). Whence ΛR(A,B) is bounded.

Remark 4.20. Theorem 4.19 points out another “pathology” of the
non-symmetric metrics. Indeed, consider a volume-one, marked met-
ric graph A, and a sequence Bk of volume-one, marked metric graphs
such that ΛR(A,Bk) goes to infinity. This can be easily done using it-
erations of automorphisms (see for instance Section 8). Then, up to
possibly passing to a subsequence, Bk → B a point in CVn \ CVn. By
Theorem 4.19 we have ΛR(A,B) <∞ and ΛR(A,Bk)→∞.

On the other hand, right and left hand metrics are more deeply related
to folding procedures, this providing an easy description of geodesics.

We note that one interesting consequence of the existence of the met-
ric, is that one can use it to prove the Bounded Cancellation Lemma
of [7].
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The Bounded Cancellation Lemma, first proved by Cooper, is a key
result in the study of automorphisms of free groups. It has many equiv-
alent formulations, of which we state one.

Theorem 4.21 (Bounded Cancellation Lemma, [7]). Let A, B be marked
metric graphs of rank n, and consider f : A → B, a PL map such that
f ≃ τBτ

−1
A . Let |.|A and |.|B denote the length functions of A and B

respectively (the edge lengths of paths). (Note that this is not quite the
translation length, since we do not cyclically reduce.) Let α, β be loops
in A, at a vertex v, such that |αβ|A = |α|A + |β|A. Then, there exists a
constant K depending only on A and B (and not on α, β) such that,

|f(αβ)|B ≥ |f(α)|B + |f(β)|B − 2K.

We call K a bounded cancellation constant for the map, f , which clearly
only depends on f up to homotopy relative to vertices.

We observe that the existence of the bounded cancellation constant
is related to our (left) distance.

Proposition 4.22. Given A, B and f as above, let λ be the Lipschitz
constant for f . Then if i is not a bounded cancellation constant for f ,
we may find loops αi, βi at a vertex v of A such that

(1) |αiβi|A = |αi|A + |βi|A.
(2) |f(αiβi)|B < |f(αi)|B + |f(βi)|B − 2(i− λ vol(A)).

(3) |f(αi)|B ≤ λ vol(A) + i, |f(βi)|B ≤ λ vol(A) + i.

Moreover, we can ensure that αiβi is cyclically reduced in A.

Proof: By hypothesis, we may find loops αi, βi such that |f(αiβi)|B <
|f(αi)|B + |f(βi)|B − 2i. This means that there is a terminal segment
of f(αi) cancels with an initial segment of f(βi) of length i (though the
cancellation may be longer). So consider a terminal segment of αi and
an initial segment of βi whose images cancel and have length i.

Now, by adding a segment of length not greater than vol(A) to each
of these pre-images, we may replace αi, βi by paths which are loops,
(which we continue to call αi, βi) so that αiβi is cyclically reduced in A.

By construction, f(αi) is a loop in B which is the original cancellation
segment of length i, followed by a path which is the image of something
of length at most vol(A). Since the image of this terminal segment has
length at most λ vol(A), we know that a terminal segment of f(αi) of
length at least i − λ vol(A) survives (and is a terminal segment of the
original cancellation segment). By a similar argument for f(βi), we may



454 S. Francaviglia, A. Martino

deduce that a segment of length at least i − λ vol(A) must cancel in
f(αiβi). Therefore, |f(αiβi)|B < |f(αi)|B + |f(βi)|B − 2(i− λ vol(A)).

Moreover, by construction, |f(αi)|B ≤ λ vol(A) + i, |f(βi)|B ≤
λ vol(A) + i and we are done.

Now, consider two loops in A, α, β, which are based at the same
vertex of A, such that αβ is cyclically reduced and |αβ|A = |α|A + |β|A,
and with the additional contidion that |α|A, |β|A ≤ 4λ vol(A)ΛL(A,B).
Let

Kα,β =
|f(α)|B + |f(β)|B − |f(αβ)|B

2

since there are only finitely many pairs, α, β with the above properties,
we may find a maximum K of the numbers Kα,β.

Corollary 4.23. With the above notation, the number K + λ vol(A) is
a bounded cancellation constant for f .

Proof: Recall that

1

ΛL(A,B)
= inf

w

||w||B
||w||A

and that ||w|| ≤ |w| with equality if and only if w is cyclically reduced.
In particular, whenever αβ is cyclically reduced, we have

|f(αβ)|B
|αβ|A

≥ ||f(αβ)||B||αβ||A
≥ 1

ΛL(A,B)
.

By Proposition 4.22, if i is not a bounded cancellation constant for f ,
we may find α, β such that αβ is cycliclally reduced, the cancellation
in f(αβ) is greater than i−λ vol(A), and |f(α)|B , |f(β)|B ≤ λ vol(A)+i.

So we get |f(αβ)|B ≤ 4λ vol(A) and

|f(αβ)|BΛL(A,B) ≥ |αβ|A

whence |αβ|A ≤ 4λ vol(A)Λ(A,B) and thus Kα,β ≤ K.
Since the cancellation in f(αβ) is greater than i− λ vol(A)

|f(αβ)|B ≤ |f(α)|B + |f(β)|B − 2(i− λ vol(A))

whence i− λ vol(A) ≤ K.

For deeper bunded cancellation results, see [3].
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5. Folding paths and geodesics

In this section we study properties of geodesics and metric properties
of folding paths for the symmetric and the non-symmetric metrics.

First we define a geodesic for a non-symmetric metric.

Definition 5.1. Let dR be a non-symmetric metric on a space X . Then
a path γ : [a, b] → X is called a geodesic if for all a ≤ s ≤ t ≤ b,
t− s = dR(γ(s), γ(t)). More generally, call a path γ a geodesic if it can
be re-parameterised so that it satisfies the equality above.

The following lemma provides an easy characterisation of geodesics.

Lemma 5.2. Let γ be a continuous path from an interval [a, b] to a
(possibly non-symmetric) metric space. If for any three points x < y <
z ∈ [a, b], the path γ realises the triangular equality

d(γ(x), γ(y)) + d(γ(y), γ(z)) = d(γ(x), γ(z)),

then γ is a geodesic.

Proof: Given a subdivision a = t0 < t1 < · · · < tn = b of [a, b], the sum∑n
i=1 d(γ(ti−1), γ(ti)) approximates the length of γ as the subdivision is

finer and finer. By the triangular equality we get

n∑

i=1

d(γ(ti−1), γ(ti)) = d(γ(t0), γ(t2)) +

n∑

i=3

d(γ(ti−1), γ(ti))

and inductively we conclude that γ is rectifiable and that its length
realises the distance between γ(a) and γ(b).

Corollary 5.3. Let At, t ∈ [a, b] denote a continuous path in CVn. Sup-
pose that for each x, y, z ∈ [a, b] there is a loop γ which is maximally
stretched both from Ax to from Ay and Ay to Az. More precisely, sup-
pose that

max
w

lAy
(w)

lAx
(w)

=
lAy

(γ)

lAx
(γ)

, max
w

lAz
(w)

lAy
(w)

=
lAz

(γ)

lAy
(γ)

.

Then At is a dR-geodesic.

Proof: It is immediate to check that At realises the (oriented) triangular
equality.

The very same argument gives the following.
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Corollary 5.4. Let At, t ∈ [a, b] denote a continuous path in CVn. Sup-
pose that for each x, y, z ∈ [a, b] there are loops γ and η which are re-
spectively maximally and minimally stretched both from Ax to from Ay

and Ay to Az. More precisely, suppose that

max
w

lAy
(w)

lAx
(w)

=
lAy

(γ)

lAx
(γ)

max
w

lAz
(w)

lAy
(w)

=
lAz

(γ)

lAy
(γ)

;

min
w

lAy
(w)

lAx
(w)

=
lAy

(η)

lAx
(η)

min
w

lAz
(w)

lAy
(w)

=
lAz

(η)

lAy
(η)

.

Then At is a d-geodesic.

Remark 5.5. Since d = dR + dL, a path is d-geodesic if and only if it is
both dR- and dL-geodesic.

We are now ready to construct dR-geodesics using scalings and folding
paths.

Theorem 5.6 (Right hand geodesics). For each A, B in CVn there is a
dR-geodesic path between them, that is to say a continuous path t 7→ At

such that dR(A,At) = t and AdR(A,B) = B.

Proof: Recall that Ā and B̄ denote the volume-one representatives in
their respective projective classes. Let f : Ā → B̄ be an optimal map,
let γ ⊂ Āmax be a loop realising ΛR(Ā, B̄). Namely, γ is a geodesic
in Ā (i.e. a reduced loop) whose f -image is geodesic (i.e. reduced) in B̄,
and such that γ is uniformly stretched by f exactly by ΛR(Ā, B̄). The
existence of such f and γ is ensured by Proposition 3.11.

Let A′ be the marked metric graph obtained from Ā by shrinking each
edge so that it is stretched by f exactly by ΛR(Ā, B̄), and let A0 be the
graph homothetic to A′ so that ΛR(A0, B̄) = 1. We still denote by f the
induced map f : A0 → B̄.

Note that we still have that γ is a reduced loop in A0 whose f -image is
reduced, and that it realises the maximal stretching factor ΛR(A0, B̄) =
1. Also, note that now f stretches each edges of A0 exactly by 1 (that
is to say, f is an isometry on edges).

We describe now a folding procedure that will produce our geodesic.
(The idea is that we never touch γ, so that it will realise the maximally
stretched loop between any two points of the folding, so that we can
invoke Corollary 5.3.)

First, we subdivide —allowing valence-two vertices— both A0 and B̄
so that f is simplicial (i.e. vertices to vertices, edges to edges). For each
vertex v of A0 and t ≥ 0 let ∼t,v be the equivalence relation on A0
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defined by:

x ∼t,v y

if and only if f(x) = f(y) and both x and y lie at distance less or equal
than t from v. Let ∼t be the union of all relations ∼t,v as v varies on
the set all vertices of A0. For t ≥ 0 we define

At := A0/ ∼t

we denote by pt the projection A0 → At, and we denote by ft the
map At → B̄ induced by f , which is well-defined since x ∼t,v y implies
f(x) = f(y) .

For small times t, At is obtained from A0 just identifying germs of
edges having the same image under f (local folding). Let t1 be the
smallest time t such that a pair of edges of A0 is completely identified
in At.

Our first claim is that, for t ∈ [0, t1], At is a metric graph and that ft is
an homotopy equivalence, whence At is a marked metric graph. The fact
that At is a graph is because for any segment σ in B̄, f−1(σ) is a finite
union of segments, and therefore At is the result of identifications of a
finite number of segments. The fact that ft is a homotopy equivalence
follows from the fact that f factorises as

f : A0
pt−→ At

ft−→ B̄

and from the fact that (pt)∗ : π1(A0)→ π1(At) is surjective.
Our second claim is now that γ realises both ΛR(A0,At) and ΛR(At,B̄).

First note that, as the f -image of γ is geodesic, then also its pt-image
is. Thus ΛR(A0, At) is greater or equal to the ratio lAt

(γ)/lA0
(γ), which

is one because pt is a local isometry on edges. A fact that also implies
that ΛR(A0, At) ≤ 1. Thus ΛR(A0, At) = 1 and it is realised by γ. A
similar argument shows that Λ(At, B̄) = 1 is realised by γ.

We argue now by induction. As above, we define relations ∼t−t1,v

for each vertex v of A1, and ∼t−t1 as their union. For t ≥ t1, we set
At := At1/ ∼t−t1 , we let pt : A0 → At be the projection, and ft be map
induced by f .

As above, it is easy to check that we have that ΛR(A0, At) =
ΛR(At, B̄) = 1 are both realised by γ.

Our third claim is that such a process ends in a finite time. Indeed,
since our folding is isometric on edges, for t < s we can bound below the
difference of volumes

vol(At)− vol(As)

by s− t.
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So we must stop at a time, say t̄. Since we stopped, at each vertex the
folding relations are trivial, but this simply means that ft̄ is an isometry.

Summarising, we have constructed a path At for t ∈ [0, t̄] with the
property that, A0 is in the class of A′ as element of CVn, At̄ = B̄ is in the
class of B as element of CVn and for each t ΛR(A0, At) and ΛR(At, B̄)
are realised by the same γ. This last property does not change if we
rescale each At to its volume-one multiple Āt. Therefore, for each t we
have

dR(A
′, B) = dR(A

′, At) + dR(At, B).

Now, note that for any 0 ≤ s < t ≤ t̄, if we construct a folding path
from As to At following the above rules, we find exactly the restriction
of the folding path we build so far. Therefore, the path At from A0

to B realises the triangular equality, and is therefore dR-geodesic by
Lemma 5.2.

The shrinking procedure from A to A′ also realises the triangular
equality because everything is shrank and γ is not touched. Finally,
if we consider a point X between A and A′ and a point Y on the ge-
odesic between A′ and B, again we have that every loop is stretched
less than ΛR(A,B) and γ is stretched exactly by ΛR(A,B). In conclu-
sion, γ always realises the maximum stretching factor between any two
points in the path we constructed. Such a path is then dR-geodesic by
Corollary 5.3.

Since it is of independent interest, we formalise the precise definition
and notation the folding procedure described in the proof of Theorem 5.6.

Definition 5.7 (Fast folding paths and turns). Let A, B be two marked
metric graphs, let f : A→ B be an optimal map, and let A0, B̄ as in the
proof of Theorem 5.6.

A fast folding path is a path t 7→ At constructed following the proce-
dure described in the proof of Theorem 5.6.

A fast folding path comes with the simplicial subdivisions and the
sequence of times 0 = t0 < t1 < · · · < t̄ such that in each [ti, ti+1] a
whole segment is identified.

A turn τ at a time t of a fast folding path is a pair of edges having
a common end-point and whose germs are identified for t′ > t. We say
that the turn is folded, or that τ is a folding turn.

Remark 5.8. The folding path we constructed in the proof of Theorem 5.6
is not unique in general, as in general we can start with many different
optimal maps. Also, we could start folding separately at every single
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vertex, still obtaining a geodesic. This shows that dR-geodesics between
points of CVn are not unique.

We analyse now the local structure of geodesics in the PL structure
of CVn.

Definition 5.9 (Simplices of Outer Space). A simplex of CVn is a sub-
set of CVn consisting of all marked metric graphs with fixed topological
type and marking.

Given a marked graph with edges e1, . . . , ek, the corresponding sim-
plex σ is identified with the positive cone of Rk just by assigning the
metric, i.e. a length for each edge:

A ∈ σ ←→ (lA(e1), . . . , lA(ek)).

Similarly, we can assign to each loop, its counting vector. Namely, for
a loop ξ let ξ(ei) be the number of occurrences of the edge ei in ξ; then

ξ 7→ (ξ(e1), . . . , ξ(ek)).

This viewpoint generalises immediately to the setting of geodesic cur-
rents (see [11], [12], [9]) and in fact it is in that setting that linear
structures arises naturally. Nevertheless, since the use of currents is not
strictly necessary for our purposes, we stick to the world of loops.

The local linear structures of CVn and the space of loops have as
consequence that we can handle length as a linear function

LA(ξ) = 〈A, ξ〉 := 〈(lA(e1), . . . , lA(ek)), (ξ(e1), . . . , ξ(ek))〉
where the last scalar product is the standard one of Rk.

Proposition 5.10. Segments in simplices of CVn are dR- and dL-,
whence d-, geodesics.

Proof: Let A, B marked metric graphs in the same simplex. Let ξ be
a loop that realises supw lB(w)/lA(w). The segment between A and B
is parameterised by At = (1 − t)A + tB (as vectors of Rk). For any
0 ≤ s < t ≤ 1 we have

lAt(w)

lAs
(w)

=
(1− t)〈A,w〉 + t〈B,w〉
(1− s)〈A,w〉 + s〈B,w〉 =

(1 − t) + t(〈B,w〉/〈A,w〉)
(1 − s) + s(〈B,w〉/〈A,w〉) .

The function

x 7→ 1− t+ tx

1− s+ sx
is monotone increasing for t > s. Thus, for any s < t the stretch-
ing factor lAt(w)/lAs

(w) is maximal on ξ. The thesis now follows from
Corollary 5.3.
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Example 5.11. Two points of the same simplex are connected by sev-
eral geodesics.

Proof: In CV2, consider the simplex of the trivalent graph with a dis-
connecting edge (i.e. a O-O graph). Let A be the vector (1, 1, 1) where
the middle coordinate is referred to the disconnecting edge. Let B =
(λ, 1, λ−1) with λ > 1, and let C = (λ, 1, 1). Let γ1 be the segment
between A and B. Let γ2 be the union of the segment between A and C
and the one between C and B. Using Corollary 5.3 it is readily checked
that γ1 and γ2 are different geodesics between A and B.

6. The symmetric metric is not geodesic

In this section, we describe an example of two points in CV2 which
are not connected by a d-geodesic.

This example is due to Bert Wiest and Thierry Coulbois.

Consider the Outer Space in rank two, with graphs normalised to have
volume one, and where we denote the generators of the free group of rank
two by a and b. Consider two simplices of maximal dimension in CV2

corresponding to graphs without disconnecting edges (theta-graphs) such
that they touch along a 1-dimensional simplex corresponding to a rose
with two petals. Let X and Y be two points metric graphs, one in each
simplex, as shown in Figure 4.

?
66 ?

@@I

6 ?

 

 
a b

Tα

length α length (1− α)

squash B squash F

X Y
A C E G

a ab b

B F

?

6

6

?

?

Figure 4. The graphs X , Y and Tα.

Since each 1-simplex disconnects CV2, any path between X and Y
must cross the edge common to the two simplices. We parameterise such
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edge by a number α, so that in the graph Tα the petal corresponding
to a has length α, and the one corresponding to b has length 1− α (see
Figure 4).

By proposition 5.10 a dR-geodesic between X and Y reduces to the
union of two segments XTα and TαY , for some α. By Remark 5.5, if
there is a d-geodesic between X and Y , there exists α such that XTα ∪
TαY is both dR- and dL-geodesic. It is readily checked that XTα ∪ TαY
is dR-geodesic if and only if there is a loop which is maximally stretched
from X to Tα, from Tα to Y and from X to Y (so that the triangular
inequality become equality). The same holds for dL.

We choose now X and Y in a suitable way, we compute the α so that
XTα ∪ TαY is dR-geodesic and we show that for such α, XTα ∪ TαY is
not dL-geodesic.

We choose X and Y in a symmetric way with respect the common
edge:

X : A = 1/6 B = 1/3 C = 1/2

Y : E = 1/2 F = 1/3 G = 1/6.

We compute now the right factors ΛR(X,Tα) and ΛR(X,Y ). By
Proposition 3.15 we have to check only the lengths of the loops AB,
BC, AC.

Loop in X AB BC AC

Length in X 1/2 5/6 2/3

Length in Tα α 1− α 1

lTα
/lX 2α 6(1− α)/5 3/2

Corresponding loop in Y EF GF EFGF

Length in Y 5/6 1/2 4/3

lY /lX 5/3 3/5 2

Loop maximally stretched from X to Y ∗

It follows that AC must be the maximally stretched also from X
to Tα, whence we get

3/2 ≥ 2α and 3/2 ≥ 6(1− α)/5

that is

α ≤ 3/4.

We compute now ΛR(Tα, Y ). By Proposition 3.15 we have only to
check the loops a, b, ab, ab−1
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Loop in Tα a b ab ab−1

Length in Tα α 1− α 1 1

Corresponding loop in Y EF GF EG−1 EFGF

Length in Y 5/6 1/2 2/3 4/3

lY /lTα
5/6α 1/2(1− α) 2/3 4/3

thus, since ab−1 must be the maximally stretched loop, we get

4/3 ≥ 5/6α and 4/3 ≥ 1/2(1− α)

that is

α ≥ 5/8 and α ≤ 5/8.

We therefore conclude that any dR-geodesic between X and Y must
cross the 1-simplex at the point T5/8. The completely symmetric cal-
culation shows that any dL-geodesic must cross the central edge at the
point T3/8. Thus no path from X to Y can be simultaneously dR- and
dL-geodesics. It follows that no d-geodesic in CV2 joins X and Y .

7. Quasi-geodesics

In Section 5 we have seen how to construct folding paths that are
dR-geodesic. In this section we address the question of whether such
paths are quasi-geodesic for the symmetric metric, with constants de-
pending only on the rank. In other words, we ask whether two points of
Outer Space can be joined by a quasi-geodesic with uniform constants.

To start, we recall the definition of a quasi-geodesic path.

Definition 7.1. A path, α : I → X , where I is a real interval and
(X, d) is a metric space, is called a (λ, ǫ) quasi-geodesic if for every
x, y ∈ I,

1

λ
|x− y| − ǫ ≤ d(α(x), α(y)) ≤ λ|x− y|+ ǫ.

The following lemma is tautological.

Lemma 7.2. Let α be a path from an interval to a metric space. Suppose
that there is a constant C such that

d(α(x), α(y)) > C · length(α|[x,y]).

Then the arc-length reparameterisation of α is bi-lipschitzian with con-
stants C, 1. In particular, it is a (C−1, 0) quasi-geodesic.
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Theorem 7.3 (4 point property). Let A, B be two marked metric graph
of the same rank. Let α be a dR-geodesic from A to B constructed as in
Theorem 5.6. Then for every s ≤ x ≤ y ≤ t we have

d(α(s), α(t)) ≥ d(α(x), α(y)).

Proof: Let us denote by lp the length function of the point α(p). We
consider the folding paths constructed before the rescaling to volume 1,
so that while volume is not constant along the path, for every p <
q, ΛR(α(p), α(q)) = 1. Thus, the distance between α(p) and α(q) is
exactly the logarithm of ΛL(α(p), α(q)) = sup lp/lq. Now we look at the
points s ≤ x ≤ y ≤ t. As in Proposition 3.11, there exists a µ which
realises ΛL(α(x), α(y)). Next we realise µ as an immersed path in α(s).
The folding path itself has two parts, one in which we shrink the lengths
of certain edges, and another in which we isometrically identify edges-
folding. In either of these parts it is clear that the length of µ can never
increase as we travel along the path. Thus,

ls(µ) ≥ lx(µ) ≥ ly(µ) ≥ lt(µ).

In particular,

sup ls/lt ≥ ls(µ)/lt(µ) ≥ lx(µ)/ly(µ) = sup lx/ly,

and thus d(α(s), α(t)) ≥ d(α(x), α(y)), as required.

Proposition 7.4. Let γ be a path with the 4 point property. Suppose
that γ is a finite union of pieces which are quasi-geodesic. Then γ is
a quasi-geodesic with constants depending on the constants of the pieces
and on the number of the pieces.

More precisely, if γ is the path with the 4 point property which is
the concatenation of n (λ, ǫ) quasi-geodesics, then γ is a (nλ, nǫ) quasi-
geodesic.

Proof: By hypothesis, there exist numbers x0 ≤ x1 ≤ · · · ≤ xn such that
γ is a map from the interval [x0, xn] and that each restriction, γ|[xi,xi+1]

is a (λ, ǫ) quasi-geodesic (we assume that n > 1 since otherwise there is
nothing to prove). Now consider p ≤ q ∈ [x0, xn], and find i, j such that
p ≤ xi ≤ xj ≤ q so that i is minimal and j is maximal (note that i ≥ 1
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and j ≤ n− 1). It is clear that,

d(γ(p), γ(q)) ≤ d(γ(p), xi) +

k=j−i−1∑

k=0

d(xi+k, xi+k+1) + d(γ(xj), q)

≤ λ(xi − p) + λ

k=j−i−1∑

k=0

(xi+k+1 − xi+k)

+ λ(q − xj) + (2 + j − i)ǫ

≤ λ(q − p) + nǫ.

For the other inequality we note that, using the xr, we have divided the
interval [p, q] into at most n pieces. Thus, one of these pieces is of length
at least (q− p)/n. Now, suppose that xi+k+1 − xi+k ≥ (q− p)/n. Then,
by the 4 point property,

d(γ(p), γ(q)) ≥ d(xi+k, xi+k+1)

≥ (xi+k+1 − xi+k)/λ− ǫ

≥ (q − p)/nλ− ǫ.

Clearly, the same argument works if either xi−p ≥ (q−p)/n or q−xj ≥
(q − p)/n.

Example 7.5. There are metric spaces with no rectifiable, non-constant
paths having the 4 point property.

Proof: Consider the space L2([0, 1]) of the square-summable functions
on [0, 1]. Let f : [0, 1]→ L2([0, 1]) be the embedding

t 7→ χ[0,t],

where χ[0,t] denotes the characteristic function of the set [0, t]. Let d the
f -pull-back metric on [0, 1]:

d(s, t) =
√
t− s.

It is straightforward to check that ([0, 1], d) has the 4 point property and
no rectifiable, non-constant paths.

By Theorem 7.3 and Proposition 7.4, to check whether a right geo-
desic between two points A and B, constructed as in Theorem 5.6, is
a quasi-geodesic (with uniform constants not depending on A and B,)
it is enough to check whether the fast folding path from A0 to B̄ is a
quasi-geodesic.
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Definition 7.6 (Multiplicities). Let At 6= B be any point in a fast fold-
ing path. The multiplicity of a turn τ in a loop γ is the number µτ,t(γ)
of occurrences of τ turn in γ (counted without any orientation).

The folding multiplicity of γ is the sum µt(γ) of the multiplicities of
all folding turns (see Definition 5.7) in γ:

µt(γ) =
∑

τ

µτ,t(γ).

In order to use Lemma 7.2, we need to estimate the local speed of
a fast folding path. A folding path is PL, and therefore smooth in all
but finitely many points (w.r.t. the PL-structure of CVn). In particular,
the right-derivative of the (non-symmetric) distance is always defined,
and its integral gives the total length of the path. In a situation where
d = dL, such derivative represents the local speed of the fast folding
path.

Lemma 7.7 (Local speed of a folding path). Let t 7→ At be a fast folding
path. Then, its local speed is

2µt(γ)

lAt
(γ)

where γ is a folded loop minimising lAt
(γ)/µt(γ).

Proof: Recall that in our situation (isometric folding as in Theorem 5.6,)
we have d = dL. This is because we are defining paths with non-
constant volume, so it is possible to maintain dR = 0 while traversing
the path. Obviously, in order to do this we apply the definition of the
non-symmetric metric directly without rescaling.

Therefore, for small enough ε, the distance between At+ε and At is
given by

d(At+ε, At) = log

(
sup
ξ

lAt
(ξ)

lAt+ε
(ξ)

)
= log

(
sup
ξ

lAt
(ξ)

lAt
(ξ)− 2µt(ξ)ε

)

which is thus realised by a loop γ minimising lAt
(γ)/µt(γ). Note that

γ can be always chosen to be simple, because if γ = α+β we would have
lAt

(γ) ≥ lAt
(α) + lAt

(β) and µt(γ) = µt(α) + µt(β), whence

min

{
lAt

(α)

µt(α)
,
lAt

(β)

µt(β)

}
≤ lAt

(γ)

µt(γ)
.
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Therefore, the speed (as right-derivative) is given by

lim
ε→0

d(At+ε, At)

ε
= lim

ε→0

1

ε
log

(
lAt

(γ)

lAt+ε
(γ)

)

= lim
ε→0

1

ε
log

(
lAt

(γ)

lAt
(γ)− 2µt(γ)ε

)
=

2µt(γ)

lAt
(γ)

.

Another quantity we need to estimate during a folding procedure, is
the speed we are approaching the final point B, defined as minus the
right-derivative of the distance from B.

Lemma 7.8 (Local speed toward B). Let t 7→ At be a fast folding path.
Then, the speed at which At is approaching B is given by

2µt(γ)

lAt
(γ)

where γ is a loop that realises the maximal stretching factor from B
to At.

Proof: As above, since t 7→ At is an isometric folding path constructed
as in Theorem 5.6, we are interested only in dL. We have

d(At, B) = dL(At, B) = log

(
lAt

(γ)

lB(γ)

)
.

During the folding procedure, in the marked graph At, the length of γ de-
crease twice the number of occurrences of the folding turns in γ. Whence
the claim follows.

Now, the aim is to show that the ratio between the speed toward B
and the local speed is bounded below by a given constant. Indeed, if
so, one could deduce that the hypothesis of Lemma 7.2 is satisfied, this
providing quasi-geodesics with uniform constants.

Lemma 7.9. Let At 6= B be any point in a fast folding path. Let γ be a
loop that realises the maximal stretching factor from B to At. Then

µt(γ) ≥ 1.

Proof: Otherwise γ would be immersed via the optimal map f used
for defining the folding procedure, which would imply lAt

(γ) = lB(γ),
whence At = B.

Lemma 7.10. In a fast folding path, for any loop γ, the quantity µt(γ),
as a function of t, is monotone non-increasing.
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Proof: Let 0 = t0 < t1 . . . be the subdivision of times. Clearly, nothing
change for t different from the ti’s. We show that the multiplicity cannot
increase passing trough any ti’s. Let τ be a turn where the segments a
and b are identified during the interval of time [ti−1, ti]. Denote such a
turn τ by (a, b). The segments a and b have one extreme in common,
say the starting point. On the other hand, the ending points of a and b,
say x and y respectively, must be different, otherwise the folding proce-
dure would decrease the rank of our marked metric graphs, which is not
possible.

The multiplicity, in γ, of the turns that already exist for t ∈ (ti−1, ti) is
unchanged. So we have to check what happens to the new turns created
by the folding. Those are pair of segments a′ and b′ having x and y as
starting points, and identified by the optimal map. Let {(aj , bj)} be the
set of turns folded for t ∈ (ti−1, ti) whose ending points are x and y.

The multiplicity of the turn (a′, b′) counts how many times γ passes
trough the turn. But any times that γ passes trough (a′, b′) must passes
trough one of the (aj , bj)’s as well. So the total sum is not increased.

Definition 7.11 (ε-thin part). The ε-thin part of CVn is the set of
marked metric graphs having a loop shorter than ε in the volume-one-
representative. In other words, the class a marked metric graph A in CVn

lies in the ε-thin part if

lA (shortest loop of A)

volA
< ε.

Otherwise, we say that A lies in the ε-thick part.

Lemma 7.12. There is a constant C > 0 such that for any fast folding
path t 7→ At, if At never enters the ε-thin part, then the ratio between the
speed approaching toward B and the local speed is bounded below by C ·ε.

Proof: Since our folding procedure is isometric, if, starting from At, we
fold during a time T , then the volume of At is decreased at least by T :

T ≤ vol(At)− vol(B) = vol(At)− 1.

On the other hand, the length of a given loop is decreased by

lAt
(γ)− lB(γ) = 2

∫ t+T

t

µs(γ) ds ≤ 2Tµt(γ)

where the inequality follow from Lemma 7.10.
Now, let γ be a loop realising the maximal stretching factor from B

to At. Since vol(B̄) = 1, the length of γ in B̄ is less than 2 (because of
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Proposition 3.15). By the above inequalities it follows that

lAt
(γ) ≤ 2µt(γ) vol(At).

Let γ1 be a simple loop minimising lAt
(w)/µt(w). The ratio between

the approaching speed toward B and the local speed is, by Lemmata 7.7
and 7.8

lAt
(γ1)µt(γ)

lAt
(γ)µt(γ1)

which is therefore bounded below by

lAt
(γ1)

2 volAtµt(γ1)
≥ C

lAt
(shortest loop of At)

vol(At)

where C is a constant depending only on the rank n. Actually, the
constant C depends on the fact that µt(γ1) is bounded above, depending
on the rank, because γ1 is a simple loop.

Therefore, the ratio between the approaching speed toward B and
the local speed is bounded below by C · ε if At lies in the ε-thick part
of CVn.

An immediate corollary is the following

Theorem 7.13 (Folding paths are quasi-geodesic). For any ε > 0 there
are constants K, L depending only on ε and the rank of CVn such that
for any two marked metric graph A and B whose corresponding fast
folding path t 7→ At from A0 to B̄ (notation as in Theorem 5.6) stay
in the ε-thick part, there is right-geodesic between A and B which is a
(K,L)-quasi-geodesic.

Proof: Lemma 7.12 implies that the hypothesis of Lemma 7.2 is satisfied.
By Theorem 7.3 and Proposition 7.4 the claim follows.

This can be used to give an alternative proof of quasi-symmetry of dR
in the thick part (see [1] for the proof using quasi-symmetry of the
combinatorial metric and the fact that that metric is quasi-isometric
to dR in the thick part).

8. Iterating automorphisms

Here, we study the behaviour of the orbits of automorphisms with
respect to our metrics.

Theorem 8.1. Let Φ ∈ Aut(Fn) be an automorphism of exponential
growth. Then for any A ∈ CVn the sequence ΦhA is a d-quasi-geodesic
as a map from Z→ CVn. Moreover, if A is a train-track for Φ, then it
is a dR-geodesic.
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Proof: If Φ has exponential growth so does Φ−1 (this is a consequence
of the existence of the relative train track representatives of [4]). That
means that sup16=w∈Fn

l(Φh(w))/l(w) > kch for some k > 0 and c > 1,
where the length l is calculated in any fixed rose (and the same holds
for Φ−1). We have

sup
16=w∈Fn

lA(Φ
h+mw)

lA(Φmw)
= sup

16=w∈Fn

lA(Φ
hw)

lA(w)
= sup

16=w∈Fn

lA(Φ
hw)

l(Φhw)
· l(Φ

hw)

l(w)
· l(w)
lA(w)

.

In the last term of above equality, the first and the last factors are
bounded below by constants because A lies at finite distance from the
rose used for calculating l. The middle term is bounded below by kch by
our hypothesis of exponential growth. Similarly, using that also Φ−1 has
exponential growth, we can show that

Λ(Φh+mA,ΦmA) > kch

for some constants k > 0 and c > 1, this giving

d(Φh+mA,ΦmA) > log k + h log c.

The other inequality is even easier, and does not need any assumption
on Φ:

sup
16=w∈Fn

lA(Φ
h+mw)

lA(Φmw)
= sup

16=w∈Fn

lA(Φ
l+mw)

lA(Φh+m−1w)
· lA(Φ

h+m−1w)

lA(Φh+m−2w)
· · · lA(Φ

1+mw)

lA(Φmw)

which is bounded above by
(

sup
16=w∈Fn

lA(Φw)

lA(w)

)h

whence (arguing the same way for Φ−1)

Λ(Φh+mA,ΦmA) ≤ Λ(ΦA,A)h

and

d(Φh+mA,ΦmA) ≤ hd(ΦA,A).

Suppose now that A is a train track for Φ. Then every edge is
stretched exactly by λ, the Perron-Frobenius eigenvalue associate to the
transition matrix for Φ (see [4]). It follows that ΛR(Φ

h+m,Φm) = λh,
and the second claim follows.

The fact that train tracks for Φ and Φ−1 are in general different, and
that also the Perron-Frobenius eigenvalues for Φ and Φ−1 may differ,
tells us that we cannot follow this approach for building a d-geodesic
axis for Φ.
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Now, Theorem 8.1 clearly would fail if the automorphism in question
is of polynomial growth as d(ΦhA,ΦkA) will be bounded by a constant
multiple of log |h−k|. However it is important to note that, nevertheless,
the various folding paths from a point to the points in its orbit may
still be quasi-geodesics (with the unit speed parametrisation) as in the
following example.

Example 8.2. Let R be the rose of rank 2, with loops labelled A, B
and let φ be the automorphism which sends A to A and B to BA. Then,
for any k, the folding path from R to φk(R) is a (4, 0) quasi-geodesic.

Proof: In the rose, the petals have the same length, but since our metric
is scale invariant, we may choose that length —we choose it to be k+1.
We let Rk denote φk(R), which then also has two loops of the same
length, which we label Ak and Bk, and give them both length 1. By
definition, A maps to the loop Ak in Rk and B maps to Bk(Ak)

k.
In the folding path we start, first of all, by shrinking all the edges so

that (after scaling, which we have already done) the map from the left
to the right is isometric on edges. This means that we shrink the loop A
until it has length 1. We call this new graph R0; it has one vertex and
two loops, A0 → Ak and B0 → Bk(Ak)

k. The length of A0 is 1 and the
length of B0 is k + 1.

The folding path then proceeds by folding A0 into B0. If one imagines
this as a discrete process, after the ith stage we will obtain a graph Ri,
with a single vertex and two loops, Ai → Ak and Bi → Bk(Ak)

(k−i); the
length of Ai is 1 and the length of Bi is K + 1− i.

If we then fold a part of Ai, of length δ, into Bi we travel to a point in
the folding path which we shall call Ri,δ. This has two vertices, • and ◦,
and three edges, Ai,δ, Bi,δ and Ci,δ.

6
Ai,δ

Bi,δ

Ci,δ

6 6

Figure 5. The graph Ri,δ.
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Here, we can map the vertex • to the unique vertex of Rk and then
map the loop Ai,δCi,δ to A and Bi,δCi,δ to Bk(Ak)

(k−i) (this is enough
to specify the marking up to homotopy equivalence); the length of Ai,δ

is 1− δ, the length of Bi,δ is k+1− i− δ and the length of Ci,δ is δ. This
marked metric graph represents an arbitrary point on the folding path
from R0 to Rk. Now, following Lemma 7.7, the local speed is realised by
the loop Bi,δAi,δ, whereas the distance to Rk is realised by the loop Bk

which is realised by Bi,δAi,δ(Ci,δ Ai,δ)
k−i−1 in Ri,δ. Both of these loops

pass through the unique folding turn (Definition 5.7) ofRi,δ exactly once.
Hence, by Lemmas 7.7 and 7.8, the ratio of the speed toward Rk and

the local speed is,
k + 2− i − 2δ

2k + 1− 2i− 2δ
≥ 1

2
.

Thus, by Lemma 7.2, the path from R0 to Rk is a (2, 0) quasi-geodesic
and thus by Proposition 7.4, the whole path is a (4, 0) quasi-geodesic.

9. Some open questions

In this section we address some questions which arose during the many
conversations we had with colleagues, principally during the coffee breaks
of conferences, about the metric properties of Outer Space.

9.1. Existence of quasi-geodesics. As we have seen, folding paths
that do not fold into the thin part provide quasi-geodesics for the sym-
metric metric. Here we address mainly two questions. First, whether a
folding path will always produce a quasi-geodesic or not, with constants
depending only on the rank. Second, whether it is in general possible
to connect any two marked metric graphs with a path which is a quasi-
geodesic, with constants depending only on the rank of the graphs.

For the latter question, there is an heuristic argument: suppose the
answer is no. Then, letting blowing up the constants, one would get a
counter-example-sequence that contradicts Lemma 7.2. Then, following
the arguments of Theorem 7.13 one gets that the folding paths of the
counter-example-sequence will eventually enter any ε-thin part, but ex-
plicit computations show that a folding path that enters the thin part
cannot stay for too long inside that part (one has perhaps to understand
how many times a folding path can enter the thin part). Thus suggesting
an affirmative answer to our questions.

9.2. Existence of a geodesic axis for an iwip. We have seen that
iterates of automorphisms produce quasi-geodesics (and geodesics for the
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non-symmetric metric). The natural question here is whether automor-
phisms have an axis and whether can such an axis be described in terms
of metric properties. Also, one can ask whether one can compute the
“geometric rank” of such axis. Is there any analogue of the bounded
projection Lemma? (see [5] and the recent preprint [1]).

9.3. Hyperbolicity, flats and coarse properties. It is natural to
ask whether some subset of Outer Space (some thick-part?) is hyperbolic
or presents hyperbolicity phenomena. On the other hand, it would be
interesting to study the (quasi-) flats of Outer Space, if any. In general
coarse properties of Outer Space are still unknown (for instance, what
do its asymptotic cones look like?).
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