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INDEX OF AN IMPLICIT DIFFERENTIAL EQUATION

L. S. Challapa and M. A. S. Ruas

Abstract

In this paper we introduce the concept of the index of an implicit
differential equation F (x, y, p) = 0, where F is a smooth function,

p = dy

dx
, Fp = 0 and Fpp = 0 at an isolated singular point. We

also apply the results to study the geometry of surfaces in R
5.

1. Introduction

Let F (x, y, p) = 0 be an implicit differential equation (IDE), where

F is a smooth function and p = dy

dx
. If Fp(q0) 6= 0 at q0 ∈ R

3, the IDE
can be written locally in the form p = g(x, y) and studied using methods
from the theory of ordinary differential equations. When Fp(q0) = 0, the
equation may define locally more than one direction in the plane. The
cases that have been most intensively studied are the IDE’s that define
at most two directions in the plane. This is the case, for example, when:

(1) F (x, y, p) = 0, F (q0) = Fp(q0) = 0, Fpp(q0) 6= 0.

A natural way to study these equations is to lift the multi-valued di-
rection field determined by the IDE to a single field ξ on the sur-
face M = F−1(0). (This field is determined by the restriction to the
manifold of the contact planes associated with the standard contact
form dy − p dx in R

3.) If 0 is a regular value of F , then M is smooth
and the singularity of the projection to the plane is, generically, a fold
or cusp. The critical set of this projection is called the criminant and its
image is the discriminant of the equation.

In [9], Davydov classified (following the work of Dara [8]) generic
bi-valued fields when the discriminant is smooth and showed that the
topological normal form of the IDE acquires moduli when the discrimi-
nant is a cusp.
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Implicit differential equations have extensive applications to differen-
tial geometry of surfaces, partial differential equations, control theory
and singularity theory. For example, lines of curvature, asymptotic and
characteristic lines on a smooth surface in R

3 are given by IDE’s [4]
and the characteristic lines of a general linear second-order differential
equation are also given by an IDE [15].

Bruce and Tari introduced in [3] the multiplicity of an IDE, at a singu-
lar point, as the maximum number of singular points of the implicit dif-
ferential equation which emerge when perturbing the equation F . In [5]
and [6] the first author defined the index of an IDE (1) in terms of generic
perturbations of the IDE and showed that this index is independent of
the choice of a generic perturbation. A formula that expresses the index
in terms of the gradient of F and the index of the 1-form dy − p dx, de-
fined on a surface with isolated singularities M was also obtained. One
of the main results in [5] and [6] is the invariance of the index by smooth
equivalences.

In this work we define the index of an IDE at an isolated singular
point at which Fpp(q0) = 0. This definition extends the definition of the
index of an IDE given in [5] and [6]. We also apply the results to study
the geometry of surfaces in R

5.

2. Implicit differential equations

As mentioned in the Introduction, an implicit differential equation is
of the form

(2) F (x, y, p) = 0,

where p = dy
dx

and F is a smooth function in R
3. An integral curve of

the IDE (2) is a smooth curve α = (α1, α2) : (−1, 1) → R
2 such that

α′
1(t) 6= 0 and F (α(t),

α′

2
(t)

α′
1
(t) ) = 0.

Consider the surface M = F−1(0), and the projection π : M → R
2,

given by π(x, y, p) = (x, y). Generically M is a smooth surface and
the projection π is generically a submersion or has a singularity of type
fold, cusp or two transverse folds. The critical set F = Fp = 0 of this
projection is called the criminant and its image is the discriminant of
the IDE.

The multi-valued direction field in the plane determined by the IDE
lifts to a single vector field tangent to M given by

ξ = Fp

∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
.
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Equivalently, this vector field is determined by the restriction of the
canonical 1-form dy−p dx to the surface M . Note that the vector field ξ

may generically have an elementary zero, it is of type saddle, node or
focus. One of the properties of this vector field is that the image by the
projection π, of the integral curves of ξ on M , corresponds to integral
curves of the IDE.

We denote by CF the criminant set of the IDE. We also denote by ω|CF

the restriction of the 1-form ω = dy − p dx on CF .

Definition 2.1. We say that z0 ∈ R
2 is a singular point of the IDE (2)

if there exists p0 ∈ R such that q0 = (z0, p0) is a zero of the 1-form ω|CF
.

It is easy to verify that this definition reduces to Definition 2.3 given
in [5] when the IDE defines at most two directions in the plane.

Proposition 2.2 ([3]). Let q0 ∈ R
3 be a point on the criminant. Then

q0 is a zero of the 1-form ω|CF
if and only if q0 is a zero of the vector

field ξ or Fpp(q0) = 0.

From Proposition 2.2 it follows that the singular points of the IDE
correspond to zeros of the vector field ξ or cusps of the natural projec-
tion π. We denote by (F, z0) the germ of the IDE (2) at an isolated
singular point z0.

Definition 2.3. We say that (F,z1) and (G,z2) are equivalent (resp. topo-
logically equivalent) if there exists a germ of diffeomorphism (resp. home-
omorphism) h : (R2, z2) → (R2, z1) that sends integral curves of (G, z2)
to integral curves of (F, z1).

If q0 = (z0, p0) is a fold singularity of the projection π and is an
elementary zero of ξ, then (F, z0) is topologically equivalent to a well
folded singularity (p2 − y + λx2, 0), λ 6= 0, 1

4 . We have a well folded

saddle if λ < 0, well folded node if 0 < λ < 1
4 and a well folded focus

if λ > 1
4 (see [9]). When π has a cusp singularity at q0, the equation has

functional moduli with respect to topological equivalence [9].

Definition 2.4. ([8]) Let q0 ∈ R
3 be a point on the criminant, such

that Fpp(q0) = 0 and Fppp(q0)Fx(q0) 6= 0.

(i) We say that q0 is an elliptic cusp if (FxFpy − FyFpx)(q0) > 0.

(ii) We say that q0 is a hyperbolic cusp if (FxFpy − FyFpx)(q0) < 0.

In [8], Dara studied singularities of the IDE’s, describing the singular-
ities appearing in an open and dense set in the space of all functions F

with the Whitney C3-topology. The generic singularities described by
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Dara are the well folded saddle, well folded node, well folded focus and
the elliptical and hyperbolic cusp.

A particular class of implicit differential equations are the binary dif-
ferential equations (BDE’s) of degree n, that is differential equations of
the form

(3) a0(x, y) dyn + a1(x, y) dyn−1 dx + · · · + an(x, y) dxn = 0,

where ai are smooth functions defined on U ⊂ R
2. If dx = 0 is not a

solution of the equation (3), we can set p = dy

dx
and reduce (3) to the

IDE

(4) F (x, y, p) = a0(x, y)pn + a1(x, y)pn−1 + · · · + an(x, y) = 0.

We say that the IDE of degree n given by (4) is totally real if ai(0, 0) = 0
(for any i = 0, 1, . . . , n) and for all (x, y) ∈ U , (x, y) 6= 0, the equation (3)
has exactly n different integral curves. An IDE of degree 1 is always
totally real. In the case n = 2, an IDE is totally real if it is positive
in the sense of [14]. In [12], Fukui and Nuño-Ballesteros introduce the
concept of index for totally real IDE and produced a classification of
generic singularities of this type of equations. Also, a generalization of
the Poincaré-Hopf theorem and the Bendixon formula is obtained in [12].

In [6] the first author defined the index of an IDE of degree 2 not
necessarily totally real. One of the main results in [6] is the invariance
of the index by smooth equivalences. We set δ = a2

1 − 4a0a2.

Theorem 2.5 ([6]). Let (F, 0) be the germ of an IDE of degree 2. If 0
is an isolated zero of the map (δ, a0δx − a1δy) and (δ, δy), then the index
of (F, 0) at 0 is given by

I(F, 0) =
1

2
Ind0(δ, (a0δx − a1δy)a0δy) −

1

2
Ind0(a0, a1)

−
1

2
Ind0(δδx, δy) +

1

2
Ind0 ∇δ.

When Fpp(0) 6= 0, the formula of the index simplifies. We denote
by Indq0

ξ the index of the vector field ξ at q0 ∈ M , introduced by
W. Ebeling and S. M. Gusĕın-Zade in [10].

Theorem 2.6 ([6]). Let (F, 0) be the germ of an IDE of degree 2, and
let 0 be a zero of the vector field ξ. If Fpp(0) 6= 0, then

I(F, 0) =
1

2
[Ind0 ξ + Ind0(FppFy, Fp, Fx + pFy)].
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A 1-parameter perturbation F t of the IDE (4) is determined by the
1-parameter smooth perturbations ai

t(x, y) = ãi(x, y, t) (for any i =
0, 1, . . . , n) of its coefficients.

Definition 2.7. We say that F t is a good perturbation of (F, 0) if all
the singular points of F t are well folded singularities, or elliptical or
hyperbolic cusps, for t 6= 0 sufficiently close to zero.

3. Index of an implicit differential equation

We refer to [16] for the basic properties of indices of vector fields used
in this section.

Definition 3.1. We say that z0 is a non-degenerate singular point of the
IDE (2) if (F, z0) is topologically equivalent to a well folded singularity,
an elliptic cusp or a hyperbolic cusp.

If z0 is a non-degenerate singular point of the IDE (2), then there
exists p0 ∈ R such that (z0, p0) is a saddle, node or focus of the vector
field ξ or elliptic cusp or hyperbolic cusp. So we can associate a num-
ber KF (z0) to each non-degenerate singular point z0 of the IDE (2), as
follows:

(i) KF (z0) = −1 if (z0, p0) is a saddle of the vector field ξ.

(ii) KF (z0) = 1 if (z0, p0) is a node or focus of the vector field ξ.

(iii) KF (z0) = 1 if (z0, p0) is an elliptic cusp.

(iv) KF (z0) = −1 if (z0, p0) is a hyperbolic cusp.

Let (F, 0) be the germ of an IDE of degree 3 given by

(5) F (x, y, p) = a(x, y)p3 + b(x, y)p2 + c(x, y)p + d(x, y) = 0,

such that F (0) = Fp(0) = Fpp(0) = 0. Using equation (5) we deduce
that

27a2F = [3ap + b]3 + 9ap[3ac− b2] + 27a2d − b3

3aFp = [3ap + b]2 + 3ac − b2

Fpp = 2[3ap + b].

From the above equation, we obtain that the discriminant of the IDE (5)
is given by

δ = (27a2d − 9abc + 2b3)2 + 4(3ac− b2)3.
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Remark 3.2. If 0 is an elliptic or a hyperbolic cusp of the germ (F, 0),
then

Ind0(FpppF, Fp, Fpp) = Ind0(9ad − bc, 3ac− b2) = KF (0).

Let F t be a 1-parameter perturbation of the IDE (5) given by

(6) F t(x, y, p) = at(x, y)p3 + bt(x, y)p2 + ct(x, y)p + dt(x, y) = 0.

To show that F t is a good perturbation of the IDE (5), it is sufficient
to prove that 0 is a regular value of the map (9atdt− btct, 3atct− b2

t ), for
all t 6= 0. We denote by Pk(R2) the set of all polynomials of 2 variables
and degree less than or equal to k. Let Φ: R

2 × P4
k(R2) → R

2 be a
smooth map defined by

Φ(x, y, r) = [9(a+ ã)(d+ d̃)−(b+ b̃)(c+ c̃), 3(a+ ã)(c+ c̃)−(b+ b̃)2](x, y),

where r = (ã, b̃, c̃, d̃) ∈ P4
k(R2). We set Φr(x, y) = Φ(x, y, r).

Lemma 3.3. There exists an open and dense set ∆ of P4
k(R2) such that

for all r ∈ ∆, 0 is a regular value of Φr.

Proof: By Thom transversality lemma, there exists a dense set ∆
of P4

k(R2) such that for all r ∈ ∆, 0 is a regular value of Φr, that is
Φr intersect 0 transversally. It is not difficult to show that H : P4

k(R2) →
C∞(R2, R2) given by

H(ã, b̃, c̃, d̃) = [9(a + ã)(d + d̃)− (b + b̃)(c + c̃), 3(a + ã)(c + c̃)− (b + b̃)2]

is continuous. Let r0 = (a0, b0, c0) ∈ ∆. As the set of maps from R
2

to R
2 which intersect 0 transversally is open, we have that there exists

a neighborhood U of r0 in P4
k(R2) such that for all r ∈ U , H(r) = Φr

intersect 0 transversally. The result now follows.

Theorem 3.4. If a, b, c, d are smooth functions, then there exists a
good perturbation F t of (F, 0).

Proof: By Lemma 3.3, there exists an open and dense set ∆ of P4
k(R2)

such that for all r ∈ ∆, 0 is a regular value of Φr. It is not difficult to
show that there exists a smooth curve α : (−1, 1) → P4

k(R2) such that
α[(−1, 1)−{0}] ⊆ ∆ and α(0) = 0. Let (at, bt, ct, dt) = (a, b, c, d)+α(t).
Then, F t = atp

3 + btp
2 + ctp + dt = 0 is a good perturbation of the

IDE (5).

Definition 3.5. Let F t be a good perturbation of the germ (F, 0) given
by (5). Then the cusp index of (F, 0) at 0 is defined by

J(F, 0) =
1

3

∑

i

KF t(zi),
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where zi are non-degenerate singular points of F t of elliptic or hyperbolic
cusp type.

The next lemma shows that the index J(F, 0) can be expressed in
terms of the coefficients a, b, c and d.

Theorem 3.6. Let (F, 0) be the germ of an IDE given by (5). If
Fpp(0) = 0 and O is an isolated singular point of (a, b), then

J(F, 0) =
1

3
[Ind0(9ad − bc, 3ac − b2) − Ind0(a, b)].

Proof: It follows from Theorem 3.4 that there exists a good perturba-
tion F t of the IDE (5) such that 0 is a regular value of (9atdt−btct, 3atct−
b2
t ), t 6= 0. Then using Proposition 2.2 in [7] we obtain

(7) Ind0(9ad − bc, 3ac − b2) =
∑

Indzi
(9atdt − btct, 3atct − b2

t ).

We denote by Wt = (9atdt − btct, 3atct − b2
t ). By Remark 3.2,

(8)
∑

at(zi) 6=0

Indzi
Wt = KF t(zi).

As 0 is a regular value of Wt, we get
∑

at(zi)=0

Indzi
Wt = Ind0(at, bt)

= Ind0(a, b).

The result now follows.

Theorem 3.7. Let (F, 0) and (G, 0) be the germs of IDE’s of degree 3.
If (F, 0) and (G, 0) are equivalent, then J(F, 0) = J(G, 0).

Proof: It follows from the hypothesis that there exist a germ of dif-
feomorphim h = (h1, h2) : (R2, 0) → (R2, 0) and a germ of function
ρ : (R2, 0) → R, ρ(0) 6= 0 such that G = ρ · (F ◦ H), where H(x, y, p) =

(h(x, y),
h2x(x,y)+h2y(x,y)p
h1x(x,y)+h1y(x,y)p ).

We set T (x, y, p) =
h2x(x,y)+h2y(x,y)p
h1x(x,y)+h1y(x,y)p . Then,

(9)





ρ 0 0
0 ρTp 0
0 Tpp ρT 2

p









F ◦ H

Fp ◦ H

Fpp ◦ H



 =





G

Gp

Gpp



 ,

Gppp = ρ[(Fppp ◦ H)T 3
p + 3(Fpp ◦ H)TpTpp + (Fp ◦ H)Tppp] and Tp =

det[dh]
[h1x+h1yp]2 .
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By Theorem 3.4, there exists a good perturbation F t of (F, 0). Using
equation (9), it is not difficult to show that Gt = ρ · (F t ◦ H) is a good
perturbation of (G, 0) and

Indri
(F t

pppF t, F t
p, F t

pp) = Indqi
(Gt

pppG
t, Gt

p, G
t
pp),

where H(qi) = ri. The result follows by Remark 3.2 and Definition 3.5.

Corollary 3.8. Let (F, 0) be the germ of an IDE given by (5). If
Fppp(0) 6= 0 and Fpp(0) = 0, then

J(F, 0) =
1

3
Ind0(FpppF, Fp, Fpp).

Proof: The proof follows by using Theorem 3.6 and Remark 3.2.

Note that Theorem 2.6 introduce a definition of the index at a fold
point of the projection π corresponding to a zero of vector field ξ. Also
from Corollary 3.8 we have a definition of the index at a non-fold singu-
larity of the projection. So we introduce a definition of the index to any
germ of IDE, that extends the two definitions given by Theorem 2.6 and
Corollary 3.8. Let U be a sufficiently small neighbourhood of 0 in R

2.

Definition 3.9. Let (F, 0) be the germ of an IDE and suppose that the
number of zeros of the 1-form ω|M in (0, 0)×R is finite. Then the index
of (F, 0) at 0 is defined by

Ind0 F =
1

m

{

n0
∑

i=1

[Indsi
ξ + Indsi

(FppFy, Fp, Fx + pFy)]

+

n1
∑

i=1

Indsi
(FpppF, Fp, Fpp)

}

,

where si = (0, 0, pi) and m is the maximum number of integral curves
that pass through q ∈ U .

Theorem 3.10. Let (F, 0) be the germ of an IDE of degree n. Then,

(1) If n = 2, Fpp(0) 6= 0 and 0 is a zero of ξ, then Ind0 F = I(F, 0).

(2) If n = 3, Fpp(0) = 0, Fppp(0) 6= 0 and 0 is not a zero of ξ, then
Ind0 F = J(F, 0).

Proof: The first statement follows from Theorem 2.6. Part (2) follows
from Corollary 3.8.
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Theorem 3.11. Let (F, 0) and (G, 0) be the germs of IDE’s and suppose
that the number of zeros of the 1-form ω|M in (0, 0)×R is finite. If (F, 0)
and (G, 0) are equivalent, then Ind0 F = Ind0 G.

Proof: From [11] and Lemma 6.1 in [5], we obtain that

Indsi
ξ = Indsi

(FFy, Fp, Fx + pFy).

It follows from the hypothesis that there exist a germ of diffeo-
morphim h = (h1, h2) : (R2, 0) → (R2, 0) and a germ of function
ρ : (R2, 0) → R, ρ(0) 6= 0 such that G = ρ · F ◦ H, where H(x, y, p) =

(h(x, y),
h2x(x,y)+h2y(x,y)p
h1x(x,y)+h1y(x,y)p ).

We set T (x, y, p) =
h2x(x,y)+h2y(x,y)p
h1x(x,y)+h1y(x,y)p , and to simplify the arguments,

we take ρ = 1. Then det[dH ] = det[dh] · Tp and

(10)





S GTy h1yG

0 Tp 0
0 S1 S2









(FyF ) ◦ H

Fp ◦ H

(Fx + pFy) ◦ H



 =





GyG

Gp

Gx + pGy



 ,

where S = det[dh]
h1x+ph1y

, S1 = Tx + pTy and S2 = h1x + ph1y. Using

equation (10), we get

Indsi
(FyF, Fp, Fx + pFy) = Indri

(GyG, Gp, Gx + pGy),

where si = H(ri). Following the same arguments as above we show that

Indsi
(FppFy , Fp, Fx + pFy) = Indri

(GppG, Gy, Gx + pGy)

Indsi
(FpppF, Fp, Fpp) = Indri

(GpppG, Gp, Gpp),

and the result follows.

4. Index of a differential n-form

Let M be a C∞-compact, connected, oriented, 2-dimensional surface.
A (symmetric) differential n-form on M is a differentiable section of the
symmetric tensor fiber bundle Sn(T ∗M). Let ω be a differential n-form
on M . An integral curve of ω is a smooth curve α : (−1, 1) → M such
that ω(α(t))(α′(t)) = 0.

We denote by H
m the set of points p in M such that the sub-

set ω(p)−1(0) is the union of m transversal lines. Through every point p

of H
m pass m transverse integral curves of ω. Under the orientability

hypothesis imposed on M , the differential n-form ω defines m line fields
Lω,1, . . . , Lω,m on H

m such that the integral curves of Lω,i correspond
to integral curves of ω.
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Let PM be the projectivized tangent bundle of M , and H ⊂ PM the
set of points (p, [v]) such that ω(p)(v) = 0. Let π : PM → M be the
natural projection given by π(p, [v]) = p. Then, the restriction of the
projection π to H covers the closure of H =

⋃n

i=1 H
i. Lifting to H the

line fields Lω,1, . . . , Lω,n define a single line field L on π−1(H) which,
generically, uniquely extends to a smooth line field L defined on the
whole H.

Let h : U → R
2 be a local chart of M at p0 such that h(p0) = 0. Then,

the pull-back of ω defines an IDE of degree n given by

(11) h∗(ω)(x, y, p) = a0(x, y)pn + a1(x, y)pn−1 + · · · + an(x, y) = 0,

where p = dy

dx
and ai : R

2 → R are smooth functions. We say that
p0 ∈ M is a singular point of ω if 0 is a singular point of h∗(ω).

Definition 4.1. Let p0 be a singular point of ω. Then, the index of ω

at p0 is defined by Indp0
ω = Ind0 h∗(ω).

The next lemma shows that the index is independent of the choice of
a local chart of M .

Lemma 4.2. Let p0 be a singular point of ω and h1 : V → R
2 a local

chart of M at p0 such that h1(p0) = 0. Then, Ind0 h∗(ω) = Ind0 h∗
1(ω).

Proof: Note that h∗(ω)(z)[u] = ω(h−1(z))[dh−1
z (u)], where z, u ∈ R

2.
Then, the map h1◦h−1 : R

2→R
2 sends integral curves of h∗(ω) to integral

curves of h∗
1(ω). Therefore, by Theorem 3.11 the result follows.

We denote by (ω, p) the germ of the differential n-form ω at a singular
point p. Let (ω1, p1), (ω2, p2) be two germs of differential n-forms defined
on 2-dimensional surfaces M , N , respectively. We say that they are
equivalent if there exists a germ of diffeomorphism k : (M, p1) → (N, p2)
that sends integral curves of (ω1, p1) to integral curves of (ω2, p2). We
denote by H̄

m the closure of H
m.

Theorem 4.3. Suppose that H is a smooth surface, π|H is a stable map
without cusp and transverse folds. If all the zeros of the line field L

belong to π−1
|H

(H̄m), then χ(H) = m · χ(π(H)).

Proof: Since by hypothesis there exist m line fields Lω,1, . . . , Lω,m on H
m

which are linearly independent, and χ(Lω,i(H̄
m)∩Lω,j(H̄

m)) = 0, i 6= j.

As π−1
|H

(H̄m) =
⋃m

i=1 Lω,i(H̄
m), it follows that χ(π−1

|H
(H̄m)) = m ·χ(H̄m).

Analogously one proves that χ(π−1
|H

(H̄s)) = s · χ(H̄s), s 6= m. As the

restriction of the line field L to the surface π−1
|H

(H̄s) has no zeros, we
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have that χ(π−1
|H

(H̄s)) = 0 and χ(H̄s) = 0. Since H = π−1
|H

(H̄m) ∪

(
⋃

i6=m π−1
|H

(H̄i)) and π(H) = H̄
m ∪ (

⋃

i6=m H̄
i), the result follows.

Theorem 4.4. Suppose that H is a smooth surface, π|H is a stable map
without cusp and transverse folds. If H 6= ∅ and n is odd, then

χ(M) =
s

∑

i=1

Indpi
ω,

where p1, . . . , ps are the singular points of ω.

Proof: Let qi1, . . . , qir be the zeros of the line field L belong to π−1
|H

(H̄i).

Then using the Poincaré-Hopf Theorem we obtain

χ(π−1
|H

(H̄i)) =

r
∑

j=1

Indqij
L.

By Theorem 4.3 and Definition 3.9,

χ(H̄i) =
1

i
·

r
∑

j=1

Indqij
L

=

r
∑

j=1

Indpij
ω,

where pij = π(qij). Since M =
⋃n

i=1 H̄
i, the result follows.

5. Applications

Let M be a 2-dimensional smooth surface in R
5, and denote by TM

and NM its tangent and normal bundles. The contact of the surface
with 4-dimensional planes is measured by the singularities of the height
function

H : M × S4 −→ R × S4

given by H(q, v) = (hv(q), v), where hv(q) = 〈q, v〉. A height function hv

has a singularity at q ∈ M if and only if v ∈ NqM . It follows from Looi-
jenga’s theorem [2] that hv has generically a singularity of type Ak≤5,
D±

4 or D5 (see [1] for notation).
A direction v ∈ NqM is said to be degenerate if q is a non-stable singu-

larity of hv. In this case, the kernel of the Hessian of hv, ker(Hess(hv)(q)),
contains non zero vectors. Any direction u ∈ ker(Hess(hv)(q)) is called
a contact direction associated to v.

A unit vector v ∈ NqM is called a binormal direction if hv has a
singularity of type A3 or worse at q.
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Definition 5.1 ([17]). Let q ∈ M and v ∈ NqM be a binormal direction.
An asymptotic direction at q is any contact direction associated to v.

Theorem 5.2 ([18]). There is at least one and at most five asymptotic
curves passing through any point on a generic immersed surface in R

5.
These curves are solutions of the implicit differential equation

A0 dy5 + A1 dy4 dx + A2 dy3 dx2 + A3 dy2 dx3 + A4 dy dx4 + A5 dx5 = 0,

where the coefficients Ai, i = 0, 1, 2, 3, 4, 5 depend on the coefficients of
the second fundamental form and their first order partial derivatives.

For a generic surface, at least one of the coefficients in the Theorem 5.2
is not zero at any point q ∈ M . We then set p = dy

dx
(as dx = 0 is not

solution of the equation) so that the equation of the asymptotic curves
in a neighbourhood U of q is an IDE of degree 5 in the form

(12) F (x, y, p) = A0p
5 + A1p

4 + A2p
3 + A3p

2 + A4p + A5 = 0.

It follows that there exists a differential 5-form η on M such that
η = F in U . The discriminant of the asymptotic curves ∆η is given by
the discriminant of the IDE (12).

Theorem 5.3. Let M be a closed orientable surface generically im-
mersed in R

5. Then

χ(M) =

s
∑

i=1

Indqi
η,

where q1, . . . , qs are the singular points of η.

Proof: Since ∆η is a smooth curve, the result then follows by Theo-
rem 4.4.

A folded singularity of the asymptotic curves is a folded-singularity
of the IDE (12). The following result also appears in [18].

Corollary 5.4. Let M be a closed orientable surface generically im-
mersed in R

5 with χ(M) 6= 0. Then ∆η is not empty and the asymptotic
curves have folded singularities.

Proof: The proof follows by using Theorem 5.3.
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