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STATISTICAL INFERENCE FOR STOCHASTIC

PARABOLIC EQUATIONS: A SPECTRAL APPROACH

S. V. Lototsky

Abstract

A parameter estimation problem is considered for a stochastic par-
abolic equation driven by additive Gaussian noise that is white in
time and space. The estimator is of spectral type and utilizes a fi-
nite number of the spatial Fourier coefficients of the solution. The
asymptotic properties of the estimator are studied as the number
of the Fourier coefficients increases, while the observation time
and the noise intensity are fixed. A necessary and sufficient con-
dition for consistency and asymptotic normality of the estimator
is derived in terms of the eigenvalues of the operators in the equa-
tion, and a detailed proof is provided. Other estimation problems
are briefly surveyed.

1. Introduction

1.1. Motivation: The one-dimensional stochastic heat equa-
tion. Consider the following stochastic equation

(1.1) du(t, x) = θ uxx(t, x) dt+ dW (t, x), 0 < t ≤ T, x ∈ (0, π),

with zero initial and boundary conditions, where θ > 0 is an unknown
real number and dW (t, x) is the noise term. With precise definitions to
come later, at this point we interpret dW as a formal sum

dW (t, x) =
∑

k≥1

hk(x) dwk(t),

where hk(x) =
√

2/π sin(kx), k ≥ 1, and wk are independent standard
Brownian motions. Let us look for the solution of (1.1) as a Fourier
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series

u(t, x) =
∑

k≥1

uk(t)hk(x).

Substitution of this series in (1.1) suggests that each uk should satisfy

(1.2) duk(t) = −k2θ uk(t) dt+ dwk(t), 0 < t ≤ T,

with initial condition uk(0) = 0. If the trajectory of uk(t) is observed for
one fixed k and all 0 < t < T , then the maximum likelihood estimator
of θ based on this observation is

(1.3) θ̂(k) = −
∫ T

0
k2uk(t) duk(t)
∫ T

0
k4u2

k(t) dt
= − u2

k(T ) − T

2
∫ T

0
k2u2

k(t) dt
;

see, for example, Liptser and Shiryaev [47, Formulas 17.25 and 17.45].
It is known [47, Theorem 17.4] that this estimator is consistent in the
limit T → +∞:

lim
T→+∞

−
∫ T

0
k2uk(t) duk(t)

∫ T

0 k4u2
k(t) dt

= θ

with probability one.
Let us now assume that the trajectories of uk(t) are observed for

all 0 < t < T and all k = 1, . . . , N , and let us combine the estima-
tors (1.3) for different k as follows:

(1.4) θ̂N = −
∑N

k=1

∫ T

0
k2uk(t) duk(t)

∑N
k=1

∫ T

0
k4u2

k(t) dt
.

First suggested by Huebner, Khas’minskĭı, and Rozovskĭı in [26], (1.4) is,
in fact, the maximum likelihood estimator of θ based on the observa-
tions uk(t), k = 1, . . . , N , 0 < t < T .

It follows from (1.2) and (1.4) that

(1.5) θ̂N − θ = −
∑N

k=1

∫ T

0
k2uk(t) dwk(t)

∑N
k=1

∫ T

0
k4u2

k(t) dt
.

Note that both the top and the bottom of the fraction on the right-hand
side of (1.5) are sums of independent random variables, and the analysis

of the properties of the estimator θ̂N is thus reduced to the study of
these sums.

By direct computation,
∫ T

0

Eu2
k(t) dt =

1

2k2

∫ T

0

(1 − e−2k2t) dt.
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Consequently, as N → ∞,

N∑

k=1

∫ T

0

k4
Eu2

k(t) dt ∼ T

2

N∑

k=1

k2 ∼ N3T

6
,

where notation aN ∼ bN means limN→∞(aN/bN ) = 1. Since

E
∫ T

0
k2uk(t) dwk(t) = 0, it is reasonable to conjecture that,

• by the law of large numbers, limN→∞(θ̂N −θ) = 0 with probability
one;

• by the central limit theorem, the sequence of random variables

{N3/2(θ̂N − θ), N ≥ 1} converges in distribution to a zero-mean
Gaussian random variable.

It is also clear that the proof of these conjectures will require a closer
look at the Ornstein-Uhlenbeck processes (1.2) (see Section 2.1).

In the rest of the introduction, we discuss how (1.1) fits in the general
framework of statistical estimation.

1.2. Statistical estimation. In many models, the general form of the
equation is given by the basic laws governing the underlying process,
while the particular features of the equation, such as coefficients, initial
or boundary conditions, etc., must be determined from the observations
of the process. This model validation is often accomplished with the help
of statistical estimation.

Stochastic parabolic equations are used in various economical and
physical models, such as the term structure of interest rates for bonds
with different maturities (Aihara and Bagchi [8], [9], Cont [16]), the
temperature of the top layer of the ocean (Frankignoul [20], Piterbarg
and Rozovskĭı [57]), evolution of the population in time and space (Daw-
son [17], De [18]), spread of pollutants (Serrano and Adomian [70], Ser-
rano and Unny [71]), etc. Equations of the type (1.1) provide a useful
toy model for understanding the possible effect of the infinite number
of dimensions and for deriving the bench-mark results about the cor-
responding estimators. Diagonalizable stochastic parabolic equations of
the type discussed below can also model statistical problems in which in-
formation is coming from many independent, but not identical, channels
(Korostelev and Yin [38]).

In the classical statistical estimation problem, the starting point is a
family Pθ of probability measures depending on the parameter θ∈Θ⊂R.
Each Pθ is the distribution of a random element. It is assumed that a
realization of one random element corresponding to one particular value
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of θ of the parameter is observed, and the objective is to estimate the
value of this parameter from the observations.

One approach is to select the value θ corresponding to the random
element that is most likely to produce the observations. More precisely,
we say that the statistical model (or estimation problem) Pθ, θ ∈ Θ, is
absolutely continuous if there exists a probability measure Q such that
all measures Pθ are absolutely continuous with respect to Q. Then the

maximum likelihood estimator θ̂ of the unknown parameter is con-
structed by maximizing with respect to θ the density dPθ/dQ. As a

rule, θ̂ 6= θ, but one can hope that θ̂ approaches θ as more and more
information becomes available. The amount of information can be in-
creased in one of two ways: (a) increasing the sample size, for example,
the observation time interval (large sample asymptotic); (b) reducing
the amplitude of noise (small noise asymptotic).

If the measures Pθ are mutually singular for different values of θ,
then the model is called singular, and the value of the parameter can
often be determined “exactly”. In reality, a singular model is usually
approximated by a sequence of absolutely continuous models, and the
parameter is then computed as the limit of the corresponding maxi-
mum likelihood estimators. For parabolic equations driven by additive
space-time white noise, this approach was first suggested by Huebner,
Khas’minskĭı, and Rozovskĭı [26], and was further investigated by Hueb-
ner and Rozovskĭı [30], where a necessary and sufficient condition for the
convergence of the estimators was stated in terms of the orders of the
operators in the equation.

When the observations are finite-dimensional diffusions, the necessary
and sufficient conditions for absolute continuity of the corresponding
measures are well-known (see, for example, Liptser and Shiryaev [46,
Chapter 7]). Many of the results have been extended to infinite di-
mensions by Kozlov [40], [41], Loges [39], [48], Mikulevic̆ius and Ro-
zovskĭı [54], [55] and others. For linear equations, such as (1.1), whose
solutions are Gaussian processes, there is another useful result, origi-
nally discovered independently by Feldman [19] and Hájek [21], [22]:
Two Gaussian measures are either mutually absolutely continuous or
mutually singular. In particular, we will see later (Theorem 4.8) that
the measures generated by the solutions of (1.1) in a suitable Hilbert
space are mutually singular for different values of θ, and this singularity
allows us to get the exact value of the parameter θ, corresponding to the
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observations, as

θ = − limN→∞

∑N
k=1

∫ T

0
k2uk(t) duk(t)

limN→∞

∑N
k=1

∫ T

0 k4u2
k(t) dt

.

Since both limits are infinite, the expression must be approximated by θ̂N

from (1.4). The situation is somewhat similar to the problem of estimat-
ing the diffusion coefficient in a finite-dimensional diffusion, where the
exact value is known from the quadratic variation but is computed ap-
proximately using time discretization (see (2.27) and (2.28) below).

Here is the main result of the paper. Let {hk, k ≥ 1} be an or-
thonormal basis in a Hilbert space H and let W (t) =

∑
k≥1 wk(t)hk

be a cylindrical Brownian motion on H . Consider the linear stochastic
parabolic equation

(1.6) du+ (A0 + θA1)u dt = dW (t), 0 < t < T, u(0) = 0.

Assume that the operators A0 and A1 have a common system of eigen-
functions:

A0hk = ρkhk, A1hk = νkhk.

Define

duk(t) = −(ρk + θ νk)uk(t) dt+ dwk

and

θ̂N = −
∑N

k=1 νk

∫ T

0

(
uk(t) duk(t) + ρku

2
k dt
)

∑N
k=1 ν

2
k

∫ T

0 u2
k(t) dt

.

Theorem 1.1. The divergence of the series
∑

k ν
2
k/(ρk + θ νk) is neces-

sary and sufficient to have consistency and asymptotic normality of θ̂N .
In particular, if the series

∑
k ν

2
k/(ρk + θ νk) diverges, then

lim
N→∞

θ̂N = θ

with probability one,

lim
N→∞



∑

k≤N

ν2
k

ρk + θνk




1/2

(θ̂N − θ)
d
= N (0, 2/T ),

and the measures generated by the solutions of equation (1.6) are mutu-
ally singular for different values of θ.

For the convenience of the reader, the following section summarizes
the main notions and technical tools necessary to study the estimation
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problem for stochastic parabolic equation and to prove the above theo-
rem: Ornstein-Uhlenbeck process and its properties, Law of Large Num-
bers and the Central Limit Theorem for independent but not identically
distributed random variables, and the cylindrical Brownian motion. Sec-
tion 2.4 summarizes the main facts and presents some examples related
to absolutely continuous and singular statistical models; the book by
Ibragimov and Khas’minskĭı [31] provides more information on the sub-
ject. Section 3 illustrates the main steps of the proof of Theorem 1.1 in
the particular case of the stochastic heat equation (1.1); Theorem 1.1
itself is proved in Section 4. Finally, Section 5 discusses other statistical
estimation problems for stochastic parabolic equations.

Notations

Throughout the presentation below, we fix a stochastic basis F =
(Ω,F , {Ft}t≥0,P) with the usual assumptions (completeness of F0 and
right-continuity of Ft). We also assume that F is large enough to sup-
port countably many independent standard Brownian motions. For a
random variable ξ, Eξ and Var ξ denote the expectation and the vari-
ance, respectively. R

n is an n-dimensional Euclidean space, N (m,σ2) is
a Gaussian random variable with mean m and variance σ2, B⊤ is the
adjoint of the operator B.

Notation an ∼ bn for two sequences {an, n ≥ 1}, {bn, n ≥ 1},
with an > 0, bn > 0, means

lim
n→∞

an

bn
= 1.

For example, n2 − 2n ∼ n2 and
∑n

k=1 k
2 ∼ n3/3.

2. Some background from probability and statistics

2.1. The Ornstein-Uhlenbeck process. Let w = w(t), t ≥ 0, be
a standard Brownian motion. In the terminology of this paper, an
Ornstein-Uhlenbeck process X = X(t; a), t ≥ 0, with parameter a is
the solution of the stochastic ordinary differential equation

(2.1) dX(t; a) = −aX(t; a) dt+ dw(t), t > 0.

The process X is called stable if a > 0. Note that separation of variables
in equation (1.1) led to stable Ornstein-Uhlenbeck processes (1.2) with
parameters θ k2, and similarly, the analysis of the more general stochastic
parabolic equation (1.6) also leads to (2.1) with a > 0.
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It follows from (2.1) that

(2.2) X(t; a) = X(0; a)e−at +

∫ t

0

e−a(t−s) dw(s).

Theorem 2.1. Fix T > 0 and assume that X(0; a) = 0.

(1) Define the random variable

ξ(a) =

∫ T

0

X2(t; a) dt.

Then

lim
a→+∞

aEξ(a) =
T

2
,(2.3)

Eξn(a) ≤ C(n, T )a−n, n = 1, 2, . . . ,(2.4)

lim
a→+∞

a3 Var ξ(a) =
T

2
.(2.5)

(2) Denote by Pa
T the measure generated by the process X(t; a), 0 ≤ t ≤

T , in the space of continuous functions on [0, T ]. Then the measures Pa
T

are equivalent (mutually absolutely continuous) for all a and

(2.6)
dPb

T

dPa
T

(X(·; a))

= exp

(
−(b− a)

∫ T

0

X(t; a) dX(t; a) − b2 − a2

2

∫ T

0

X2(t; a) dt

)
.

In particular, P0
T is the Wiener measure (the measure generated by the

standard Brownian motion), and

(2.7)
dPa

T

dP0
T

(X(·; a))=exp

(
−a
∫ T

0

X(t; a) dX(t; a)− a2

2

∫ T

0

X2(t; a) dt

)
.

Proof: (1) Everything is proved by direct computation. For (2.3), the
computations are easy:

(2.8) EX2(t; a) =

∫ t

0

e−2a(t−s) ds =
1

2a
(1 − e−2at),

so

(2.9) Eξ(a) =

∫ T

0

EX2(t; a) dt =
T

2a
− 1

4a2
(1 − e−2aT ),

and the result follows.
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For (2.4), we use

• Jensen’s inequality

(∫ T

0

f2(t) dt

)n

=

(
T

∫ T

0

f2(t)
dt

T

)n

≤ T n

∫ T

0

f2n(t)
dt

T
;

• the fact that X(t; a) is a zero-mean Gaussian random variable,
which implies

(2.10) EX2n(t; a) =

(
n∏

k=1

(2k − 1)

)
(
EX2(t; a)

)n
.

Then

Eξn(a) = E

(∫ T

0

X2(t; a) dt

)n

≤ T n−1

∫ T

0

EX2n(t; a) dt

≤ T n−1

(
n∏

k=1

(2k − 1)

)∫ T

0

(EX2(t; a))n dt ≤ C(T, n)a−n,

where the last inequality follows from (2.10) and (2.8).

For (2.5), it is necessary to find E(ξ(a))2, and the computations are
more complicated. Here are two possible ways to approach the compu-
tations.

1. One way is to use the formula for the moment generating function
ψ(y; a) = E exp(−yξ(a)), y > 0:

ψ(y; a)

= eaT/2

(
2̺(y; a)

(̺(y; a) − a)e−T̺(y;a) + (̺(y; a) + a)eT̺(y;a)

)1/2

(2.11)

= e(̺(y;a)+a)T/2

(
2̺(y; a)

(̺(y; a) + a)(eT̺(y;a) − 1) + 2̺(y; a)

)1/2

,(2.12)

where ̺(y; a) = (a2 +2y)1/2; see Liptser and Shiryaev [47, Lemma 17.3].
Then

E(ξ(a))2 = lim
yց0

∂2ψ(y; a)

∂y2
,
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and both differentiation and evaluation of the limit can be carried out
with the help of a computer algebra system. The details are left to the
reader (see also Cialenco at al. [15]).

2. Alternatively, it follows from the definition of ξ(a) that

E(ξ(a))2 =

∫ T

0

∫ T

0

E(X2(t; a)X2(s, a)) ds dt

= 2

∫ T

0

∫ t

0

E(X2(t; a)X2(s, a)) ds dt,

(2.13)

and, for each t > s, the random variables X(t; a), X(s; a) are jointly
Gaussian with zero mean and correlation coefficient

ρ(t, s) =
e−a(t−s) − e−a(t+s)

(
(1 − e−2at)(1 − e−2as)

)1/2
.

Note that if α, β are jointly Gaussian, with zero mean, unit variance,
and correlation ρ, then

E
(
α2β2

)
=

1

2π
√

1−ρ2

∫ ∞

−∞

∫ +∞

−∞

x2y2exp

(
− 1

2(1−ρ2)
(x2+y2−2ρxy)

)
dx dy

=1 + 2ρ2.

As a result,

E(X2(t; a)X2(s, a)) =
(1 − e−2at)(1 − e−2as)

4a2

(
1 + 2ρ2(t, s)

)
,

and, by (2.13),

E(ξ(a))2 =
T 2

4a2
+

1

a2

∫ T

0

∫ t

0

e−2a(t−s) ds dt+ o(a−3)

= (Eξ(a))
2

+
T

2a3
+ o(a−3),

where lima→+∞ a3o(a−3) = 0. This implies (2.5).

(2) For the proof of (2.6), see Lipster and Shiryaev [46, Theorem 7.19].
It is important to keep in mind that while the density dPb

T /dP
a
T is a

functional defined on all continuous functions, it has nice closed-form
expressions only when evaluated on X(·; b) or X(·; a); each of these ex-
pression defines a random variable on the original probability space Ω.
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Clearly,

dPa
T

dPb
T

(X(·; a)) =

(
dPb

T

dPa
T

(X(·; a))
)−1

.

Note also that (2.6) and (2.1) imply

dPb
T

dPa
T

(X(·; a))=exp

(
(a− b)

∫ T

0

X(t; a) dw(t) − (a− b)2

2

∫ T

0

X2(t; a) dt

)

and so

E

(
dPb

T

dPa
T

(X(·; a))
)

= 1, E

(
dPa

T

dPb
T

(X(·; a))
)

6= 1.

Finally, let us point out that (2.7) is consistent with the Gisanov Theo-
rem. Indeed, if

Z(a) = exp

(
a

∫ T

0

X(t; a) dX(t; a) +
a2

2

∫ T

0

X2(t; a) dt

)

= exp

(
a

∫ T

0

X(t; a) dw(t) − a2

2

∫ T

0

X2(t; a) dt

)

and P̃ is the probability measure on (Ω,FT ) such that dP̃ = Z(a) dP,
then, by the Girsanov Theorem [46, Theorem 6.3], X(t; a), 0 ≤ t ≤ T ,

is a standard Brownian motion under P̃. In particular,

Ẽ exp

(
−a
∫ T

0

X(t; a) dX(t; a)− a2

2

∫ T

0

X2(t; a) dt

)
= Ẽ

(
1/Z(a)

)
= 1.

This completes the proof of Theorem 2.1.

2.2. LLN and CLT. The proof of consistency and asymptotic nor-
mality of (1.4) and similar estimators relies on the Law of Large Num-
bers (LLN) and the Central Limit Theorem (CLT) for random variables
that are independent but not identically distributed.

Theorem 2.2 (The strong law of large numbers). Let ξn, n ≥ 1, be a
sequence of independent random variables and bn, n ≥ 1, a sequence of
positive numbers such that bn+1 ≥ bn, limn→∞ bn = +∞, and

∑

n≥1

Var ξn
b2n

<∞.
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Then

lim
n→∞

∑n
k=1(ξk − Eξk)

bn
= 0

with probability one.

Proof: See, for example, Shiryaev [72, Theorem IV.3.2].

Corollary 2.3. Let ξn, n ≥ 1, be independent random variables such
that ξn ≥ 0,

∑
k≥1 Eξk = +∞, and

∑

n≥1

Var ξn

(
∑n

k=1 Eξk)
2 <∞.

Then

lim
n→∞

∑n
k=1 ξk∑n

k=1 Eξk
= 1

with probability one.

Proof: Take bn =
∑n

k=1 Eξk and apply Theorem 2.2.

Theorem 2.4 (Classical Central Limit Theorem). Assume that ξn,
n ≥ 1, are independent random variables with zero mean and vari-
ance σ2

n > 0, and assume that

(2.14) σ2
n ∼ Cnα

and

(2.15) Eξ4n ≤ C1σ
4
n

for some C > 0, C1 > 0, and α ≥ −1, all independent of n. Then,

as n→ ∞, the sequence (
∑n

k=1 ξk) /
(∑n

k=1 σ
2
k

)1/2
converges in distribu-

tion to the Gaussian random variable with zero mean and unit variance:

lim
n→∞

∑n
k=1 ξk

(
∑n

k=1 σ
2
k)

1/2

d
= N (0, 1).

Proof: To simplify the notations, define

Dn =

n∑

k=1

σ2
k.

We have to verify the classical condition of Lindeberg [72, Theo-
rem III.4.1]:

(2.16) lim
n→∞

∑n
k=1 E

(
ξ2kI(|ξk| > ε

√
Dn)

)

Dn
= 0
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for every ε > 0, where I(A) is the indicator function of the set A. We
have

E

(
ξ2kI(|ξk| > ε

√
Dn)

)
≤
(
Eξ4k

)1/2
(

P(|ξk| > ε
√
Dn)

)1/2

≤ Eξ4k
Dnε2

,

where the first inequality follows from the Cauchy-Schwarz and the sec-
ond, from the Chebychev inequality. By (2.14) and (2.15), the conver-
gence in (2.16) will follow from

(2.17) lim
n→∞

∑n
k=1 k

2α

(
∑n

k=1 k
α)

2 = 0.

If −1 ≤ α < −1/2, then (2.17) is obvious because the series on the top
converges and the series on the bottom diverges. If α ≥ −1/2, then
(2.17) follows from

n∑

k=1

kβ ∼ n1+β

1 + β
, β > −1.

Another useful versions of the CLT comes from the theory of martin-
gales.

Theorem 2.5 (Martingale Central Limit Theorem). Let Mn = Mn(t),
t ≥ 0, n ≥ 1, be a sequence of continuous square-integrable martingales
with quadratic variations 〈Mn〉 = 〈Mn〉(t). If, for some T > 0,

lim
n→∞

〈Mn〉(T )

E〈Mn〉(T )
= 1 in probability,

then

lim
n→∞

Mn(T )

(E〈Mn〉(T ))1/2

d
= N (0, 1).

Proof: This follows from a limit theorem for martingales: if Xn, X are
continuous square-integrable martingales such that X is a Gaussian pro-
cess and limn→∞〈Xn〉(T )=〈X〉(T ) in probability, then limn→∞Xn(T )=
X(T ) in distribution; see, for example Jacod and Shiryaev [36, Theo-
rem VIII.4.17] or Liptser and Shiryaev [45, Theorem 5.5.4(II)]. It now
remains to take

Xn(t) =
Mn(t)

(E〈Mn〉(T ))
1/2

, X(t) =
w(t)√
T
,

where w is a standard Brownian motion.
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Corollary 2.6. Let wk = wk(t) be independent standard Brownian mo-
tions and let fk = fk(t) be adapted, continuous, square-integrable pro-
cesses such that

lim
n→∞

∑n
k=1

∫ T

0 f2
k (t) dt

∑n
k=1 E

∫ T

0 f2
k (t) dt

= 1

in probability. Then

lim
n→∞

∑n
k=1

∫ T

0 fk(t) dwk(t)
(∑n

k=1 E
∫ T

0 f2
k (t) dt

)1/2

d
= N (0, 1).

Proof: This follows from Theorem 2.5 with

Mn(t) =

n∑

k=1

∫ t

0

fk(s) dwk(s).

2.3. Cylindrical Brownian Motion. Let H be a separable Hilbert
space with norm ‖ · ‖H and inner product (·, ·)H .

Definition 2.7. A cylindrical Brownian motion W = W (t) on a Hilbert
space H is a collection of zero-mean Gaussian random processes Wf =
Wf (t), t ≥ 0, f ∈ H , such that, for every f, g ∈ H and t, s ≥ 0,

(2.18) E

(
Wf (t)Wg(s)

)
= (f, g)H min(t, s).

Proposition 2.8. Let W be a cylindrical Brownian motion on a Hilbert
space H.

(a) The mapping f 7→ Wf is linear and therefore, for every ti, i =
1, . . . ,m, fj, j = 1, . . . , n, the collection of random variables {Wfj

(ti),
i = 1, . . . ,m, j = 1, . . . , n} is a Gaussian system.

(b) If h1, h2 are the elements of H such that ‖h1‖H = ‖h2‖H = 1 and
(h1, h2)H = 0, then the processes w1 = w1(t) and w2 = w2(t) defined by
wj(t) = Whj

(t), j = 1, 2. are independent standard Brownian motions.

Proof: (a) By direct computation, for a, b ∈ R and f, g ∈ H ,

E(Waf+bg(t) − aWf (t) − bWg(t))
2 = 0;

cf. Nualart [56, Definition 1.1.1].

(b) By definition ofW , the pair (w1, w2) is a zero-mean Gaussian process,
and Ewi(t)wj(s) = min(t, s)(hi, hj)H , which completes the proof.
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If f = f(t) is an adapted, square-integrable process with values in H

(that is, E
∫ T

0
‖f(t)‖2

H dt < ∞), then we define the stochastic integral∫ T

0
〈〈f(t), dW (t)〉〉 by the formula

(2.19)

∫ T

0

〈〈f(t), dW (t)〉〉 =
∑

k≥1

∫ T

0

(f(t), hk)H dwk(t),

where {hk, k ≥ 1} is an orthonormal basis in H and wk(t) = Whk
(t); of

course, this definition does not depend on the choice of the basis in H
(see, for example, Rozovskĭı [68, Chapter 2] or Walsh [74, Chapter I]).

Proposition 2.8(b) suggests a representation of W (t) as a series

(2.20) W (t) =
∑

k≥1

wk(t)hk,

where {hk, k ≥ 1} is an orthonormal basis in H and wk = Whk
, k ≥ 1,

are independent standard Brownian motions. While the series does not
converge in H , it is possible to embed H in a bigger Hilbert space, where
the series will converge. For example, define X as the closure of H in
the norm

(2.21) ‖f‖X =




∑

k≥1

k−2(f, hk)2H




1/2

.

Direct computations show that W is a continuous X-valued square-
integrable martingale, and

E‖W (t)‖2
X = t

∑

k≥1

k−2 =
π2t

6
.

There are many other spaces in which W becomes a continuous square-
integrable martingale: it is enough to replace k−2 in (2.21) with k−β

with β > 1.
If W is a cylindrical Brownian motion on L2((0,+∞)), and χx is

the indicator function of the interval [0, x], then, by direct computation,
W (t, x) = Wχx

(t) is a Brownian sheet and, for every f ∈ L2((0,+∞)),

Wf (t) =

∫ t

0

∫ +∞

0

f(y)W (ds, dy);

see, for example, Walsh [74, p. 284].
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Definition 2.7 can be generalized to allow spatial covariance: given
a non-negative, bounded, self-adjoint operator Q on H , we define the
Q-cylindrical Brownian motion WQ on H by replacing (2.18) with

(2.22) E

(
WQ

f (t)WQ
g (s)

)
= (Qf, g)H min(t, s).

If Q has a complete orthonormal system of eigenfunctions {hk, k ≥ 1}
and Qhk = qkhk, qk > 0, then (2.20) becomes

WQ(t) =
∑

k≥1

qkwk(t)hk,

where wk = qk
−1WQ

hk
, k ≥ 1 are independent standard Brownian mo-

tions.
Recall that

(a) an operator B from a separable Hilbert space H to a separable
Hilbert space X is called Hilbert-Schmidt if

∑

k≥1

‖Bhk‖2
X <∞

for one (hence all) orthonormal basis {hk, k ≥ 1} in H ;
(b) a non-negative self-adjoint operator Q on a separable Hilbert

space H is called trace class if
∑

k≥1

(Qhk, hk)H <∞

for one (hence all) orthonormal basis {hk, k ≥ 1} in H .

Proposition 2.9. (a) Let W be a cylindrical Brownian motion on a
separable Hilbert space H and X, a Hilbert space such that H is a dense
sub-set of X. Then W is a continuous X-valued square-integrable mar-
tingale if and only if the embedding j : H → X is a Hilbert-Schmidt
operator; in this case, W naturally extends to a Q-cylindrical Brownian
motion on X with Q = jj⊤, and Q is trace class.

(b) Let WQ be a Q-cylindrical Brownian motion on a separable Hilbert
space H. Then WQ is a continuous H-valued square-integrable martin-
gale if and only if the operator Q is trace class.

Proof: Below is an outline of the proof; the details are left to the reader.

(a) We have

E‖W (t) −W (s)‖2
X = (t− s)

∑

k≥1

‖hk‖2
X ,
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and the series converges if and only if j is Hilbert-Schmidt. The conti-
nuity of W then follows by the Kolmogorov criterion (Kunita [42, The-
orem 1.4.1]). Finally, for f ∈ X , we set

WQ
f = Wj⊤f ;

the adjoint operator j⊤ is defined on all of X (see, for example, Yosi-
da [75, Theorem VII.2]). Note that (Qhk, hk)H = ‖j⊤hk‖2

H = ‖hk‖2
X .

(b) This follows from

E‖WQ(t) −WQ(s)‖2
H = (t− s)

∑

k≥1

(Qhk, hk)H .

2.4. Statistical models. A statistical model (or experiment) gen-
erated by random elements X(θ) is a collection P = {X ,X,Pθ, θ ∈ Θ},
where each Pθ is a probability measures on a measurable space (X ,X)
such that Pθ(A) = P(X(θ) ∈ A), A ∈ X. In the parametric models, Θ is
a subset of a finite-dimensional Euclidean space.

An estimator of θ is a random variable Ψ(X(θ)), where Ψ is a mea-
surable mapping from X to Θ. The corresponding estimate of θ is
the number Ψ(X◦(θ∗)), where X◦(θ) is the observed realization of the
random element X(θ).

In general, an estimate of θ, being a realization of a random variable,
is not equal to θ. Accordingly, a family {PN , N > 0} of statistical
models is introduced, with N characterizing the amount of information
about θ (the larger N , the more information is available to the observer).
For example, PN can be a product of N independent copies of P , which
corresponds to observing N independent realizations of X .

Given PN , the corresponding family of estimators is then constructed
and studied in the limit N → ∞. One of the objectives is to estab-
lish consistency of the estimators (convergence to the true value of the
parameter) as N → ∞.

In absolutely continuous statistical models, maximum likelihood esti-
mators are often used.

Definition 2.10. A statistical model P is called absolutely continu-

ous if there exists a probability measure Q on (X ,X) such that every
Pθ is absolutely continuous with respect to Q. The statistical model P
is called singular if the measures Pθ1 and Pθ2 are mutually singular
for θ1 6= θ2.
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Let P be an absolutely continuous model and consider the density

p(x, θ) =
dPθ

dQ
(x, θ), x ∈ X , θ ∈ Θ.

The maximum likelihood estimator θ̂ of θ is defined by

(2.23) θ̂(X) = arg max
θ∈Θ

p(x, θ)
∣∣∣
x=X(θ)

,

where Θ is the closure of Θ. Similarly, a collection {PN , N > 0} of abso-

lutely continuous statistical models leads to a collection θ̂N of maximum
likelihood estimators.

The parameter N does not have to be discrete. For example, consider
a family of Ornstein-Uhlenbeck processes X = X(t; θ) defined by

(2.24) dX(t; θ) = θX(t; θ) dt+ σ dw(t), 0 < t < T,

with known σ > 0. For every fixed σ and T , we get an absolutely
continuous statistical model in which X is the set of continuous real-
valued functions on [0, T ], X is the Borel sigma-algebra on X , and Q is
the Wiener measure (the measure on (X ,X) generated by the Brownian
motion w); see Theorem 2.1(2). Then

(2.25) θ̂ =

∫ T

0 X(t; θ) dX(t; θ)
∫ T

0 X2(t; θ) dt
;

see Liptser and Shiryaev [47, Formula 17.45]. There are at least three
ways to achieve consistency:

(1) Keeping T and σ fixed, consider N independent copies Xk of X .
Then

θ̂N =

∑N
k=1

∫ T

0 Xk(t; θ) dXk(t; θ)
∑N

k=1

∫ T

0 X2
k(t; θ) dt

.

(2) Keeping σ fixed, let T → ∞ in (2.25), so that N = T (large time
asymptotic).

(3) Keeping T fixed and assuming X(0; θ) 6= 0, let σ → 0, so that
N = 1/σ (small noise asymptotic).

It is also clear that the same three methods can be used to achieve
consistency in any absolutely continuous model generated by a stochastic
evolution equation. For a detailed analysis of the models generated by
stochastic ordinary differential equations, see the books [43], [44] by
Yu. A. Kutoyants.
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Definition 2.11. The estimator ΨN of θ is said to converge to θ with the
rate of convergenceNα, α > 0, if the sequence {Nα(ΨN−θ), N > 0}
converges in distribution to a non-degenerate random variable ζ (that
is, Var ζ > 0). If ζ is a Gaussian random variable, then ΨN is called
asymptotically normal.

In general, given a collection {PN , N > 0} of absolutely continuous
statistical models, the asymptotic properties of the maximum likelihood

estimator θ̂N , such as consistency and asymptotic normality, can be
described in terms of the properties of the corresponding densities; see,
for example, Ibragimov and Khas’minskĭı [31, Theorem III.1.1].

If the statistical model P is singular, then it is often possible (at leat
in theory) to get the true value of the parameter without introducing
the family PN . A well-known example is estimation of the diffusion
coefficient θ from the observations of

(2.26) X(t) = θw(t), θ > 0,

where w = w(t) is a standard Brownian motion: since X is a square-
integrable martingale with quadratic variation 〈X〉(t) = θ2t, it follows
that

(2.27) θ =

√
〈X〉(T )

T

for every T > 0. Note that, since the quadratic variation is not available
directly, a computable form of (2.27) is

(2.28) θ =

(
1

T
lim

N→∞

N∑

k=1

(
X(Tk/N)−X(T (k − 1)/N)

)2
)1/2

.

Similar ideas can be used to estimate the diffusion coefficient in more
general Itô equations dX = b(t,X(t)) dt + θσ(t,X(t)) dw(t). For more
details, see the survey by Aı̈t-Sahalia [11] and references therein.

Another example of a singular model is in the paper by Khas’minskĭı
et al. [37]: if the observations are a two-dimensional diffusion pro-
cess (X,Y ) with

dX(t) = Y (t) dt, dY (t) = X(t) dt+ θY (t) dt+X(t) dw(t)

with a standard Brownian motionw = w(t) and initial conditionsX(0) =
0, Y (0) = 1, then, by direct computations,

θ = lim
t→0

1

t

∫ t

0

dY (s)√
X2(s) + Y 2(s)

;

note that the special choice of the initial conditions is essential.
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We will see in Section 4 that stochastic parabolic equations give rise
to a large class of singular models.

A systematic way to study a singular model is to approximate it with
a family of absolutely continuous models. For (2.26), this family comes
from the time discretizations (2.28), and for many stochastic parabolic
equations, from the space discretization. We illustrate this idea in the
next section using the stochastic heat equation on the interval.

3. Analysis of the stochastic heat equation on the
interval

Let W = W (t) be a cylindrical Brownian motion on L2((0, π)) and
θ > 0. Consider the following stochastic heat equation

(3.1) du(t, x) = θ uxx(t, x) dt + dW, 0 < t ≤ T, x ∈ (0, π),

with zero initial and boundary conditions, where θ > 0 is a real number.
To simplify the notations, we do not indicate explicitly the dependence
of u on θ.

Definition 3.1. A solution of equation (3.1) is a random element with
values in L2((0, T )× (0, π)), such that, for every twice continuously dif-
ferentiable on [0, π] function v = v(x) satisfying v(0) = v(π) = 0 and
every t ∈ [0, T ], the following equality holds with probability one:

(3.2) (u, v)L2((0,π))(t) = θ

∫ t

0

(u, vxx)L2((0,π))(s) ds+Wv(t).

Proposition 3.2. There exists a unique solution of equation (3.1), and

(3.3) E‖u‖2
L2((0,π))(t) ≤

π2

12 θ
, t ≥ 0.

Proof: We solve equation (3.1) using the classical method of separation

of variables. Let hk(x) =
√

2/π sin(kx), k ≥ 1. Taking v = hk in (3.2),
we find that uk(t) = (u, hk)L2((0,π))(t) satisfies

(3.4) uk(t) = −θ k2

∫ t

0

uk(s) ds+ wk(t),

where wk is a standard Brownian motion. Therefore,

Eu2
k(t) =

∫ t

0

e−2θk2(t−s) ds ≤ 1

2θ k2
.
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Since hk, k ≥ 1, is an orthonormal basis in L2((0, π)), we conclude that
u =

∑
k≥1 ukhk is a solution of (3.1) and

E‖u‖2
L2((0,π))(t) =

∑

k≥1

Eu2
k(t) ≤

∑

k≥1

1

2θ k2
=

π2

12θ
.

Uniqueness of solution of (3.1) follows from the uniqueness of solution
of (3.4) for every k. Proposition 3.2 is proved.

Note that since the Brownian motions wk, k ≥ 1, are independent,
the Ornstein-Uhlenbeck processes uk, k ≥ 1, are also independent.

Let us now consider the problem of estimating the number θ from
the observations of the solution of (3.2). One can show that the solu-
tion generates a Gaussian measure in space of continuous processes with
values in a suitable Hilbert space, and the measures are singular for dif-
ferent values of θ (see Theorem 4.8 below). Using the terminology of
Section 2.4, we have a singular statistical model, and we will approxi-
mate it with a sequence of absolutely continuous models by discretizing
the space.

Assume that the observations of uk(t) are available for t ∈ [0, T ] and
k = 1, . . . , N . For each θ and each k, the Ornstein-Uhlenbeck process uk

generates the measure Pθ,k
T in the space of continuous real-valued func-

tions on [0, T ], and, by Theorem 2.1(2), the measures are equivalent for
different valued of θ. Similarly, the vector u(N,θ) = (uk, k = 1, . . . , N),

generates a probability measure Pθ
N,T on the space of continuous R

N -val-

ued functions on [0, T ]. Since the random processes uk are independent

for different k, Pθ
N,T is a product measure: Pθ

N,T =
∏N

k=1 Pθ,k
T , and thus

the measures Pθ
N,T are equivalent for different values of θ. In particular,

by (2.7),

(3.5)
dPθ

N,T

dP0
N,T

(
u(N,θ)

)

= exp

(
N∑

k=1

(
−θk2

∫ T

0

uk(t) duk(t) − θ2k4

2

∫ T

0

u2
k(t) dt

))
.

Maximizing the right-hand side of (3.5) with respect to θ, we get the

following expression for the maximum likelihood estimator θ̂N of θ, based
on the observations uk(t), k = 1, . . . , N , t ∈ [0, T ]:

(3.6) θ̂N = −
∑N

k=1 k
2
∫ T

0 uk(t) duk(t)
∑N

k=1 k
4
∫ T

0
u2

k(t) dt
.
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Theorem 3.3. Estimator (3.6) is strongly consistent and asymptotically
normal in the limit N → ∞:

lim
N→∞

θ̂N = θ with probability one,(3.7)

lim
N→∞

N3/2(θ̂N − θ) = ζ in distribution,(3.8)

where ζ is a Gaussian random variable with zero mean and vari-
ance 6θ/T .

Proof: It follows from (3.4) that

(3.9) θ̂N − θ = −
∑N

k=1 k
2
∫ T

0
uk(t) dwk(t)

∑N
k=1 k

4
∫ T

0
u2

k(t) dt
.

To prove consistency, we use Corollary 2.3. Note that each uk is a
stable Ornstein-Uhlenbeck process with parameter a = k2θ. By Theo-
rem 2.1(1),

(3.10) E

∫ T

0

u2
k(t) dt ∼ T

2θ k2
, Var

∫ T

0

u2
k(t) dt ∼ T

2θ3 k6
,

and so

E

(
k4

∫ T

0

u2
k(t) dt

)
∼ Tk2

2θ
, Var

(
k4

∫ T

0

u2
k(t) dt

)
∼ Tk2

2θ3
.

By Corollary 2.3,

(3.11) lim
N→∞

∑N
k=1 k

4
∫ T

0
u2

k(t) dt
∑N

k=1 k
4
∫ T

0
Eu2

k(t) dt
= 1.

Next, we apply Theorem 2.2 with ξn =
∫ T

0
n2un(t) dwn(t) and bn =∑n

k=1 Eξ2k ∼ Tn3/(6θ) to conclude that

lim
N→∞

∑N
k=1 k

2
∫ T

0
uk(t) dwk(t)

∑N
k=1 k

4
∫ T

0
Eu2

k(t) dt
= 0

with probability one, and then (3.7) follows from (3.9) and (3.11).
Asymptotic normality (3.8) now follows from (3.11) and Corollary 2.6.

Alternatively, since uk(t) is a Gaussian random variable, (3.8) can be
derived from Theorem 2.4 with

σ2
k = E

∫ T

0

k4u2
k(t) dt ∼ Tk2

2θ
.
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4. Diagonalizable stochastic parabolic equations

The ideas used to study the stochastic heat equation on the inter-
val (3.1) extend with little or no modification to equations such as

du− θ∆u dt = dW, θ > 0,

du− (∆u+ θu) dt = dW,

du + (∆2u+ θ∆u) dt = dW,

where ∆ is the Laplace operator, and to an abstract parabolic equation

(4.1) du+ (A0 + θA1)u dt = dW

under suitable assumptions about the operators A0, A1. The key feature
of equation (3.1) is the possibility to write the solution using separation
of variables; in what follows, we generalize this feature to (4.1) using the
notion of a diagonalizable equation.

In general, ifW is a cylindrical Brownian motion on a Hilbert spaceH ,
the solution of (4.1) is not an element of H for t > 0. There are two
main approaches to circumvent this difficulty:

(1) To introduce spatial covariance in the noise and considere WQ

instead of W .
(2) To consider the equation in a bigger Hilbert space.

By Proposition 2.9, the two approaches are essentially equivalent, and
we will use the second one. Later on, we will see that many equations
driven by WQ can be reduced to equations driven by W .

4.1. Existence and regularity of solution. Introduce the following
objects:

(1) H , a separable Hilbert space with an orthonormal basis {hk, k ≥
1};

(2) W = W (t), a cylindrical Brownian motion on H ;

(3) A0, A1, linear operators on H ;

(4) Θ = [a, b], a closed bounded interval in R.

For θ ∈ Θ, consider the following equation:

(4.2) du(t) + (A0 + θA1)u(t) dt = dW (t), 0 < t ≤ T,

with zero initial condition u(0) = 0 and fixed non-random T > 0.

Definition 4.1. Equation (4.2) is called diagonalizable if the oper-
ators A0 and A1 have point spectrum and a common system of eigen-
functions {hk, k ≥ 1}.
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Denote by ρk, νk, and µk(θ) the eigenvalues of the operators A0, A1,
and A0 + θA1:

(4.3) A0hk = ρkhk, A1hk = νkhk, µk(θ) = ρk + θνk.

Definition 4.2. A diagonalizable equation (4.2) is called parabolic if
there exist positive numbers C∗, c1, c2 such that {µk(θ) +C∗, k ≥ 1} is
a positive, non-decreasing, and unbounded sequence for all θ ∈ Θ and

(4.4) c1 ≤ µk(θ1) + C∗

µk(θ2) + C∗
≤ c2

for all θ1, θ2 ∈ Θ.

Proposition 4.3. If equation (4.2) is diagonalizable and parabolic, then

(4.5) lim
k→∞

µk(θ) = +∞

uniformly in θ ∈ Θ, and there exists an index J ≥ 1 and a number c0
such that, for all k ≥ J and θ ∈ Θ,

µk(θ) > 1,(4.6)

|νk|
µk(θ)

≤ c0.(4.7)

Proof: Since {µk(θ) + C∗, k ≥ 1} is a positive, non-decreasing, and
unbounded sequence for all θ ∈ Θ and (4.4) holds, we have (4.5), and
then (4.6) follows.

To prove (4.7), we argue by contradiction. Assume that the sequence
{|νk|µ−1

k (θ), k ≥ 1} is not uniformly bounded. Then there is a sequence

{|νkj
|µ−1

kj
(θj), j ≥ 1} such that

(4.8) lim
j→∞

|νkj
|

θjνkj
+ ρkj

= +∞.

With no loss of generality, assume that νkj
> 0, and, since Θ is compact,

we also assume that limj→∞ θj = θ◦ ∈ Θ (if not, extract a further sub-
sequence).

Then (4.8) implies

(4.9) lim
j→∞

ρkj

νkj

= −θ◦.

Note that limj→∞ |νkj
| = +∞, because limj→∞(θ◦νkj

+ ρkj
) = +∞.

Consequently,

lim
j→∞

µkj
(θ) + C∗

µkj
(θ◦) + C∗

=
θ − θ◦

θ◦ + limj→∞(ρkj
/νkj

)
= ∞, θ 6= θ◦.

As a result, if (4.7) fails, then so does (4.4) for θ1 6= θ◦, θ2 = θ◦.
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Example 4.4. Let G be a smooth bounded domain in R
d or a smooth

compact d-dimensional manifold with a smooth measure, H = L2(G),
and let ∆ be the Laplace operator on G(with zero boundary condi-
tions if G is a domain). It is known (see, for example, Safarov and
Vassiliev [69] or Shubin [73]) that

(1) ∆ has a complete orthonormal system of eigenfunctions in H ;

(2) the corresponding eigenvalues λk are negative, can be arranged in
decreasing order, and there is a positive number c◦ such that

(4.10) |λk| ∼ c◦k
2/d.

The reader can verify that each of the following equations is diago-
nalizable and parabolic:

du − θ∆u dt = dW, 0 < a ≤ θ ≤ b,

du− (∆u+ θu) dt = dW, a ≤ θ ≤ b,

du+ (∆2u+ θ∆u) dt = dW, a ≤ θ ≤ b.

From now on, we assume that equation (4.2) is diagonalizable and
parabolic, and the eigenvalues of the operators A0, A1 are enumerate so
that {µk(θ), k ≥ 1} is a non-decreasing sequence and (4.6) holds.

Let X be the closure of H in the norm

(4.11) ‖f‖X =




∑

k≥1

k−2(f, hk)2H




1/2

.

Then every element f of X is represented by a Fourier series f =∑
k≥1 fkhk and

‖f‖2
X =

∑

k≥1

k−2f2
k .

Recall that the cylindrical Brownian motion W = W (t) is a continuous
square-integrable martingale with values in X (see Proposition 2.9).

Definition 4.5. A solution of equation (4.2) is a continuous X-valued
random process u = u(t) such that

(4.12) u(t) =
∑

k≥1

uk(t)hk

and

(4.13) uk(t) = −µk(θ)

∫ t

0

uk(s) ds+Whk
(t).
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Theorem 4.6. Assume that equation (4.2) is diagonalizable and para-
bolic. Then there exits a unique solution u = u(t) of (4.2).

Proof: Uniqueness of solution follows from the uniqueness of solution
of (4.13) for every k:

uk(t) =

∫ t

0

e−µk(θ)(t−s) dwk(s).

It remains to show that the process u defined by (4.12) is a continuous
X-valued process.

For 0 ≤ s < t ≤ T ,

uk(t) − uk(s) =

∫ s

0

(
e−µk(θ)(t−r) − e−µk(θ)(s−r)

)
dwk(r)

+

∫ t

s

e−µk(θ)(t−r) dw(r),

and so

(4.14) E
(
uk(t) − uk(s)

)2
=

∫ s

0

(
e−µk(θ)(t−r) − e−µk(θ)(s−r)

)2

dr

+

∫ t

s

e−2µk(θ)(t−r) dr;

note that

∫ s

0

(
e−µk(θ)(t−r) − e−µk(θ)(s−r)

)2

dr

=
(
1 − e−2µk(θ)s

)(
1 − e−µk(θ)(t−s)

) 1 − e−µk(θ)(t−s)

2µk(θ)
.

By (4.5), there exits a C > 1 such that −2µk(θ) ≤ C for all k ≥ 1
and θ ∈ Θ. Then (4.14) implies

(4.15) E(uk(t) − uk(s))2 ≤ C0|t− s|

with a suitable constant C0, for example, C0 = eCT
(
(1+ eCT )2 +1

)
. As

a result,

E‖u(t)‖2
X ≤ C0T

∑

k≥1

k−2 =
C0Tπ

2

6
,
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which implies u(t) ∈ L2(Ω;X) for all 0 ≤ t ≤ T . Next, by the Cauchy-
Schwarz inequality,

E‖u(t) − u(s)‖4
X = E



∑

k≥1

k−2(uk(t) − uk(s))2




2

≤ π

6

∑

k≥1

k−2
E(uk(t) − uk(s))4.

Since each uk is a zero-mean Gaussian process, (4.15) implies

E(uk(t) − uk(s))4 ≤ 3C0|t− s|2,
and the continuity of u follows from the Kolmogorov criterion (see, for
example, Kunita [42, Theorem 1.4.1]).

Remark 4.7. Since the solution is defined by its Fourier coefficients, the
space X is not an essential part of the definition and is only necessary to
represent u as a process. The reader can check that Theorem 4.6 holds for
any Hilbert spaceX such thatH is a dense sub-set ofX and the inclusion
j : H → X is a Hilber-Schmidt operator, so that

∑
k≥1 ‖hk‖2

X <∞.

4.2. Parameter estimation. Consider the diagonalizable parabolic
equation

(4.16) du(t) + (A0 + θA1)u(t) dt = dW (t), 0 < t ≤ T, u(0) = 0,

driven by a cylindrical Brownian motion on a Hilbert space H . Let X be
a Hilbert space such that H is a dense subset of X and W = W (t) is an
X-valued continuous square-integrable martingale (for example, we can
define X by (4.11)). According to Theorem 4.6, the solution u = u(t) of
this equation is a continuous X-valued process

u(t) =
∑

k≥1

uk(t)hk,

with

(4.17) duk(t) = −µk(θ)uk(t) dt+ dwk(t), uk(0) = 0,

where {hk, k ≥ 1} is an orthonormal basis in H , wk = Whk
, A0hk =

ρkhk, A1hk = νkhk, and µk(θ) = ρk + θ νk.
Assume that the observations of uk(t) are available for t ∈ [0, T ] and

k = 1, . . . , N . For each θ and each k, the Ornstein-Uhlenbeck process uk

generates the measure Pθ,k
T in the space of continuous real-valued func-

tions on [0, T ], and, by Theorem 2.1(2), the measures are equivalent for
different valued of θ. Similarly, the vector u(N,θ) = (uk, k = 1, . . . , N),
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generates a probability measure Pθ
N,T on the space of continuous R

N -val-

ued functions on [0, T ]. Since the random processes uk are independent

for different k, Pθ
N,T is a product measure: Pθ

N,T =
∏N

k=1 Pθ,k
T , and thus

the measures Pθ
N,T are equivalent for different values of θ. In particular,

by (2.7),

(4.18)
dPθ

N,T

dP0
N,T

(
u(N,θ)

)

= exp

(
N∑

k=1

(
−µk(θ)

∫ T

0

uk(t) duk(t) −
(
µk(θ)

)2

2

∫ T

0

u2
k(t) dt

))
.

Maximizing the expression on the right-hand side of (4.18) with respect
to θ, we get the following expression for the maximum likelihood esti-

mator θ̂N of θ based on the observations uk(t), k = 1, . . . , N , t ∈ [0, T ]:

(4.19) θ̂N = −
∑N

k=1 νk

∫ T

0

(
uk(t) duk(t) + ρku

2
k dt
)

∑N
k=1 ν

2
k

∫ T

0 u2
k(t) dt

.

Define J = min{k : µn(θ) > 0 for all n ≥ k and θ ∈ Θ}; see (4.6).

Theorem 4.8. Assume that equation (4.16) is diagonalizable and par-
abolic.

(a) The following conditions are equivalent:

(1)

(4.20)

∞∑

k=J

ν2
k

µk(θ)
= +∞ for all θ ∈ Θ;

(2)

(4.21) lim
N→∞

θ̂N = θ with probability one for all θ ∈ Θ;

(3) the measures {P̄θ
T , θ ∈ Θ} generated by the solutions of (4.16) in

the space of continuous X-valued processes are mutually singular
for different θ (as in Theorem 4.6, X is a Hilbert space such that
the embedding H → X is Hilbert-Schmidt).

(b) If (4.20) holds, then

(4.22) lim
N→∞

√√√√
N∑

k=J

ν2
k

µk(θ)

(
θ̂N − θ

)
d
= N (0, 2/T ).
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Proof: (a) First, we show that (4.20) is equivalent to (4.21). By (4.17),

(4.23) θ̂N − θ = −
∑N

k=1

∫ T

0
νkuk(s) dwk(s)

∑N
k=1

∫ T

0
ν2

ku
2
k(s) ds

;

both the top and the bottom on the right-hand side of (4.23) are sums
of independent random variables. Next,

(4.24) E

∫ T

0

ν2
ku

2
k(t) dt ∼ Tν2

k

2µk(θ)

(see (2.3)), and

(4.25) Var

(∫ T

0

ν2
ku

2
k(t) dt

)
∼ Tν4

k

2µ3
k(θ)

;

(see (2.5)). If (4.20) does not hold, then (4.24) implies

∑

k≥1

E

∫ T

0

ν2
ku

2
k(s) ds <∞

and so the series
∑

k≥1

∫ T

0

ν2
ku

2
k(s) ds

converges with probability one. Therefore,

(4.26) lim
N→∞

(θ̂N − θ) =

∫ T

0
〈〈A1u(t), dW (t)〉〉 dt
∫ T

0
‖A1u(t)‖2

H dt
6= 0;

see (4.23) and (2.19).
On the other hand, if (4.20) holds, then

(4.27)
∑

n≥J

ν2
nµ

−1
n (θ)

( n∑
k=J

ν2
kµ

−1
k (θ)

)2 <∞.

Indeed, setting an = ν2
nµ

−1
n (θ) and An =

∑n
k=J ak, we notice that

∑

n≥J

an

A2
n

≤
∑

n≥J+1

(
1

An−1
− 1

An

)
=

1

A
J

.

Then the strong law of large numbers (Theorem 2.2), together with the
equality

E

∫ T

0

uk(s) dwk(s) = 0, k ≥ 1,
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implies

lim
N→∞

∑N
k=1

∫ T

0
νkuk(s) dwk(s)

∑N
k=1 E

∫ T

0
ν2

ku
2
k(s) ds

= 0 with probability one.

Next, it follows from (4.27) and (4.6) that

(4.28)
∑

n≥J

ν4
nµ

−3
n (θ)

( n∑
k=J

ν2
kµ

−1
k (θ)

)2 <∞,

because, by Proposition 4.3, |νk|/µk(θ) < c0 for k ≥ J . Then another
application of the strong law of large numbers (Corollary 2.3) shows that

(4.29) lim
N→∞

∑N
k=1

∫ T

0
ν2

ku
2
k(s) ds

∑N
k=1 E

∫ T

0
ν2

ku
2
k(s) ds

= 1

with probability one, and (4.21) follows. This completes the proof that
(4.20) is equivalent to (4.21).

Next, we show that (4.20) is equivalent to singularity of measures P̄θ
T .

Since u is a Gaussian process, the measures are either mutually abso-
lutely continuous or mutually singular (Feldman [19] or Hájek [21], [22]),
and, by a result of Koski and Loges [39, Proposition 1], the measures
are mutually absolutely continuous if and only if the series

∑
ν2

k/µk(θ)
converges (see also Mikulevic̆ius and Rozovskĭı [54, Corollary 1] for a
more general result about absolute continuity of measures).

(b) To prove (4.22), use (4.29) and apply Corollary 2.6 with fk(t) =
νkuk(t). An interested reader can also verify that, in general, condi-
tion (4.20) is not enough to apply the classical Central Limit Theorem
(Theorem 2.4).

This completes the proof of Theorem 4.8.

4.3. Discussion and examples. First of all, let us formulate condi-
tion (4.20) in terms of the orders of the operators in the equation. Let
A0, A1 be elliptic differential or pseudo-differential operators, either on
a smooth bounded domain in R

d or on a smooth compact d-dimensional
manifold, and let m0, m1, be the orders of A0, A1 respectively, so that
2m = max(m0,m1). Then, under rather general conditions we have

(4.30) |νk| ∼ c1 k
m1/d, µk(θ) ∼ c(θ) k2m/d

for some positive numbers c1, c(θ); see, for example, Safarov and Vas-
siliev [69].
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If (4.30) holds, then condition (4.20) becomes (2m1 − 2m)/d ≥ −1 or

(4.31) m1 ≥ m− d

2
,

which was established by Huebner and Rozovskĭı [30]. On the other
hand, Theorem 4.8 covers operators with more exotic eigenvalues, such
as νk = k ln k or νk = ek; such eigenvalues can appear in the problems
of statistical inference based on information from many independent but
not identical channels [38].

The reader can verify that the additional assumption ν2
k/µk(θ) ∼ kβ

for some β ≥ −1 simplifies the proof of Theorem 4.8 in at least two ways:

(1) Relation (4.25) can be replaces with a less delicate bound us-
ing (2.4):

Var

(∫ T

0

ν2
ku

2
k(t) dt

)
≤ E

(∫ T

0

ν2
ku

2
k(t) dt

)2

≤ Cν4
k

µ2
k(θ)

.

(2) The classical Central Limit Theorem (Theorem 2.4) can be applied
instead of a more sophisticated martingale version.

Next, we consider the effects of a non-zero initial condition. Even
though it was assumed everywhere that u(0) = 0, Theorem 4.8 extends
to nonzero initial condition u(0) = φ as long as φ is non-random and
belongs to H . Indeed, the Fourier coefficients of the solution satisfy

uk(t) = φke
−µk(θ)t +

∫ t

0

e−µk(θ)(t−s) dwk(s)

and, for k ≥ J ,

E

∫ T

0

u2
k(t) dt =

φ2
k

2µk(θ)
(1−e−2µk(θ)T )+

T

2µk(θ)
− 1

4µ2
k(θ)

(1−e−2µk(θ)T ).

As a result, if

(4.32)
∑

k≥1

φ2
k <∞,

then (4.24) and (4.25) hold. The computations also show that

(1) it is important to have φ non-random: otherwise, the processes uk

will no longer be independent, and the analysis will become much
more complicated;

(2) condition (4.32) can be further relaxed, although the specifics will
depend on the rate of growth of νk and µk(θ);

(3) if the series
∑

k≥1 φ
2
k diverges fast enough, then a consistent esti-

mator is possible even if (4.20) does not hold.
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The details are left to an interested reader (see also Huebner [23]).
Next, we discuss how the presence of the spatial covariance in the

noise term affects the model.
Let us consider the equation

du+ (A0 + θA1)u dt = dWQ(t),

where Q is a positive linear self-adjoint operator. Then we can write
Q = BB⊤ for some operator B, and the equation becomes

du+ (A0 + θA1)u dt = B dW (t).

If B−1 exists, then we get back to the original model (4.16) by considering

v = B−1u, Ã0 = B−1A0B, Ã1 = B−1A1B:

dv(t) + (Ã0 + θÃ1)v(t) dt = dW (t),

provided this equation is diagonalizable and parabolic in the sense of
Definitions 4.1 and 4.2.

If B−1 does not exist, there are two possibilities:

(1) (u0, hi)0 = 0 for every i such that Bhi = 0. In this case, ui(t) = 0
for all t > 0, so that we can factor out the kernel of B and reduce
the problem to invertible B.

(2) (u0, hi)0 6= 0 for some i such that Bhi = 0. In this case, ui(t) =
ui(0)e−ρit−νiθt and θ is determined exactly from the observations
of ui(t):

θ =
1

νi(t− s)
ln
ui(s)

ui(t)
− ρi

νi
, t 6= s.

Let us now look at some concrete examples of (4.16).

(1) Consider equation

du− θuxx dt = dW, 0 < t < T, x ∈ (0, 1), θ > 0,

with zero initial and boundary conditions.
Clearly, νk = π2k2, ρk = 0, µk(θ) = θπ2k2, and (4.20) holds. Then

uk(t) =

∫ T

0

e−θπ2k2(t−s) dwk,

θ̂N = −
∑N

k=1 k
2
∫ T

0
uk(t) duk(t)

∑N
k=1

∫ T

0
π2k4uk(t) dt

,

lim
N→∞

N3/2(θ̂N − θ)
d
= N (0, 6θ/(π2T )),



34 S. V. Lototsky

where N (a, σ2) is a normal random variable with mean a and vari-
ance σ2, and the convergence is in distribution.

More generally, if equation

du+ θA1u dt = dW, θ > 0,

is diagonalizable and parabolic and νk > 0, then ν2
k/µk(θ) = νk/θ and

condition (4.20) is satisfied, so that θ̂N is consistent and asymptotically
normal:

uk(t) =

∫ T

0

e−θνk(t−s) dwk,

θ̂N = −
∑N

k=1 ν
2
k

∫ T

0 uk(t) duk(t)
∑N

k=1

∫ T

0 ν4
kuk(t) dt

,

lim
N→∞

(
N∑

k=1

νk

)1/2

(θ̂N − θ)
d
= N (0, 2θ/T ).

(2) Consider equation

du− (∆u+ θu) dt = dW, 0 < t < T, x ∈ G ⊂ R
d,

with zero initial and boundary conditions and d ≥ 2. Denote by λk,
k ≥ 1, the eigenvalues of the Laplace operator ∆; recall that λk < 0.
Clearly, νk = −1, ρk = −λk, µk(θ) = −λk − θ. Then

uk(t) =

∫ T

0

e(λk+θ)(t−s) dwk,

θ̂N = −
∑N

k=1

∫ T

0 uk(t)(duk(t) − λkuk(t) dt)
∑N

k=1

∫ T

0 u2
k(t) dt

,

lim
N→∞

Φd(N)(θ̂N − θ)
d
= N (0, σ2

d),

where

Φd(N) =

{√
lnN, if d = 2,

N (d−2)/(2d), if d > 2,
σ2

d =





2c◦
T
, if d = 2,

2c◦
T

(
1 − 2

d

)
, if d > 2,

and c◦ is from (4.10).
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If d = 1, then (4.31) does not hold (m1 = 0, m = 1) and θ̂N is not a
consistent estimator of θ.

(3) Consider the equation

du + (∆2u+ θ∆u) dt = dW, 0 < t < T, x ∈ G ⊂ R
d,

with zero initial and boundary conditions:

u|t=0 = u|∂G = ∆u|∂G = 0.

As before, denote by λk the eigenvalues of the Laplacian ∆. Clearly,
νk = λk, ρk = λ2

k, µk(θ) = λ2
k + θλk. Then, for every d ≥ 1,

uk(t) =

∫ T

0

e−(λ2

k+θλk)(t−s) dwk,

θ̂N = −
∑N

k=1

∫ T

0
λkuk(t)(duk(t) − λ2

kuk(t) dt)
∑N

k=1

∫ T

0
λ2

ku
2
k(t) dt

,

lim
N→∞

√
N(θ̂N − θ)

d
= N (0, 2/T ).

5. Further directions

The proof of Theorem 4.8 is the main objective of the current pa-
per. There are certainly many other statistical problems that have been
studied for stochastic parabolic equations, and below is a (partial) list
of these problems. Surveys by Prakasa Rao [63], [65] can provide more
details on some of the topics.

5.1. Diagonalizable equations. The bottom line is that any problem
of statistical inference for a stable Ornstein-Uhlenbeck process has a po-
tential for an extension to diagonalizable stochastic parabolic equations.
On the other hand, note that the numerous interesting problems for
the unstable Ornstein-Uhlenbeck process do not have similar extensions
to stochastic parabolic equations because of the parabolicity condition:
only finitely many Fourier coefficients of the solution can be unstable
processes.

Here is a (partial) list of the corresponding results and references.

(1) Several unknown parameters: Huebner [23], [24].

(2) Bayesian estimators and hypothesis testing: Bishwal [12],
[13], Prakasa Rao [59].

(3) Time-dependent drift: Huebner and Lototsky [27], [28].
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(4) Observations in discrete time and/or space: Huebner [23],
Markussen [53], Piterbarg and Rozovskĭı [58], Prakasa Rao [60],
[62], [64], [66].

(5) Optimal linear filtering of a time-dependent drift: Lotot-
sky [50].

Somewhat different types of diagonalizable equations have also been
considered.

(1) Equations with multiplicative noise: Cialenco and Lotot-
sky [14].

(2) Equations driven by the cylindrical fractional Brownian
motion: Cialenco et al. [15], Prakasa Rao [67].

Equations with multiplicative noise are diagonalizable only if the noise
has no spatial structure. The simplest example is

du = θ uxx dt+ u dw(t), 0 < x < π,

with zero boundary conditions, where w is a standard Brownian motion.
Of course, it is no longer possible to assume that u(0, x) = 0. The Fourier
coefficients uk, k ≥ 1, are now Geometric Brownian motions driven by
the same Brownian motion w, making the problem extremely singular
from the statistical point of view. In particular, it was shown in [14]
that the parameter θ can be determined exactly and in closed form from
just two Fourier coefficients. For example, if u1(0) 6= 0 and u2(0) 6= 0,
then

θ =
1

3T
ln
u1(T )u1(0)

u2(T )u1(0)

for every T > 0.
To get a cylindrical fractional Brownian motion, the usual Brownian

motions in (2.20) are replaced with independent fractional Brownian
motions wH having the same Hurst parameter H . When H > 1/2, many
of the results about the resulting maximum likelihood estimator turn out
the same. In particular, [67] studies the corresponding modification of
equation (1.1), and [15] establishes an analogue of Theorem 4.8.

5.2. General equations. If equation is not diagonalizable, that is, the
operators A0 and A1 do not have a common system of eigenfunctions,
then the analysis of the estimation problem becomes substantially more
complicated. While the result about singularity of measures is still valid
under the condition (4.31), there is no natural family of regular models
to consider. In fact, there are at least two possibilities:
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(1) Galerkin approximations: Huebner [23], [24], Huebner et
al. [29].

(2) Finite-dimensional projections: Lototsky and Rozovskĭı [51],
[52], Lototsky [49].

Both [29] and [51] consider the equation

(5.1) du+ (A0 + θA1)u dt = dW,

fix an orthonormal basis {hk, k ≥ 1} inH , and define ΠN , the orthogonal
projection on the span of h1, . . . , hN , and WN = (Wh1

, . . . ,WhN
). The

equation is assumed parabolic in the usual sense of partial differential
equations, which implies existence, uniqueness, and regularity of the
solution similar to Theorem 4.6 (see, for example, [68, Chapter 3]; our
Definition 4.2 of parabolicity is a particular case of the general definition
applied to diagonalizable equations). According to Mikulevic̆ius and
Rozovskĭı [54, Corollary 1], the measures generated by the solutions for
different θ are mutually absolutely continuous if and only if

E

∫ T

0

‖A1u(t)‖2
H dt <∞;

in the diagonalizable case, this is equivalent to

∑

k≥1

∫ T

0

ν2
kEu2

k(t) dt <∞,

or (see (4.24))
∑

k≥J ν
2
k/µk(θ) <∞, θ ∈ Θ.

If u is a solution of (5.1), the Galerkin approximation uN of u is the
solution of the equation

(5.2) duN + (ΠNA0 + θΠNA1)u
N dt = dWN ,

while the projection ΠNu satisfies

dΠNu(t) + (ΠNA0 + θΠNA1)u dt = dWN ,

which is not an equation for ΠNu unless ΠN commutes with A0 and A1.
Note that uN = ΠNu in the diagonalizable case if the basis {hk, k ≥ 1} is
the common system of eigenfunctions of A0, A1. The estimator suggested
in [29] is

(5.3) θ̂N =

∫ T

0

(
ΠNA1u

N (t), duN (t) − ΠNA0u
N(t) dt

)

H∫ T

0 ‖ΠNA1uN (t)‖2
H dt

,
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which is the maximum likelihood estimator for the absolutely continu-
ous statistical model generated by (5.2). The multi-parameter case is
considered in [24].

The estimator suggested in [51] is

(5.4) θ̂N =

∫ T

0 (ΠNA1u(t), dΠ
Nu(t) − ΠNA0u(t) dt)H

∫ T

0 ‖ΠNA1u(t)‖2
H dt

,

which is not a maximum likelihood estimator. Under the order condi-
tion (4.31), the infinite-dimensional model (5.1) is singular, and, as N →
∞, consistency (in probability) and asymptotic normality hold for
both (5.3) and (5.4). The paper [52] is a shorter version of [51], and
[49] studies estimators of the type (5.4) for the two-parameter estimation
problem

du+ (θ0A0 + θ1A1)u dt = dW.

5.3. Non-spectral methods. Similar to finite-dimensional models,
parameter estimation in stochastic parabolic equations can be studied in
long-time or small-noise asymptotics. The interesting situation is when
the infinite-dimensional problem is absolutely continuous, and in this
situation

(1) Estimators in the large-time asymptotic were studied by Loges [39],
[48].

(2) Estimators in the small-noise asymptotic were studied by Hueb-
ner [25], Ibragimov and Khas’minskĭı [32], [33], [34], [35], and
Prakasa Rao [61].

A different class of problems is a combination of filtering and estima-
tion, when the observations are

(5.5) y(t) =

∫ s

0

Bu(s) ds+ v(t),

where B is a operator with a fixed finite-dimensional range R
n and v is

a R
n-valued Brownian motion independent of W . From the statisti-

cal point of view, this problem is always absolutely continuous, as the
measures generated in C((0, T ); Rn) by y are absolutely continuous with
respect to the Wiener measure (Liptser and Shiryaev [46, Theorem 7.4]).

A number of papers by Aihara [1], [2], [4], [5], [6], [10] investigate the
non-parametric estimation problem with observations (5.5), when u is a
solution of

du =

d∑

i,j=1

∂

∂xi

(
θ(x)

∂u

∂xj

)
dt+ dWQ(t),
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under various smoothness assumptions on θ. A similar problem was also
studied for hyperbolic equations [3], [7].
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lems in infinite-dimensional Gaussian white noise, in: “Festschrift
for Lucien Le Cam”, Springer, New York, 1997, pp. 259–274.

[33] I. A. Ibragimov and R. Z. Khas’minskĭı, Problems of estimating
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