THE STRICT DETERMINATENESS OF CERTAIN
INFINITE GAMES

PuiLip WoLFE

1. Introduction. Gale and Stewart [1] have discussed an infinite
two-person game in extensive form which is the generalization of a game
as defined by Kuhn [3] obtained by deleting the requirement of finite-
ness of the game tree and regarding as plays all unicursal paths of
maximal length originating in the distinguished vertex a,. In a win-
lose game the set S of all plays is divided into two sets S; and S;; such
that player I wins the play s if seS; and player II wins it if seS,;.
Gale and Stewart have shown that a two-person infinite win-lose game
of perfect information with no chance moves (called a GS game here)
is strictly determined if S, belongs to the smallest Boolean algebra
containing the open sets of a certain topology for S. Here we answer
affirmatively the question posed by them: Is a GS game strictly deter-
mined if S; is a G; (or, equivalently, an F,)? The notation and results
of [1] are used throughout, as well as the partial ordering of X given
by: a>y if f*(ax)=y for some n>1.

2. Alternative description of S;,. Let I' be the game (x,, X;, X,
X, f, S, S, Si;), where

S[= F\En ’

n=1

EDE,>---, and E, is open. Following [3], let the rank =k(x), for
xeX, be the unique k such that f*(x)=x,. As in [1], U(x) is the set
of all plays passing through « (the topology for S is that in which U(x)
is a neighborhood of each play in it). Then for each n,

E,=U@y) : WySE.] ;
and since for any yeX we have

UWy)=U{l@): f(=v} ,
with

rk(z)=1+7rk(y) ,
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there exists for each n a subset Y, of X such that rk(y)>n for all
yeY, and

E7L=U {u(y) IS Yn} .

Furthermore, since of any two neighborhoods having a non-void inter-
section, one is contained in the other, each Y, may be chosen so that
U(y), W(y') are disjoint for different y, ¥’ in Y,.

Since seS, if and only if seE, for an infinite number of values of
n, we have: seS, if and only if for infinitely many = there exists ¢
(dependent on =) such that s(¢)eY,. Thus, since on the one hand
i=rk(s(¢))>n, and on the other for any » there is at most one 7 such
that s(¢)eY,, letting

Yzolfn

=1
we have: seS; if and only if s(¢)eY for infinitely many 1.
3. Lemmas.
LEmMMA 1. IFf I is a GS game with
ShH(IM)=4
and
T=8-\U{W(a): Xi(l)>=4}
then
I'p=(2o, XF, X7, X7, 7, T, ST, ST;)
s @ subgame of I,
(L 7)2=A
wmplies
SH(<a
and SH((L7r)z)=A4

for all xeX".

Proof. Since T is a closed nonempty subset of S, I, is a subgame
of I" by Theorem 5 of [1]. The second statement follows from assertion
B [1, p. 260]. Finally suppose that

SH((Lr).)=<4
for some xeX”. Letting, in assertion A [1, p. 260],

F=0(x)N\T ,
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and noting that F is closed and nonempty and that

([vT).T=([,.T)F ’
we have

(L e)><d

which is impossible in view of the construction of 7.
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We assume hereafter that /7 is a GS game with S, described in

terms of Y X as in §2, and that
Si(=4,
whence

S ) =4

by Lemma 1. The strict determinateness of /" will follow from Lemma

1 and the fact that
E;V(PT)#A y

proved in §4.
LEMMA 2. For xeX”, we have

seSt®
iof and only if
seST™ and s(i)eY

for infinitely many 1.
LEMMA 3. For xzeX” there exists

0.€ 2u((L'7)s)

such that for any

€ 3%((1 7))

we have
(o4 TO()EY

Jor some v >rk(x).
Proof. Let Y, be the set of all

yeYNX*

such that y>2 and no members of Y fall between 2 and y. Let I” ’

be the game
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(o, XTI, X777, X*=, f7=, 8", S}, S1) ,
where
Si=S"NVU{(y) 1 yeY.}
and
S, =88,

(that is, the game in which I wins if the play passes through any
member of Y following ). Noting that

SI*&S
we have

1SS
and hence

()=

But S} is open in S™ and so /" is strictly determined by Corollary 10
of [1], whence there exists

o€ (1)

which satisfies the conclusion of the lemma.

4., Winning /’,. Let
Y'=(YNXHU1{aw} -

For each zeY' let 5, be as given by Lemma 3, and let 4, be the re-
striction of o, to the set of all z in X7 such that a<z and that there
exists no y in Y’ with o {y<2. We show that the domains of the o,
cover X’ and are disjoint: TFirst, if x,eX?, then x, belongs to the
domain of 5,. For

ze X7 —{ay} ,
let
x=max{z :2'eY & 2/ <z}.

Then xeY’ and z belongs to the domain of & ; thus the domains of the
a, cover X?. Now suppose that z, ,.€Y’, z=<x., and that there exists
x; common to the domains of o, and o, ; then z<Zw; and x,<lx,, so that
either o, <w,<lx, or x,<a,<w@,, which is impossible in view of the re-
striction imposed upon o, in obtaining ..

Since the domains of the &, cover X/ and are disjoint, they have
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a common extension »*, which necessarily maps the elements of X% on
their immediate successors, and thus belongs to >,(/7;).
We show that »* wins /7,. Let

e> (7).

For this r and any « in Y, let ¢(x) be the least ¢ such that <., © (i)Y,
whose existence is given by Lemma 3. Define {x,} inductively by

Ty =<c*, ©(i(x,)) n=0,1, -
(z, is the distinguished vertex). Since
(@, ) =1u(2,) > rk(x,) ,
and z,, x,,, are on a common path, we have z,,,>x, for all n, and so
if €Y’ then
2y =<0*, (U,)) = 0w, T (U,))EY”,
where

Ty € 2 ((L 7))

is the restriction of - to X7*. Thus by induction x,cY’ for all n, and
hence

{o*, ()Y
for infinitely many values of ¢, so that
{o*, TeS!" .
Since ¢ is arbitrary,
a*e X7 ('),
so that by Lemma 1, we have
SV (M)A .
As this is the consequence of the sole fact that
SI()=4,

I is strictly determined.

Reversing the roles of the players in the above gives the result that
a GS game is strictly determined if S; is an F,.

The strict determinateness of a two-person zero-sum game with G
payoff having chance moves can be shown. The proof is more compli-
cated, but uses the same ideas [4].

5. An application. Let
]‘Z(CL'(), XI’ Xn, X, f, S, (1))
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be a zero-sum two-person infinite game of perfect information with no
chance moves having payoff @ such that there exists a real function 2
on X (|A(x)|< K<) with

@(s)=lim sup A(s(¢)) for all seS.

I" is the result of an attempt to reduce the following situation to
a game: The tree K of a GS game and a function %2 as above are
given; the two players make choices in K in the belief that every play
will terminate in some unknown, but distant, vertex x, at which time
player I will receive the amount A(x) from player II. A payoff function
@ is sought such that @(s) (—@(s)) expresses the utility to player I (II)
of a play s in K.

The payoff @ defined above arises from ascription to players I and
II respectively of “optimistic” and “ pessimistic ” behaviors in this way :
Player I assumes that the play s will terminate in some “ distant” vertex
s(¢) at which 2 assumes nearly its supremum on all “distant” vertices
of s; he thus makes his choices so as to maximize the expression

lim sup A(s(2))=2(s) ;

and player II supposes that s will terminate in some “distant” vertex at
which his gain —2(s(¢)) assumes nearly its infimum for all such vertices,
and thus seeks to maximize

lilp inf —a(s(?))=—ad(s) ,

that is, to minimize @. The derived game is thus zero-sum. Ascription,
however, of such “optimistic” or “pessimistic” payoffs to both players
yields, in general, a non-zero sum game.

We show now that the game I” of this section is strictly deter-
mined, using the method of Theorem 15 of [1] which asserts the strict
determinateness of /' for the more special case of continuous @.
(Gillette [2] has shown the strict determinateness of an infinite game
of perfect information with chance moves which consists in repeated
play from a finite set of finite games and has payoff

lim sup 1 i—l‘_, 9.(8) ,
n-»eo n i=1
where g,(s) is the gain from the nth game played.)

First, as a converse to the equivalence of § 2, let YZ X, and denote

by Y, the set of all members of Y having rank greater than n. Then
{s:s(¢)eY for infinitely many 4} =/\{s:s(4)eY, for some 4}

n

= f\ U{W(y); yeY,} ,
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which is a G;.
Now in 77, for ¢ real, let
t={s: h(s(¢))>t for infinitely many <} ,
and S%,=S—-S¢. Then S! is a G;, and thus the GS game
I'=(x, X,, X,, X, 7, S, 8%, S}))
is strictly determined. Let
v=sup {¢t: V(L )==4} .
Since S¥=/4, S;¥=S, and S! is a decreasing function of #, we have
—K<wv<lK, SF()=<A if t<wv,
and
PWACI Y if t>v.
Given ¢>0, choose
0 €37 (Iy-e) and &3 7([.) -
Then for any
o= (), eXn(l),
we have
Moy, (1)) >v—e for infinitely many 4
and do not have
Mo, Tod(2)) >v+¢  for infinitely many ¢ ;
so that
D({oyy ) 2v—e and D<o, td)<v+2¢ .
Hence

v—e< sup inf @((a, t>)<inf sup @((o, t))<v+ 2¢ ;

thus /" is strictly determined, and has value v.

REFERENCES

1. David Gale and F. M. Stewart, Infinite Games with Perfect Information. Ann. of
Math. Studies 28 (Contributions to the Theory of Games II), 245-266. Princeton, 1953.
2. Dean Gillette, Representable I'nfinite Games. Thesis, University of California, Berkeley,
June 1953.

3. H. W. Kuhn, Eaxtensive Games and the Problem of Information. Ann. of Math,
Studies 28, 193-216.
4. Philip Wolfe, Games of Infinite Length. Thesis, University of California (1954).

UNIVERSITY OF CALIFORNIA, BERKELEY








