
NOTE ON NONCOOPERATIVE CONVEX GAMES

HϋKUKANE NlKAIDO AND K A Z U O ISODA

1. Introduction. Nash's equilibrium-point theorem for many-person
games can be approached by two methods: first, the Kakutani-type
fixed-point theorem1 is very useful for this game problem; second, in
case of finite-dimensional multilinear payoffs, J. Nash himself has given
an elegant procedure [7] which is directly based on Brouwer's fixed-
point theorem. In a previous paper [10] one of us proved a general
minimax theorem in making use of a procedure analogous to that of
Nash. The present note is a continuation of this paper, and its main
purpose is to offer further improvements of Nash's method so as to
treat noncooperative many-person games played over infinite-dimensional
convex sets, based on a generalization of von Neumann's symmetrization
method2 of game matrices. The results thus obtained contain further
weakening of (especially topological) assumptions of the equilibrium-
point theorem.

Next we shall discuss the equilibrium-point problem of some general
noncooperative games by reducing them to suitable convex games. This
will clarify the relevance of convex games to general games.

2. Definitions and notations* We mean by a convex game [3] a
noncooperative ^-person game with the following conditions:

a) The ith player's strategy space is a compact convex set Xt of
a topological linear space E.t.

b) The ith player's payoff Ki(xl9 •••,#*,•••,#„) is concave with
respect to his own strategy variable XιeXt.

c) The sum of payoffs ^^Kt(xu •• , # i , •••,#„) is continuous over
the cartesian product space Xx®Xt® *®Xn.

d) For each fixed x49 Ki(xl9 , Xι-lf xif xί+ι, ••-,#«) is a continuous
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*See [6], [4], [5], or [9], A supplementary note to [9] will be published shortly.
2 See G. W. Brown and J. von Neumann, Solutions of games by differential equations

in [1], and D. Gale, H. W. Kuhn and A. W. Tucker, On symmetric games in [1].

307



808 H. NΐKAIDO AND K. ISODA

function of the (n — l)-tuple \_xu , x^u xi+ι, , xn]eXλ® ®Xf-.,®Xί+i®
•• ®Xn respectively.

REMARK In view of the usual classification of games in terms of
total gains, c) may be of interest. Indeed, in case of constant-sum
games, c) is automatically fulfilled. If all the payoffs are continuous
over Xχ® ®Xn, c) and d) are also fulfilled.

A point [xlyx2, , AjeXiOXj®- ®XW is said to be an equilibrium
point if the ^-function Kt(xLf x2, , Xi-U xif %ί+1, , &n) assumes its
maximum at #*=£&* ( i=l , 2, •••, n).

REMARK The notion of equilibrium points first appeared in the
celebrated work of Augustin Cournot (see [2]) and was investigated by
him by means of differential calculus. But the contemporary concern
about it is to see the existence of these points in the global sense by
topological methods. The equilibrium-point problem under conditions
a)-d) cannot, however, be treated by the Kakutani fixed-point theorem,
since the required upper semi-continuity is not always assured in these
cases. Thus, the proof in the following section may deserve some
general attention.

3« Generalization of von Neumann's symmetrization and proof of
the equilibrium-point theorem. To see the existence of equilibrium
points for a convex game, we introduce an auxiliary function. To begin
with, denote by

x=[x19 x2, , xn] , y=[yi9 V-i, , yn]

two mutually independent variables with the same domain

which is again compact and convex.
Next put

n

( 1 ) Φ(x, y)= Σ Ki(Vi> y » " > 2/«-i> Xt> Vi+i> > Vn) -
i = l

It is noted that Φ(x, y) is also concave with respect to xeX. The im-
portance of this function is clarified by:

LEMMA 3. 1. A point

y==[yuϋ2i •• ,i)w]eX

is an equilibrium point for the given game, if and only ifΦ(x, y) assumes
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its maximum at x==y.

Proof. The necessity is obvious. If, conversely,

for any xeXy setting

x^lyi, fa, >y t-u χi9 ijt+if , yn]

gives

Kidfit y%> " Ί y ι-u ϋif yι+u >y ny^K t(y l 9 , y^19 χίf yί+i, , yn)

for any x^X^

REMARK For a zero-sum two-person game, we have

Φ(x, y)=K(xl9 y*)-K{yl9 x2) , Φ(y, i/)=0 ,

where K(xlf x2) is the payoff from player 2 to player 1. This implies
the functional form of von Neumann's symmetrization procedure3. We
shall later present an interpretation of this function with regard to
player's behavior.

With this setup, we next prove :

THEOREM 3. 1. A convex game always has at least one equilibrium
point.

Proof. By Lemma 3. 1., we have only to see the existence of a
point yeX such that Φ(y, y)^Φ(%, y) for any xeX. Suppose the contrary
were valid. Then, to each yeX, there exists some xeX such that

( 2 ) Φ(y, y)<Φ(x, y) .

Put Gx={y; Φ(y, y)<iΦ(x9 y)} then Gr is open by conditions c) and
d), and

xc υ Ga.

by (2). Hence, in view of the compactness of X, we can find a finite
3 It is noted that Φ(x, y) does not provide a real generalization of von Neumann's

symmetrization, since xi's refer, in special cases, to mixed strategies. We can also con-
struct, however, the function Φ in terms of pure strategies, and this will give a real
generalization of von Neumann's method symmetrizing game matrices; instead of the
cartesian product of mixed strategy spaces we must, then, consider the mixed strategies
over the cartesian product of pure strategy spaces. But in either cases the formal pro-
cedures in constructing Φ are exactly the same.
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set A= {al7 a,, , as}dX such that

xa 0 G«, .
J

This implies Φ(y, ?/)<max ό,Φ(aJf y) for any i/eX Now, put

fj(y)= max [<P(α,, y)-Φ(y, y), 0] tf=l, 2, -, s) .

These s functions are all continuous by conditions c) and d), and
satisfy //?/)i>0, Σ 5 - I / J G / ) > 0

The continuous mapping

(3) v - t /

maps X into the convex hull C(A) of A and therefore in particular
C(A) into C(A). Since C(A) is homeomorphic to a compact convex set
in a Euclidean space, there exists a fixed point by Brouwer's fixed-
point theorem.

Denote by y one such point. We have then

But for such a j that fj(y)>0, we have, by definition, Φ(aJfy)>Φ(y,y).
Since Φ(x,y) is ^-concave, this implies Φ(y, y)>Φ(y,y), which is a
contradiction.

REMARK The foregoing proof is essentially a repetition of the
argument in [10] the application of this argument to many-person
cases is made possible by the use of Φ(x, y). It should be noticed,
however, that despite the generality of Theorem 3. 1, it does not contain
the result of [10]. The main reason for this fact is : the quasi-concavity
(see [10]) of the original payoff may be lost in constructing Φ(x, y).
So the theorem in [10] needs separate discussion.

4. An interpretation of Φ(x, y). Lemma 3. 1 can be rewritten as
follows : An n-person game has an equilibrium point if and only if

( 4 ) min max [Φ(x, y) - Φ(y, y)\ = 0 .
yex xex

Now (4) may be interpreted in the following way: Suppose there are
n persons Pu PZJ •••, Pn. We consider the cases where all the persons
P>>, * * J Pn except Pτ cooperate. Denote the coalition consisting of only
Pi by Qi and that consisting of Pz, P3, , Pn by Q2. Qτ and Q> play
n original games simultaneously, conforming to the following new rules :
We denote these n games by Gu G2, •••,' Gn, respectively. In Gt ( i = l ,
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2, , n), Q1 participates in the n simultaneous games as the ΐth player,
while Q-2 occupies all the other positions. Then

indicates the strategies of Qu and

indicates those of Q2 If Q\ chooses x and Q2 chooses y, Q2 pays to
the amount

, 2/i-i, #*, 2/ΐ+i, i 2/n)

as the outcome of G{. On the other hand, Q1 pays to Q2 the amount

as the rent for gambling, after the game is over. Thus Φ(x, y) — Φ(y, y)
indicates the total gain of Qly while Φ{yfy) — Φ{Xj y) indicates that of
Qz. With the notion of this new zero-sum two-person game, (4) gives
a criterion for the existence of equilibrium points for the original n-
person game. If the given n-person game is constant sum, (4) is reduced
to the more natural formula:

min max Φ(x, y) = π ,
yβX xX

where π denotes the corresponding constant sum.

5 Reduction to convex games. In this section we assume E,t is a
normed linear space. We further assume regarding the payoffs Ht(xlf

xif •••, xn) the following conditions:
( i ) The ^-function Hi(xL, , xt_lf xiy xi+1, , xn) is upper semi-

continuous for each fixed (n — l)-tuple [xu xt, , x^l9 xi+1, , xn].
(ii) The # Γ set

{Xi max fli(a?i, , xif , xn) = Hi{xu , xίf , xn)}
X

is convex for each fixed (n — l)-tuple [xl9 •• ,a?.ί_1, xi+1, •••,#„].
(iii) The family {Hi(xu , xu , xn) ^ e X J is a uniformly equi-

continuous family of functions on Xχ® ®JCi_1®JΓi+1® -®Xn .
These games are usually treated by means of Kakutani's fixed-point

theorem. We shall next, however, prove the following:

THEOREM 5. 1. To each game of foregoing type there exists a convex
game with the same strategy spaces whose equilibrium points are exactly
those of the original game.
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As a direct application of Theorems 3.1 and 5.1 we can see the
existence of equilibrium points for games of the foregoing type without
Kakutani's theorem.

We now proceed to prove some lemmas.

Let R and S be normed linear spaces. We denote by \\x\\ the norm
of a point xeR. A continuous function f(x) over R will be called
linear if

f(aLxL 4- a%x ̂ )=a,f{xι) -f a2f(x2)

for xlt x2eR, aλΛ-α2=l. We define the norm of / as usual:

| | / | | = sup
IMl

Now, let H(Xj y) be a function on X®Y, where Xand Fare compact
convex sets in R and S, respectively, and suppose that the family of
functions {H(x, y) xeX} is uniformly equi-continuous.

Let further Fy be the totality of linear functions / over R such
that (I) H/HSΛ and (II) f(x)^H(x,y) for any xeX.

Putting

K(x, y) = inf f(x) ,

we obtain an ̂ -concave function on X®Y. We call K(x, y) the α -concave
envelope of H(x, y). We shall show the continuity of this function by
proving the following lemmas.

LEMMA 5. 1. {K(x, y) xeX} is a uniformly equi-continuous family
of functions on Y.

Proof. Since {H{x, y) xeX} is uniformly equi-continuous, we can
find for ε>0 a d>0 such that \\yι~y->\\<d implies \H(x, yλ)-H{x, 2/2)|<Ie
for any xeX. We shall show that, for this same 3, \\yι — y2\\<d implies
|2?Γ(ar, i/i) — JKΓ(α:, 2/2)|^e for any xeX.

Indeed, if feFVι, then

for all xeX, and | | / + e|| = | | / | | namely, we have f + εeFy,t

In the same way, we have gJt-εeFVι for g^Fy>.
Hence, if \\yx—y zW^Lβ, we obtain

K(x,y1)±ε= inf /(α) + e= inf [/(a?) + e ] ^ inf
geFV2
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and similarly K(x9y2)-he^ίK(x9y1) for any xeX. This means that
\K(x, y^-Kix, yz)\<Lε for ylyy2eY, Wyi-yM^o, and all xeX.

I inf /(a?)- inf f(x)\<^e ,
fSFy fF

LEMMA 5. 2. K(x, y) is continuous on X for each fixed yeY.

Proof Let y be an arbitrary fixed point in Y. If \\x — &||<lε, then
feFtJ implies

It follows that

proving the desired continuity.

LEMMA 5. 3. K(x, y) is continuous on X®Y.

Proof We have this lemma immediately by taking Lemmas 5. 1
and 5. 2 together into consideration.

LEMMA 5. 4. Suppose H(x, y) is upper semi-continuous in x for
each fixed yeY, and the x-set

Γv= {x max H(x, y)=H(x, y)}

xeX

is a convex subset of X for each fixed ye Y. Put

Δy={x) max K(x, y)=K{x, y)} .
xeX

Then we have /'y = dy for each fixed yeY.

Proof. Let y be any fixed point eY, and put

ωy= max H(x, y) .

xeX

Then the linear function g(x)==ωy belongs to Fy. Hence we have

H(x, y)^K(x, y)= inf f(x)<ωy

fFfor all xeX, which implies Γv<ZΔy.

Conversely, by the above formula, it is obvious that if xeAy then
K(x,y)=ωy. Thus, to see that ΔycZΓyy it suffices to show that K(x,
y)<ωy for χ$Γv.
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Let x be any point not belonging to Γy. Then

Putting

M={x; dist(α, /'„)<«} ,

we obtain an open convex set M and a closed convex set M (the closure

of M) in iϋ. Moreover, it is clear that ώφilί.

Let e(#) be such a linear function that e(a?)̂ >0 on ikf and e(ίfc)=—1
its existence is a well-known fact (known as Mazur's theorem) in the
theory of convex sets. Denote by N the complement of M within X;
N is compact and, in view of the definition of M, we have

max H(x, 2/) = r > 0 min e(x)=η<Ί) .
xeN xeN

Put

\v\

where d>Q is so small that $<γ and ^lk||^|^|. Then | | / | | < 1 ,
on My and

^>^ + \ωyf^H(x, y)

for any xeN.
Hence / e Fv. Moreover,

which means K(x,y)<C.ωy, proving the lemma.

The proof of Theorem 5. 1. is now immediate. Indeed, let us

construct the a?Γconcave envelope Ki(xu •••,#.{, , xn) of

^(a?!, , xu ••-,»») ( i = l , 2, , n) .

Then !£*(#!, ^2? *» ^n) is clearly ^-concave, and is continuous by Lemma
5. 3. Thus, we obtain a convex game. Moreover, the set of equilibrium
points of this game coincides with t h a t of the-original game, by Lemma
5. 4.
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