
THE FLEXURE OF A NON-UNIFORM BEAM

E. E. JONES

Summary. The flexure of a beam of non-uniform flexural rigidity
and non-uniform loading is deduced by the use of the method of the
Laplace transform, the results being in the form of a single equation
involving integrals which are in a suitable form for evaluation, either
numerically or otherwise. Two examples of practical importance are
introduced to illustrate the method, and the results are also applied to
determine the equation to the elastica of a beam supported by many
rigid supports.

1. Introduction* The method of solution of linear differential
equations by means of the Laplace transform was used by Jaegar [6]
to deduce the deflection of a beam with concentrated loads along its
length, the beam having uniform flexural rigidity and variable loading.
These results were extended considerably by Thomson [10], who
indicated that the Laplace transformation method led to the simplest
approach to the beam problem. These results were obtained in the
form of a single equation in terms of certain end conditions, and
eliminated the necessity of determining the equations between points
of discontinuity of load, and then connecting them at these points, [9],
[1]. Thomson's results apply to problems concerning beams of uniform
flexural rigidity, and in order to extend them to problems involving
beams of varying and discontinuous cross-sectional inertia it was
necessary to reduce these latter problems to the former by the intro-
duction of an artificial modified loading of the beam, [4], [11]. This
present paper indicates how the problem of the beam with non-uniform
loading and flexural rigidity can be solved directly by the use of
standard operational methods, an appeal being made only to well-known
results in the calculus, [3, p. 257], [7, pp. 71, 82], [12].

It is assumed in this paper, that if Jk^y(x) is the Laplace transform
of y(x), then

and in conjunction with this the following theorem is also required:

yι(u)y2(x-u)du,

o
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if these integrals exist.
The results of the subsequent analysis can also be put into more

convenient forms by the introduction of the unit step-function, defined
by

= 0 , x<Ca ,

2* The beam under consideration is assumed to have s sections,
separated by the points xn, (n=l, 2, •••, s — 1), the origin of coordinates
being at one end of the beam, and the #-axis directed along the
undistorted position of the beam. The 2/-axis is then taken in the
direction vertically downwards, i.e. in the direction in which the
gravitational forces act. The weight per unit length of the beam in
the section xn^τ<j)c<jcn is wn(x), and in order to simplify the notation,
the flexural rigidity in this section is defined as B~ι(x). The beam is
subjected to m concentrated loads Pn, acting at the points Xn9 (w=l,
2, . . . ,m).

In order to avoid assumptions regarding the distribution of the
concentrated loads along an element of the beam at the positions where
they act, it is more convenient to deduce an expression for the shear
force acting on a right section of the beam in terms of the forces
acting on the beam. If z measures the bending moment at a point of
the beam distant x from the origin, then — dz/dx measures the shear
force at this point. Assuming that zγ is the value of dz\dx at the
origin, then the shear force at a distance x from this origin is given
by the differential equation

(2.1) ^ = s i

dx
where

φ(x)=[* w(u)du + Σ P(Xn)

Here φ(x) is equal to an integral plus a step-function, and
Any distributive loads can be included in w, which is a simply dis-
continuous function of x of the form

where wo=O.
Equation (2.1) can easily be deduced by resolving all the forces acting
on the length of beam between the origin and the point distant x
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from this origin normally to the beam in the direction of the ?/-axis.
The Laplace transform of equation (2.1) is

(2.3) p^fz-Zo^Zilp+X φ(x)e~pxdx ,
Jo

it being sufficient to assume that p>0, since φ is bounded, and possesses
a finite number of finite discontinuities in the range of integration.
On rearranging equation (2.3),

= z° + -ι -+ 1 \°φ(x)e-**dx.
P P2 p Jo

The inverse of this equation is determined by using the convolution
integral, giving

\
Jo

φ(u)du .
o

On integrating by parts, this leads to

udφ(u)=zQ-\- ZίX+X (x — u)dφ(u) .

o Jo

This equation expresses the bending moment z at a point of the beam
in terms of a Stieltjes integral, [13, chap I], and thus can be inter-
preted in a series form.
From equation (2.2), by substituting for Φ(x) into the integral involved
in equation (2.4),

(2.5) [ \ ) φ [ (
J Jo χn<x

since contributions to the integral from the step-function only occur
when u passes through a point of discontinuity. Hence finally equation
(2.4) takes the form

(2.6)

where the last term in equation (2.5) has been modified by the use of
the unit step-function.

The deflection y at the point x of the beam is given by the
differential equation

where
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B(x)='£(Bn¥l-Bn)H(x-xn) ,
71 = 0

with Bo=O. Here B(x) is a simply discontinuous function of x, and
z(x) is defined by equation (2.6)

If 2/o=(2/)aJ=o > and yι = (dyldx)ΛmsQ , then by repeating the above
process

p pz pz

whence

(2.7) 2/=2/o + 2/i#4-\ {% — u)z{u)B{u)du ,
Jo

using again the property of the convolution integral.
By combining equations (2.6) and (2.7), the deflection of the beam

can be written in the more convenient form

2/=2/o4~2/i#"J~ \ (x — u)(zo-\-ZiU)Bdu h 1 (a? -v)Bdv\ (v — u)wdιι
Jo Jo Jo

(2.8)

The integrals involved in this expression are all interpreted in the
same manner, the range of integration is subdivided into intervals
corresponding to the subdivisions of the functions B and w, thus

S X > - i rXn+i Γ X

(x — u)Bdu=Σ\ (x — u)Bn+ιdu-h\ (x~u)Br+ιdu ,
when # r O O r + 1 , (0<r<s — 1). This integral may also be interpreted
in the form

S ^ - x n ) \ X (x~-u)(Bn+ι~Bn)du.

Similar expressions occur for the remaining integrals although greater
care must be taken over the subdivision of the last two integrals of
equation (2.8).

It follows from equation (2.7) that

dv ΐx s P P' x 7

"-=y1 4-1 {zύ-{ ZιU)BduΛ-1 Bdv\ (v — u)wdu

(2.9) dX J° J° J°

" ' (u-XJBdu .
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In any practical problem the values of the constants y0, yu z0, and
zL can be deduced from the given end conditions, it being noticed that
the equations apply along the whole length of the beam.

3 The first example illustrates the effect on the flexure of a beam
of a variation in the flexural rigidity of the beam. The beam is assumed
to have uniform loading w, and is freely supported at the same level
at the ends x=0> L The beam is subdivided and stepped in cross-
section at the points xn, (n=l, 2, « ,2s), so that x2s+ι=l, and these
points are symmetrically placed with respect to the mid-point of the
beam, such that

(3.1) xis-n^xn~l

The flexural rigidity of the stepped beam is constant in each section,
and is also symmetrically distributed, such that, in the usual notation,
B2s-n+1=Bn+1, (n=0, 1, , s).

The deflection of the beam at a point distant x from one end,
given by equation (2.8), is

1- Bn)H(x-xn)[X u(x-u)du
Jx,t}

(3.2)

% t [ * v*(x-v)dv ,

since yo=zo=Q at x=0, where y=d2yldxI=0. Also y=d*yldxi=0 at
x=l, hence from equation (2.6), zι=—wli2J and from equation (3.2),
after some reduction,

The integrals of equation (3.2) are easily evaluated, and after substi-
tuting for yι and zu rearrangement leads to the final expression for the
deflection

lwxBAP + x2ltf)+ }QiϋxΣ
24 48 n=ι

- -~r Σ>H(x- xn)(Bn+1 - Bn)(δP 4- 4te - 4a2 - 21 ln 4- 4xln - 2l*){2x - 1 + IJ
384 w=i

o ^ τ Σ H ( x - Xu-n+1)(Bn+1 -Bn)(5P 4- 4te - 4αr« + 2Π, - 4a?Zn - 3Ẑ )(2a? - 1 - O a

384^=1

When x=l/2 this relation reduces to the result deduced by Hetenyi,

[5], using another method.
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4. The second example refers to a cantilever beam clamped
horizontally at the end x=0, free at x=l, and loaded linearly according
to the relation w=mx, where m is a constant. The beam is subdivided
and stepped in cross-section at xn, (n=l,2, •• ,s —1), in such a way
that Bn is constant in each section, but increases in magnitude as n
increases. A concentrated load acts at the mid-point X of the end
section x8-L<Lx<ixs.

The equation governing the deflection of the beam reduces to

s-L CX

- x n ) ( B n + 1 -Bn)\ (x-u)(zQ+zxu)dn

8-1 CX ΓV

4- m Σ H{x — xn)(Bn+1 — Bn) \ (x — v) dv I (v — u)udu

n - 0
(x-u)(u~X)du ,

since yύ=yi=0 at a;=0, where y=dy/dx=0.
When x=xs=l, then z=dzldx=0, hence from equations (2.6) and

(2.1),

Thus

Zo=PX + ml3IS , and zι=-(P+mPj2) .

The deflection at any point x of the beam then becomes

2/= * Σtf(^-<K5,, + 1 -βJ(z-ag 2 {2P(3X-ar-2zJ + mP(2l-x~2xn)}

+ - y - Σ ̂ (α - »n)(5»+1 ~ 5 f ί)(^ - δa ίBi + 44)
120 «-o

+ P

aH(x- X)t(5K+1 - BJ(x- Xf .

5. When a beam is constrained at various points along its length
by means of rigid supports, the reactions at these points will occur in
the equations for the flexture of the beam. It is thus necessary to
eliminate, or at least to determine these reactions. A particular
example will suffice to indicate the procedure. It is required to deter-
mine the form of the elastica of a beam of varying section clamped
at each end, and supported at several points along its length, one of
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these supports being a distance d out of alignment with t h e remainder.

There are m supports, one a t each of the points Xr, ( r = l , 2 , •••,
m), the beam being divided into s sections a t points xrf ( r = l , 2, •••,
s — 1). The beam is clamped horizontally a t x=0 and at x=xs=Xs,
and there y=dy!dx-=0.

The following notation is introduced :

ar = I (Xr-u)Bdu , &r = I (Xr-u)uBdu ,

(Xr — v)Bdv\ (v — u)wdu, dnr =

the integrals being interpreted as in § 2.
If Pn, (n^l, 2, , ra), are the reactions at the supports, then

from equations (2.8) and (2.9), at x=0, yo=yi=O, and at x=xs=-Xs,
then

2oα8 + zj)s + cs + Σ J P Λ , = 0 .
(5.1)

m

^o«s +• zj>s -f c.; -f Σ -P rarfϋ*=o ,

n = l

Xs

where as=^\ Bdu, etc., i.e. the partial derivatives of the integrals
JO

with respect to x at x=Xs .
Solving equation (5.1) for z0 and zι we obtain

where

It is assumed that the supports are in line along 2/=0, with the
exception of the support at the point (xt, d). If Srt==l when r=f,
and is zero when r^t, then yr=dδrt, and from equation (2.8),

This equation can be written in the matrix form

(5.2) Prnpn=qr ,

where
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yrn=arFns+brGns+dnrH{n-r) ,

qr=-(dδrt 4-arfs +brg8 +cr) .

The matrix equation can be solved for Pn by any of the standard
methods \2, pp. 96-155], i.e. by an iterative process, or by forming a
triangular matrix by premultiplying both sides of equation (5.2) by a
suitable matrix and solving the resulting equations either directly or
by considering the reciprocal matrix solution.

The elastica is determined by inserting the values of Pn in equation
(2.8), since 2/j=2/i=O, and 2, and z1 are already known. The procedure
is similar for other end conditions. When the reactions at the supports
are known, it is also possible to determine the slope, the bending
moment, and the shear stress at any point of the beam. All the
integrals can be evaluated numerically, [8], or directly if the variation
of B and w is in a simple form, and a tabular process can be readily
set up.
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