
THE SOLUTION OF CAUCHY'S PROBLEM
FOR A THIRD-ORDER LINEAR HYPERBOLIC

DIFFERENTIAL EQUATION BY MEANS OF
RIESZ INTEGRALS

JOHN G. HERRIOT

1. Introduction. M. Riesz [3] solved Cauchy's problem for the
wave equation by means of a generalization of the Riemann-Liouville
integral and a consideration of Lorentz space. L. Garding [1] solved
Cauchy's problem for two linear hyperbolic differential equations arising
from a consideration of spaces of symmetric and Hermitian matrices by
means of similar generalizations of the Riemann-Liouville integral.
Garding [2] also proved some general results for the solution of Cauchy's
problem for general linear hyperbolic partial differential equations with
constant coefficients again using Riesz-type integrals.

In the present paper the explicit solution of Cauchy's problem for
the third-order partial differential equation

(1.1) Δu=h(xlf x2, x3) ,

where Δ denotes the operator 33/(3#i dx2 dx3)f is given by means of a
similar generalization of the Riemann-Liouville integral. We restrict
our attention to the case in which u and its first and second derivatives
are given on the plane S whose equation is x1 + x2-hx3=0. We verify
in detail that the solution given actually satisfies the differential equ-
ation (1.1), and also that it and its derivatives assume the proper
values on S.

Before proceeding to a study of (1.1), we give a brief discussion
of the Riemann-Liouville integral and Riesz's generalization of it. (We
use mainly the notation of Garding [1].) Let p be a complex variable,
and consider the Riemann-Liouville integral

(1.2) Ivf{x)- j^X f{t){x-tγ-'dt (a<x<b<oo)

where ^ ( p ) > 0 / and f(x) is a continuous function when α

This integral diverges if &(v)<fi. If p and q are such that

we have
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(1.3) I»I*f(x) = I»+*f(x)

and

( L 4 ) f P+ίf(x)=Pf(x) .
ax

Clearly lpf(x) is an analytic function of p, regular for
and depending on the parameter x. It can, however, be continued
analytically beyond this region provided that f(x) has a sufficient
number of continuous derivatives. Let us write

(1.5) /(*)= Σ f ω ^ - ^ J

 + φ ? , t, k),

so that r(x91, k)l(t-x)k is bounded when a<t<x. Then on substituting
in equation (1.2) we find that

(1.6) I*f(x)=^rXr(x, t,
Γ(p)Ja

Σ1

Here the integral converges for &(py> — k, and (1.6) provides an analytic
continuation of Ipf(x) for such values of p. In particular,

(1.7) I-Jf(x)=fU\x) C/=0, 1,2, •) .

By successive integrations by parts we can find another formula
which is also useful for the analytic continuation of Ipf(x). We have

(1.8) I*f(x)=Ip+mfim>(x)4-

If we let p->0 we find that

(i.9) f(χ)if\χ) + Σ
j-o j !

The right member of (1.9) gives the solution of the differential
equation

(1.10) / ( a )
dxm

w h o s e d e r i v a t i v e s of o r d e r less t h a n m a s s u m e t h e v a l u e s / ( α ) , •••,
Pn~ι\a) when x=a.

When generalizing (1.2), Riesz considers Lorentz space L with points
x=(xi9%2t , xn) The square of the distance of x==(xl9x29 , xn) from
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r(x -ξ) = (xτ - ft)3 - (s, - ξ,γ (xn - e J .

The interior of the light cone with its vertex at a fixed point x is
characterized by r(x — ?)>0 where £ is variable. It consists of two
parts, the direct and the retrograde cone, characterized by

r(x-ξ)>0 , ft-a?!>0 and r(s-6)>0 , ft-a?i<0 ,

respectively. It is the retrograde cone denoted by D(x) which is mainly
considered by Riesz. The domain of integration used is the bounded
domain Ds(x) limited by the nappe C(x) of the retrograde cone D(x) and
a certain sufficiently regular surface S having the property that every
straight line in L with a direction of nonnegative square length meets
S in at most one point. The volume element in L is dξ=dξ1dξz* - *dξn.
Let f(x) = f(x19%vίf ,xn) de a real function defined in the region
consisting of all points x whose retrograde cones D(x) intersect S. Then
Riesz's generalization of (1.2) is2

(1.11) I*f(x) = ] ̂  \

with

If f{x) is bounded, the integral is a regular analytic function of p for
,^(p)>(>z-2)/2. It can be shown that (1.3) is valid and, corresponding
to (1.4),

(1.12) 4*Ip+

where Δw is the wave operator

If fix) has derivatives of sufficiently high order it is possible to continue
Ipfix) beyond the region in which the integral converges. The
generalizations of (1.7) are found to be

(1-13) IΊ\x)^f(x) , I'Jfix)=4fix) ( i = l , 2,3,

By means of Green's formula it is found that

2 To get uniform notations in this paper, as in Garding [1], Riesz's variable α is
replaced by 2p here.
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(1.14) I»f(x)=I'«Δf{x)

where S(x) is the portion of S interior to the cone D{x), dldv is taken
in the direction of the Lorentzian normal to the surface Sf and dS is
the Lorentzian element of surface area.

If we let p->0 in (1.14), the right side gives the solution of the
differential equation

(1.15) Δwtι(x)=h{x) ,

u(x) and its (Lorentzian) normal derivative being given on S.

In the present paper we consider three-dimensional Euclidean space
with points x=(xlf x2,xd). In this case the retrograde light cone D(x)
with its vertex at a fixed point x is characterized by x1 — ?£>0, xt — ξ^>0,
X3 — <?3>0, where f=(£i, ft, £3) is variable. We denote by S the plane
?i + ?2 + £3=0. The domain of integration used is the bounded domain
Ds(x) limited by the boundary of D(x) and the plane S. Then our
generalization of (1.2) is

(1.16) if{x) = -Γ-~=

where r(x — f) = (xi — ξi)(x z~ξi)(xs- 63) and dξ=dξιdξ2dξ3. If f(x) is bounded,
the integral is a regular analytic function of p for ^ ( p ) > 0 . We show
that (1.3) is valid and, corresponding to (1.4),

(1.17) Δl*^f(x) = I*f(x) .

As before, Ivf{x) can be continued analytically if f(x) is sufficiently
differentiate. The generalizations of (1.7) which we prove are

(1.18) Pf(x) = f(x) , I-if{x) = Δf{x) .

In § 3 we apply Green's formula to discover a formula similar to
(1.14), namely,

(1.19) I*f(x)=Ip+ιΔf(x) + I^f(x) ,

where lTιf{x) is an integral over S(x), the portion of S interior to
D(x), involving / and its first and second derivatives. If we let p-»0
in (1.19), we obtain the solution of Cauchy's problem for the equation
(1.1). The verification of the solution is carried out in § 5 making use
of a series of lemmas developed in § 4.

The methods of this paper can be applied to the solution of the 92th
order partial differential equation
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— — h(x1, X>z, , Xn) .

3#i3#2 ΰxn

However, the formulas required are very cumbersome to write and for
this reason the present discussion has been limited to equations of third
order.

2 Generalization of the Riemann-Liouville integral. Since we wish
to consider the differential equation

(2.1) Δu == dhιl(dxLdxidxό)=h(x1, xif x3) ,

the appropriate formula for the cube of the distance between points

x=(xl9 x2, x i) and £=(&, &, &) is

(2.2) r(x-ξ)=(x1-ξ1)(x%-ξi)(xs-ξ3) .

The retrograde light cone D(x) with vertex at a fixed point x is
characterized by #1 —£χ>0, a?2 — fa>0, a?3 —£C>0, where ξ is variable.
We do not make any use of the geometry of the space based on this
distance formula but in finding volume elements and surface elements
we regard the space as ordinary three-dimensional Euclidean space. It
is only in determining the proper generalizations of the Riemann-
Liouville integral that (2.2) plays a role. We first consider an integral
extended over the whole of D(x). We suppose f(x) defined in a region
such that if this region contains a certain point x it contains also the
retrograde cone D(x). In order to assure the absolute convergence of
the integral considered we suppose among other things that f(x) tends
toward zero sufficiently rapidly when xlfx2fx3-+—oo. We then define,
for complex values of p such that

(2.3) I»f{x) = ~

We should like to have

(2.4) ΔI»+1f(x)=I»f(χ)

and

(2.5) IpIqf(x)=Ip+qf(x) .

In order to find the correct form of H3(p) to accomplish this we consider
the particular function

f1(x)= exp (a?!-f a?3 + a;3) .

Clearly Δf1(x) = f1(x)9 so we should have Ipfι{x) = fι(x). Introducing
this function into (2.3) we easily find that we should choose H3(p) = [Γ(p)J.
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With this choice of H3(p), it is easy to verify that (2.4) holds by
merely carrying out the necessary differentiations. We proceed to verify
that also (2.5) holds with this choice of H3(p). After interchanging the
order of integration we find that

(2.6)

[Γ(p) Γ(q)Y J J J D(x)

If we make use of the well-known formulas

(2.7) Γ(e-α)-1(6-f)' |-1df=(δ-o)-+' |-15(α, β)

J

and

(2.8) B(a, β) = Γ(a)Γ(β)IΓ(ct
we find that the right member of (2.6) reduces to F+qf(x). Thus (2.5)

is established.

In the applications to follow, the domain D(x) will be replaced by

a bounded domain Ds(x) which is limited by the boundary of the retro-

grade cone D(x) and by the plane S whose equation is £i4-f2-f £3=0.

We shall therefore in all that follows use the following definition of

Ipf(x):

(2.9) Ipf(x) = * \\\

Since this is the same as (2.3) if only we assume that /(?) = 0 when
£i + 62 + £3<Ό, it is clear that the relations (2.4) and (2.5) hold also when
Pf(x) is defined by (2.9).

In the application of (2.9) to the solution of Cauchy's problem we
shall be concerned with the limit of Ipf(x) as p->0. We therefore
prove:

THEOREM 2.1. If f(x) is continuous in the region x1-\-x2-hx3*>0 then
Ipf(x) defined by (2.9) is a regular analytic function of p for ^
and

(2.10)

in the region Xι

Proof. That Ipf(x) is analytic when ^ ( p ) > 0 follows at once from
its definition by equation (2.9).
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In order to prove (2.10) we make a change of variables by writing,
in (2.9),

Xι — ξι=dσ cos2ft , xt — ξ2=dσ s in 2 ^ cos2#2 , x3 — ξ3=dσ siriIθ1sin2θ2 ,

where d=xι-{-χ.z-\-xά^>0. If we also make use of (2.8) and the well-
known formula

(2.11) B(ay β)-=2[t'siήza-ιθcos^-'θdθ ,
Jo

we find that

(2.12) I>f(x) - f^ -. f(x) = ?~ [ Γ Γ W , θl9 ft) -F(0, Θl9 ft)]
Γ(3p-t-l) [/(p)]3JoJo Jo

where

, ^ 3 — cZίj s i n 2 ^ sin 20 2)

But since /(a?) is continuous, if ε^>0 is assigned we can find a S such
that 0 < X l and such that |F(<τ, ft, ft)-F(0, ft, ft)|<e when 0<^<^,
uniformly in ft and ft. We now break the integral in (2.12) into two
parts Jλ and J2 in Jlt a goes from 0 to d, and in Jz from δ to 1, while
ft and ft assume all values between 0 and 7r/2 in both Jλ and J2. We
see at once that

If Λί is the maximum of F(σ, θlf θ2) in the region of integration, an
easy calculation shows that

if 0<p<l/3. By choosing p sufficiently close to zero, we can make J2

arbitrarily small, and it follows that

f(x)-]=0.
l)

Equation (2.10) follows at once from this since cZ3ί)/Γ(3p4-l)->l as p-*0.

3. Green's formula for Ipf(x). We shall find it convenient to make
use of the function

n i) v-v(x a
(3.1) v-v(x,$

We wish to transform the volume integral
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(3-2)

into a surface integral. Here Δξ denotes the operator Δ with respect
to the variable ξ.

The function to be integrated must first be transformed into the
form of a divergence. We easily find that

fΛξv=(fvξiξί)ξ3 - (fξ3Vξ)ξ2 4- (fιάξ2v)ξl - vΔξf .

By permutation of ξlf £2, ξ-s we obtain altogether a total of 3! such
equations. The left member and the last term of the right member
are unaltered by such permutations. Adding these 3! equations and
dividing by 3! we obtain

(3.3) fΔξv + vΔ,f= \l {fvhh + vfhξ) - \-(fuvh4-v

3

We note that if ^(£>)>0, v vanishes on the boundary of the retrograde
cone D(x), vξί vanishes for ξj^Xj, 0"=M), and v^ vanishes for ξk=xk,

Applying the divergence theorem and noting that

we obtain

(3.4) Pf(x)=P+1Jf(x)

where £(#) is the portion of S included in the retrograde cone D(x),
and dS is the surface area element on S(x). If f(x) is continuous, then
by Theorem 2.1 the left member of (3.4) becomes f(x) when we let
p^O. If Δf(x) is given in Ds(x), and / together with its first and
second derivatives are given on S, then the right member of (3.4) can
be calculated. We are going to show that it yields the solution of
Cauchy's problem for the differential equation Δu=h{x).

It is clear that if 11 and its first and second derivatives are prescribed
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on S, then these derivatives cannot be prescribed arbitrarily but certain
relations exist between u and its derivatives. Only a complete inde-
pendent set can be prescribed arbitrarily on S. For example, one may
prescribe u and its first and second normal derivatives on S, or one
may prescribe u, uξ, and Uξiξj on S. It is easily shown that it is always
possible to determine a function g(ξu £2, f3) which agrees with u on S
and whose derivatives agree with the corresponding derivatives of u on
S. This being the case, it is reasonable to introduce the following
definition:

(3.5) H+V(x) = Jτ J \

where v is defined by (3.1). We can then write (3.4) in the form

(3.6) I»f{x)^I

If we are to solve the differential equation Λu=h(x) subject to the
conditions that u and its first and second derivatives agree with g and
its corresponding derivatives on S, then according to (3.6) and Theorem
2.1 we must have

(3.7) u(x)=Ph(x) + lim I^ιg{x)

as the solution. We write the limit as p~>0 in the second term on the
right because some of the integrals fail to exist if p=0.

4* Lemmas for the evaluation of the surface integrals. The surface
integral in (3.5) which is required for the solution of Cauchy's problem
converges for ^ ( p ) > 0 . In order to find the solution of Cauchy's
problem according to equation (3.7) we need to show that the limit of
Iξ+Ig(x) exists when p->0. To verify that u and its derivatives assume
the prescribed values on S it is necessary to differentiate (3.7). This
is trivial for the first term on the right but not so simple for the
second term. But if &(v) is sufficiently large the differentiation of
Iξ+Ig(x) is very easy. The resulting integrals fail to exist near p=09

and an analytic continuation is required. We wish to show how this
analytic continuation can be accomplished and that instead of differ-
entiating the second term on the right of (3.7) after letting p->0 we
can differentiate Iξ+1(g) first and then let p-+0. We, of course, make
suitable assumptions concerning the differentiability of g.

We note that all of the integrals occurring in (3.5) are of the
form
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(4.1) J**yfM

(γ) J Jsc*oVSΓ(a)Γ(β)Γ(T)

where we assume that f(ξu ξ2f £3) possesses continuous derivatives up
to the first, second, or third order. We note that the integral in (4.1)
converges when the real parts of a, β, and γ are greater than zero.
We proceed to a study of this integral, proving a number of lemmas
some of which are of interest in themselves.

The first lemma which we need is similar to one given by Riesz
[3, p. 60].

LEMMA 4.1. Let G(u,v) be a function defined for 0<jι<Ca<C°°f
0<v<jί><°o, and let it have continuous derivatives to the qth order. Then
it may be written in the form

(4.2) G(u, v) = π(u, v)+ Σ hr(v)—. +ko(u) + m(u, v) ,

where

(4.3) π(u, v)= Σ Σ ^—pyhftf

and

(4.4) hr(v) = O(vq-r) , k0(u)=O(uq) , m(u, v)=O{uq"1v) .

Here GQr>s\u, v)--=dr+sG{u, v)l(durdvs).

Proof. If G(u, v) could be expanded in a Maclaurin's series for
sufficiently small u and v, the result would be obvious. Since we do
not assume this we proceed as Riesz does. We write

(g-r-1)!

and

ko(u) = G(u,O)- ΣGC r 0)(0,0)-v
r -o rl

Then



SOLUTION OF CAUCHY'S PROBLEM FOR A THIRD-ORDER EQUATION 755

m(u, v) = G(u, v) - π(u, v) - Σ hr(v) U

t -ko(u)
r=0 r\

=G(u, v)- ΣG ("0 >(0, v) U--G(u, 0)4- Σ GCr'n(0, 0) u\
r=0 fl r=0 rl

(q-2)l Jo

The equalities are verified by integrations by parts, and the order
relations are now evident.

Clearly the roles of u and v may be interchanged in equations (4.2)
and (4.4). Moreover, other similar lemmas may be found giving dif-
ferent powers of u and v in the estimate of m(u,v).

The second lemma is an immediate consequence of equations (2.7)
and (2.8).

LEMMA 4.2. If d=x1 + #2-J-#3>0 , we have

(4.5)

// the real parts of a, β, or γ are less than or equal to zero, this formula
provides an analytic continuation of the left member.

The next three lemmas provide the principal tools for use in § 5.

LEMMA 4.3. Suppose that f(ξu £2> &) has continuous derivatives up
to the third order. Let d==^1-f-^24-^3>0. Then J*'Mf(x), defined by
(4.1), can be continued analytically throughout the region R in a, β, γ
space, where R is defined by the fact that one of the following three
conditions holds:

(a)

or

(b)

or

(c)

Moreover, J*'β'yf(x) assumes the following special values. (In all cases,
if oco, β0, γ0 is on the boundary of R, the formula is to be interpreted as
meaning the limit as <x->a0, β-*βo, f-̂ TΌ.)

(4.6)
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(4.7) J^\f(x)= P /(ft, -ft-α*, χ3)dξ1 ,
lχL~d

(4.8) j ^ / ^ j ^ Γ [/[/ (
χι-d

(4.9) J1Λ'-tf(x) \Xl

xτ-d9 x2, x^-ftfa-d, x2, X3)-

(4.10) Jι^f{x)=f{x1-dy x2, xj^fi-xt-x*, x*, xs) ,

(4.11) JUQ-1f(x)=fξ3(Xi-d, x%9 a?3)

(4.12) J 1 ' 0 ' - y ( x ) = f ξ 3 h ( x 1 - d , x%, X a £ &

(4.13) J1'-1'-1f(x) = fξ3ξ2(xι-d, xt, x*)-ftjh(xi-d, x2, x,)

(4.14) J°>Q>>f(x) = 0 ,

(4.15) J™>-lf(x) = 0 ,

(4.16) J°'-1'-1/(a?) = 0 .

Formulas analogous to these can be obtained by permuting the superscripts.

Proof. Since Ja'β'yf(x) is defined by (4.1) and is analytic for
. ^ ( α ) > 0 , ..^(/3)>0, ^ ( r ) > 0 , equation (4.6) is immediate. To obtain
equations (4.7), (4.8), and (4.9) we have

(4.17) J^f(x) - -±, Γ Fmxt-W-'dξ, ,

where

(4.18) F(ft)= Γ1 /(ft, -ft-ft,

Then (4.17) is an ordinary Riemann-Liouville integral which can be
continued analytically for & (r)> — 3 since F(ξ3) has a continuous third
derivative. Also, by (1.7), we have

(4.19) Jι^f{x)=F^\x^ , (r = 0, - 1 , -2) .

Equation (4.7) follows by setting f3=α3 in (4.18). Also from (4.18) we

have
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(4.20) ^L = [/ (flf - & - & , 63)-/€,(6i, -61-63, 63)]*!

+ / ( — 63 —#2, a?2> 63) ,
and

(4.21)

ΠΠ [/fefe(6i, -61-63, 63)-
J - £ 3 — X2

1, -61-63,63) + / f A ( 6 i , -61-63,

(-6s-a*, ^2, 63)-/ t a (-63-^, *2, ti-ftS-b-x** v*, 63) .

Equations (4.8) and (4.9) follow by setting ξ3-=x3 in (4.20) and (4.21).
Turning our attention to equations (4.10)-(4.13), we shall express

the integral (4.1) in terms of the variables f2 and ξ3 and use Lemma
4.1 with g=3 to expand f{ξu ξ2f ξ3) in the form

(4.22)

where

(4.23) L($if ft)=A(ft)4-(^-f3)^(f2) + isfe) + ̂ (ς 2, 63)

with

(4.24) Lλ{ξ2)-O(fe -62)
3) , /*(&)=O((^ - 62)

2) ,

Here the subscript 0 indicates that the values of the derivatives are
calculated at the point {xx — d, x2, a?3)

Considering the first six terms of (4.22), we deal with the term
involving (a?a —62)

λ(»3—63)^ ί μ 0 where λ + μ<£. The contribution to
j«»p»γ/(a ) of this term is found to be

by Lemma 4.2. We note that this function is analytic for all values
of a, β, γ. When α = l , β=γ=O, it reduces to 1 if λ=μ=0 and to zero
otherwise. When α = l , ̂ =0, r ^ —1, it reduces to —1 if Λ=0, ^ = 1, and
to zero otherwise. When α = l , /5=0, r = - 2 , it reduces to 1 if Λ=0,
//==2, and to zero otherwise. When α = l , ^ = r = — l, it reduces to 1 if
Λ=μ=i, and to zero otherwise. Thus these terms yield the values
stated in equations (4.10)-(4.13). We have only to show that the
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contribution of L(ξ2, ξ3) to J«tβ'yf(x) can be continued analytically through-
out R and reduces to zero when a, β, γ assume the values needed in
(4.10)-(4.13).

We first show that J*tB>yf(x) can be continued analytically throughout
the region R1 where ^ ( α ) > 2 , &(β)> - 1 , ^ ( r ) > - 2 . We consider
in turn the contributions arising from the four terms of L(ξs, ξ3) given
in (4.23).

We have, for !*(&),

on using (2.7) and (2.8). On taking account of (4.24) we see that the
integral is analytic in Rlm Moreover, the expression is zero if β=0 or
— 1 even when γ-+ — 2.

The contribution of (x-ό — ξ3)L2(f2) is similarly

' - Xι - X3

which is also analytic in Rlu It is also zero if β=0 or —1 even when

The contribution of L3(ξ3) is

1 Γ%ό rx>2

Γ(a)Γ(β)Γ(γ) i-Xl-Xl J-fo-*i

The integral is again analytic in i21# This contribution is zero if γ = 0,
— 1, or —2 even when /3=--l.

On taking account of (4.24) it is at once evident that the contribution
of L±(ξ2, ξ3) is analytic in Rλ and vanishes when β=0 or γ= — 1 even on
the boundary of Rx.

Thus we have shown that J*ίβ'yf(x) can be continued analytically
throughout Rλ. Since the roles of α, β, γ may be interchanged it can
also be continued analytically throughout five similar regions obtained
by permuting a, β, γ in the definition of Rτ.

We note that d=(x1 — ξ1) + (x2 — £>) + (#3 — ξ3) on S(x) and we multiply
equation (4.1) through by these expressions to obtain

(4.25) dJ«>β>yf(x)=aJΛ+1'β'yf(x) + βJ«>β+uyf(x
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We use (4.25) to show that J«'βyyf(x) can be continued analytically
throughout R.

We first suppose that ,j?{a)>l. If ^(/3)>0, ^?(r)>0, J*'β'yf{x)
is clearly analytic on using the integral definition in (4.1). If ^?(β)>l,
^ ( r » - l , then J«+Uβ'yf(x) is analytic since (a + l,β,r) belongs to Rlf

j*>β+i>vf(x) is analytic since (α,/3 + l,r) belongs to a region similar to
i?!, and J«>^+If{x) is analytic by (4.1). Thus J«>β>yf(x) is analytic if
^(/?)>1, ^ ( r ) > —1 We proceed in this way using (4.25) to show
the possibility of continuing analytically J"'β'yf(x) in turn into the
regions &(β)>l9 ^ ( r ) > - 2 ; ^(/?)>0, ^ ( r ) > - l ^(/?)>0,
^ ( r ) > - 2 ; ^ ( / 9 ) > - l , ^ ( r ) > - l ; ^ ( / S ) > - 1 , ^ ( r ) > - 2 . At any
stage we remember that the roles of β and p can be interchanged
where necessary. We conclude that JcύίβyΊf{x) can be continued ana-
lytically throughout the region ^ ( α ) > l , ^ ( / S ) > - 1 , ^ ? ( r ) > - 2 and
throughout five similar regions obtained by permuting α, β, γ.

We next suppose ^ ( α ) > 0 , We proceed as before using (4.25) to
show the possibility of continuing JΛtβtVf(x) analytically in turn through-
out the regions ^?(/9)>0, ^ ( r ) > 0 ; &?(β)>0, ^ ( r ) > - l ; &(β)>0,
^ ? ( r ) > - 2 ; .^(/S)>-1, ^ ( r ) > - l ; ^ ( / 9 ) > - l , ^ ( r ) > - 2 . We
conclude that J"*βtyf(x) can be continued analytically throughout the
region ^ ( α ) > 0 , ^(β)^> — 1, ^ ( r ) > — 2, and throughout five similar
regions obtained by permuting a, β, γ.

We next suppose ^?(α)> —1. We have already shown that J*^yf(x)
can be continued analytically throughout the region ^ ( β ) > 0 ,
^ ( r ) > - 2 . We then use (4.25) to show that J«>β>yf(x) can be continued
analytically in turn throughout the regions - ^ (/*)> — 1, ^ ( r X > — 1;
^ 3 ( β ) > - 1 > < ^ ( r ) > - 2 . We conclude that Ja^yf{x) can be continued
analytically throughout the region ^ ( α ) > — 1, ^(/2)> —1, ^ ( r ) > —2,
and throughout the two similar regions obtained by permuting a,β,γ.
Thus we have shown that J*'β'yf(x) can be continued analytically
throughout R.

We have yet to show that the contribution of L(ξ2, f3) to J*φ'yf(x)
reduces to zero when α, β, γ assume the values needed in (4.10)-(4.13).
If a were 2 instead of 1, and β and γ were as in (4.10)-(4.13), our
analyticity discussion would show that this contribution is zero. If we
apply (4.25) using L instead of / we find that the desired result
follows easily. This completes the proof of formulas (4.10)-(4.13).

The formulas (4.14)-(4.16) follow immediately from equation (4.25).
If f(x) has continuous derivatives up to only the second or first

order we can still get results similar to Lemma 4.3, but the region into
which J*>β'yf(x) can be continued will be smaller however, those of
formulas (4.6)-(4.16) which are still valid are unchanged. The method
of proof is the same as for Lemma 4.3 and the results can be expressed
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in the form of two lemmas :

LEMMA 4.3.1. If f(ξu ξ2, ξ3) has continuous derivatives up to the
second order, then Lemma 4.3 holds if the region R is replaced by the region
R* in which (a) . : ^ ( α ) > - l , ^ ( / 5 ) > - l , ^ ( r ) > - l , or (b) <*=-/9=l,
^ ( r ) > - 2 , or (c) α = r = l, ^(/5)>-2, or (d) /5=r = l, . ' ^ ( α ) > - 2 ,
and if formulas (4.12), (4.13), and (4.16) are deleted.

LEMMA 4.3.2. If f(ξι, ξ2, is) has continuous derivatives of first order,
then Lemma 4.3 holds if the region R is replaced by the region i2** in
which (a) ^ ( α ) > - l , .^(/5)>0, ^ ( r ) > 0 , or (b) ^?(α)>0, <£?(/3)>-l,
^ ( r ) > 0 , or (c) ^ ( α ) > 0 , ^(/?)>0, . £ ? ( r ) > - l , and if only formulas
(4.6), (4.7), (4.8), (4.10), and (4.14) are retained.

From equation (4.1) it follows immediately that

(4.26) ~d~-Ja+ι>
d

as long as ^ ( α ) > 0 , ,^?(/5)>0, /i^(r)>0. Similar formulas hold, of
course, for derivatives with respect to x2 and xd. By analytic continua-
tion the validity of (4.26) follows as long as (a, β, γ) lies in the interior
of a region into which J*>β'yf(x) can be continued analytically. But
even if (a, β, γ) should lie on the boundary of such a region, if it
assumes one of the sets of values occurring in equations (4.6)-(4.16)
then (4.26) remains valid, as is easily verified by carrying out the
appropriate differentiation of the right members of equations (4.6)-
(4.16).

The importance of this lies in the fact that it shows that in
finding the derivative of u(x) as given by (3.7) we may interchange
the order of the limiting procedure p->0 and the differentiation in the
term Pi+Ig(x). This simplifies materially the task of verifying that
(3.7) gives the solution of Cauchy's problem for the differential equation
(1.1).

5 The solution of Cauchy's problem for the equation Δu=h{x).
It has already been pointed out in § 3 that if the Cauchy problem for
the differential equation (1.1) is to have a solution, this solution must
be given by (3.7). We are now able to prove the following theorem
which gives the solution of Cauchy's problem.

THEOREM 5.1. Let h(x) be continuous and let g(x) have continuous
derivatives up to the third order in the region ;£i-f-#2-f #3I>0. Then, in
the notation of equations (2.9) and (3.5),
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(5.1) u(x)=Ph(x) + lim Pi+ιg{x)

is, when xλ-\-χ.λ-\-x^>Ά, a solution of the equation Δu=h(x) moreover,
when #i-ha:2-f #3=0, we have u(x)=g(x), and all the derivatives of u(x)
of first and second order equal the corresponding derivatives of g(x).

Proof. We first note that

err r#3 r r - r n
(5.2) Ph(x)=\\\ h(ξ)dξ=\ \ \ k{ξiίξ29ξ^)dξιdζ2dξZ9

jijDs(x) i-Xi-Xii-ξ i-XxJ -|2-^3

and

(5.3) Ii+Ig(x)= I [jp+i *-* g(χ) + J*>*+1'* g(χ

by (3.5), (3.1), and (4.1).
We now verify that (5.1) satisfies the differential equation Ju=h(x).

We have

(5.4) Δu=ΔΓh(x) + lim ΔI»"g(x)
p->0

on account of the remark at the end of § 4. If (5.2) is used, an
elementary calculation shows that ΔΓh{x)==h{x). It follows directly
from (3.5) and (3.1) that

(5.5)

if &(p)^>l, and a suitable analytic continuation as indicated in § 3
establishes the validity of (5.5) for ^ ( p ) > 0 . If we now let p->0 and
make use of (5.5), (5.3), and (4.14)-(4.16), we find that

(5.6) lim ΔPi+1g(x)= lim Iζg(x)= lim l1ί+1g(x) = 0 .

This completes the verification that (5.1) satisfies the differential
equation Δu=h(x).

Next we show that u(x) assumes the correct value g(x) on the
plane S whose equation is Xx + x^ + x^Q. We consider u(x) at the point
x=(x1,x2,x3), where x^ + Xi + x^d^ί), and let cZ->0. From (5.1), (5.3),
and (4.10), we find that

(5.7) u(x)=Ph(x)

-f -- [g(x1 -d,x2, x3) + g(xlf x2-d, x2) + g(xl9 x2, xd-
ό
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Since h{x) is continuous, equation (5.2) shows that Γh(x) = O(d3). On
account of Lemma 4.2, we see that if f(x) is continuous, and a, β, γ
are real and nonnegative, then

(5.8) J«^f{x)^O{d«^+Ί-1) .

Thus when x approaches S, that is, when d—>0, (5.7) shows that
u(x)-+g(x).

If it is desired, u(x) can be written explicitly in terms of h(x) and
g(x) and its derivatives by using (4.6) and (4.7).

Next we consider dujdxλ. On account of the remark at the end
of § 4 we have, from (5.1),

(5.9) du^dPfiix)^ H m dlFWxL ^
dX dX o dX2>->o

We calculate dlζ+ιg(x)fdx1 by differentiating (5.3) and using (4.26). We
then let p-+0 and make use of equations (4.14), (4.11), (4.7), (4.8), and
(4.10). On using equation (5.2) it is easily verified that dΓh{x)ldx1==O{dz),
and hence tends to zero with d. We also note that the integrals in
(4.7) and (4.8) tend to zero with d. We thus find that duldxι-^gXι(xuX2fx3)
when x approaches S. In the same way we can consider dujdx2 and
du/dx3.

In a similar manner we treat d2ujdxl (ΐ = l , 2 , 3). We have only to
use equations (4.15), (4.12), (4.8), (4.9), and (4.11) and observe that
d'Ψh(x)ldxl=O(d).

The treatment of 3^/3^3^ ( i , j = l , 2 , 3; i^?j) is also similar and
makes use of equations (4.15), (4.13), (4.10), (4.11), and (4.14).

This completes the verification of the solution.

In Theorem 2.1 we showed that, if f(x) is continuous, Ipf(x) is
analytic for . ^ ( p ) > 0 and Pf(x)->f(x) when p->0. The following
theorem shows that Pf(x) can be continued analytically when f(x) is
sufficiently differentiable.

THEOREM 5.2. If f(x) has continuous derivatives up to the third,
order in the region x^+x^-h #3>0 then Pf(x) can be continued analytically
throughout the region &(p)^> — l, and

(5.10)

if a?i 4- #2

Proof. We make use of equations (3.6) and (5.3) with g(x) replaced
by f{x). Then if .£?(p)>- l , Theorem 2.1 shows that P+ιΔf{x) is
analytic, and Lemmas 4.3, 4.3.1, and 4.3.2 show that P*+ιf{x) is
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analytic. If we let p-> — 1, equation (5.10) is a consequence of Theorem
2.1 and the last equality in equations (5.6) with f(x) in place of g(x).
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