THE SOLUTION OF CAUCHY'S PROBLEM
FOR A THIRD-ORDER LINEAR HYPERBOLIC
DIFFERENTIAL EQUATION BY MEANS OF
RIESZ INTEGRALS

JoHN G. HERRIOT

1. Introduction. M. Riesz [3] solved Cauchy’s problem for the
wave equation by means of a generalization of the Riemann-Liouville
integral and a consideration of Lorentz space. L. Girding [1] solved
Cauchy’s problem for two linear hyperbolic differential equations arising
from a consideration of spaces of symmetric and Hermitian matrices by
means of similar generalizations of the Riemann-Liouville integral.
Garding [2] also proved some general results for the solution of Cauchy’s
problem for general linear hyperbolic partial differential equations with
constant coefficients again using Riesz-type integrals.

In the present paper the explicit solution of Cauchy’s problem for
the third-order partial differential equation

(1.1) Au="h(x,, x,, @) ,

where 4 denotes the operator 2°/(ox, dx, 0x;), is given by means of a
similar generalization of the Riemann-Liouville integral. We restrict
our attention to the case in which u and its first and second derivatives
are given on the plane S whose equation is x;+x,+a;=0. We verify
in detail that the solution given actually satisfies the differential equ-
ation (1.1), and also that it and its derivatives assume the proper
values on S.

Before proceeding to a study of (1.1), we give a brief discussion
of the Riemann-Liouville integral and Riesz’s generalization of it. (We
use mainly the notation of Garding [1].) Let p» be a complex variable,
and consider the Riemann-Liouville integral

(1.2) P f@)— 1:2-55S:f(t)(x—t)”'ldt (a<a<b<oo) ,

where Z2(p)>0,' and f(x) is a continuous function when a<lx<b<co.
This integral diverges if 22 (p)<<0. If p and g are such that <2 (p)>0,
Z(q)>0 we have
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(1.8) I f(x)=1"* f(x)
and

(1.4) @ pepa) =D f(z) .
dx

Clearly I*f(x) is an analytic function of p, regular for . (p)>-0,
and depending on the parameter x. It can, however, be continued
analytically beyond this region provided that f(x) has a sufficient
number of continuous derivatives. Let us write

k-1

(L5) fay= 3 PO i

so that r(z, t, k)/(t—=x)* is bounded when a<t< @. Then on substituting
in equation (1.2) we find that

(L6) 15@= o | et @ty
S D=+ (=)
j=0 ' r(p+5+1)

Here the integral converges for .22 (p)>—Fk, and (1.6) provides an analytic
continuation of I?f(x) for such values of ». In particular,

(1.7 I f ()= fP(x) (7=0,1,2,.-+).

By successive integrations by parts we can find another formula
which is also useful for the analytic continuation of I?f(x). We have

L by e gy 3 S FO(@)@—ay
(1.8) If @) =1+ 5 e

1f we let p—0 we find that
(1.9) f(m)=lmf(m)(x)+ Tnz—ll f(j)(a)'(,?f——a){
j=o 4!

The right member of (1.9) gives the solution of the differential
equation

a"u(x)

1.10
(1.10) d

—f(a)
whose derivatives of order less than m assume the values f(a), ---,
f(a) when x=a.

When generalizing (1.2), Riesz considers Lorentz space L with points
x=(y, &y, +++, x,). The square of the distance of x=(z,, x,, -+-, z,) from
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$=(EI’ 527 ct Yy En) iS
r,-(x_g)=(x1_51)2_(x2_52)2_ tet _(wn'—gn)z .

The interior of the light cone with its vertex at a fixed point x is
characterized by »(x—¢)>0 where & is variable. It consists of two
parts, the direct and the retrograde cone, characterized by

r@@—¢&) >0, El'—x1>0 and ’)‘(.’B-—-S)>0, &—a, <0,

respectively. It is the retrograde cone denoted by D(x) which is mainly
considered by Riesz. The domain of integration used is the bounded
domain Dg(x) limited by the nappe C(x) of the retrograde cone D(x) and
a certain sufficiently regular surface S having the property that every
straight line in L with a direction of nonnegative square length meets
S in at most one point. The volume element in L is dé=d&ds,- - -dg,.
Let f(x)=f(a;, 2 --+,2,) de a real function defined in the region
consisting of all points 2 whose retrograde cones D(x) intersect S. Then
Riesz’s generalization of (1.2) is*

(1.11) IPf@)—= 1

— g)]e-arng ,
fmp)gpsmf @lr@—g)]r-errde

with

2=z ()] T r(p="37%).

If f(«) is bounded, the integral is a regular analytic function of p for
A (p)>(n—2)/2. It can be shown that (1.8) is valid and, corresponding
to (1.4),

(1.12) dp I f(2)=1"f () ,
where 4, is the wave operator
(a/axl)g—(a/aa&)z—' L -‘(a/axn)z .

If f(x) has derivatives of sufficiently high order it is possible to continue
I?f(x) beyond the region in which the integral converges. The
generalizations of (1.7) are found to be

(1.13) Lf@)y=f), I7flx)=4f(z) (7=1,2,3,--+).

By means of Green’s formula it is found that

*To get uniform notations in this paper, as in Garding [1], Riesz’s variable a is
replaced by 2p here.
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(1.14) I?f(z)=I7*'4f(z)

1
p+l-zn

1 ASE) oo )P+ _ dlr(xz—¢)] 7}
TR R A ) 5o =9 as,
where S(x) is the portion of S interior to the cone D(x), d/dv is taken
in the direction of the Lorentzian normal to the surface S, and dS is
the Lorentzian element of surface area.

If we let p—0 in (1.14), the right side gives the solution of the
differential equation

(1.15) dyu(@)=h(z) ,

u(x) and its (Lorentzian) normal derivative being given on S.

In the present paper we consider three-dimensional Euclidean space
with points x=(x, ., ;). In this case the retrograde light cone D(x)
with its vertex at a fixed point « is characterized by x,—£, >0, z,—&,>0,
x;—& >0, where £é=(¢, &, &) is variable. We denote by S the plane
E+6,+&=0. The domain of integration used is the bounded domain
Dy(z) limited by the boundary of D(x) and the plane S. Then our
generalization of (1.2) is

. » =~L—m Olr@—-ds
(1.16) I7f(z) T Dsmf(c)[r(x oI'd
where r(x — &)= (x,— &) (2. — &,)(@;— &) and dé=d¢&,d&,dE;,. If f(z) is bounded,
the integral is a regular analytic function of » for <2 (p)>>0. We show
that (1.3) is valid and, corresponding to (1.4),

(1.17) A1+ f(e)=I7f(z) .

As before, I”f(x) can be continued analytically if f(x) is sufficiently
differentiable. The generalizations of (1.7) which we prove are

(1.18) Lf@)=f@), I"f@)=4f().

In §3 we apply Green’s formula to discover a formula similar to
(1.14), namely,

(1.19) I'f@)=1"""4f (@) + 157 f (@)

where I2*'f(x) is an integral over S(x), the portion of S interior to
D(z), involving f and its first and second derivatives. If we let p—0
in (1.19), we obtain the solution of Cauchy’s problem for the equation
(1.1). The verification of the solution is carried out in § 5 making use
of a series of lemmas developed in §4.

The methods of this paper can be applied to the solution of the nth
order partial differential equation
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o"u
_ #=h(x1,x2,...’xn)_
X, 0X, - * + 0,
However, the formulas required are very cumbersome to write and for

this reason the present discussion has been limited to equations of third
order.

2. Generalization of the Riemann-Liouville integral. Since we wish
to consider the differential equation

(2.1) du = *u /(0w 0x,0;) =h (21, s, )

the appropriate formula for the cube of the distance between points
x=(x1, @5, ;) and &=(&, &, &) is

(2.2) r@—8=@—&)(@—&) (s —§&) .

The retrograde light cone D(x) with vertex at a fixed point « is
characterized by x,—& >0, x,—& >0, x;—§&>0, where ¢ is variable.
We do not make any use of the geometry of the space based on this
distance formula but in finding volume elements and surface elements
we regard the space as ordinary three-dimensional Euclidean space. It
is only in determining the proper generalizations of the Riemann-
Liouville integral that (2.2) plays a role. We first consider an integral
extended over the whole of D(x). We suppose f(x) defined in a region
such that if this region contains a certain point « it contains also the
retrograde cone D(x). In order to assure the absolute convergence of
the integral considered we suppose among other things that f(x) tends
toward zero sufficiently rapidly when z;, a,, #:—— . We then define,
for complex values of p such that 2 (p)>0,

(2.9) rrE =t SSSD(x)f@)[r(w—e)]p-*ds .
We should like to have

(2.4) AT @) =17 f (@)

and

2.5) 1T f (@) =17 F (x) .

In order to find the correct form of Hi(p) to accomplish this we consider
the particular function

f1(@)= exp (x: +z+ @) .

Clearly 4f,(x)=f.(x), so we should have I”f,(x)=fi(x). Introducing
this function into (2.3) we easily find that we should choose Hy(p)=[1"(p)F.
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With this choice of Hi(p), it is easy to verify that (2.4) holds by
merely carrying out the necessary differentiations. We proceed to verify
that also (2.5) holds with this choice of Hi(p). After interchanging the
order of integration we find that

(2.6)
16 g W o

If we make use of the well-known formulas

@) [ -0 0-grde=p-ay B, p)

and

2.8) Bla, )= @I @) (@+) |

we find that the right member of (2.6) reduces to I**?f(x). Thus (2.5)
is established.

In the applications to follow, the domain D(x) will be replaced by
a bounded domain Dg(2) which is limited by the boundary of the retro-
grade cone D(x) and by the plane S whose equation is & +&+&=0.
We shall therefore in all that follows use the following definition of

I*f(x):
1
(2.9) rre= b (I fere-ora.
[L'(p)F ) Ds(a)

Since this is the same as (2.3) if only we assume that f(§)=0 when
£ +&+£,<0, it is clear that the relations (2.4) and (2.5) hold also when
I’ f(x) is defined by (2.9).

In the application of (2.9) to the solution of Cauchy’s problem we
shall be concerned with the limit of I”f(x) as p—0. We therefore
prove :

THEOREM 2.1. If f(x) is continuous in the region x,+x,+x;>>0 then
I?f(x) defined by (2.9) is a regular analytic function of p for . (p)>0,
and

(2.10) lim I/ @)= f @)

in the region x,+x,+ x;>0.

Proof. That I?f(x) is analytic when .Z(p)>0 follows at once from
its definition by equation (2.9).
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In order to prove (2.10) we make a change of variables by writing,
in (2.9),

—'El=do‘ COSZOI ’ a"z'—{'z:dd Sin201 Coszaz y $3—§3=do‘ Sinzﬁl Sinzﬂz ’

where d=x,+x,+x,>0. If we also make use of (2.8) and the well-
known formula

|2

@.11) B(a,/?)=2g sin®-1 cos**-10 df |
0

we find that

12 (/2
7['(3 +1) f( ) [[ (p)]agogo SO [.F((r, ., 02)_F(0; 01;02)]

- 45%7-1 sin*?~ 16, cos*?~1¢, sin** -1, cos**~10,df.d6.ds ,

2.12) I*f(x)—

where
F(o, 0, 0,)= f(x;, —do cos*6,, x,—do sin*6, cos*d,, x;—do sin*f, sin’f;) .

But since f(zx) is continuous, if e>0 is assigned we can find a ¢ such
that 0<0<1 and such that |F(s, 6, 6.)—F(0, 6., 6,)|<¢e when 0<s<0,
uniformly in 6, and 6, We now break the integral in (2.12) into two
parts J; and J,; in J;, ¢ goes from 0 to §, and in J, from & to 1, while
6, and 6, assume all values between 0 and #/2 in both J; and J,. We
see at once that

| 1| <Zed™/I’(3p+1) .

If M is the maximum of F(s, 6,, 6,) in the region of integration, an
easy calculation shows that

IJz IgzdspMaazz—l/[’(gp)

if 0<p<1/3. By choosing p sufficiently close to zero, we can make .J,
arbitrarily small, and it follows that

lim [/ (z) - (3;; ) S@n=0.

Equation (2.10) follows at once from this since d*?/I"(3p+1)—1 as p—0.

3. Green’s formula for 7?f(x). We shall find it convenient to make
use of the function

_ a_ =81 _ [($1—51)($z—52)($3—53)]p
3.1 r=v(x, &)= - - 2 = e - -
@1 = = [F(p+ 1)

We wish to transform the volume integral
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(3.2) 111 5y (70 40207202

into a surface integral. Here 4: denotes the operator 4 with respect
to the variable &.

The function to be integrated must first be transformed into the
form of a divergence. We easily find that

SAw=(Fvee)e,— (feve)e, + (fe,e,0)e, —04ef .

By permutation of £, &, & we obtain altogether a total of 8! such
equations. The left member and the last term of the right member
are unaltered by such permutations. Adding these 3! equations and
dividing by 3! we obtain

(3.3) SAw+vdif= 1: ;) (fve,e,+0fee) — (1; (fszves+vezf§3)]

£

[ L ot ofen)— | Frvetrese) |

£

1 1
+ |:3 (fvee,+0 ) — i (f-slvez'*‘?fslffg)ls
We note that if . (p»)>>0, v vanishes on the boundary of the retrograde
cone D(x), ve, vanishes for &,=wx;, (j=<i), and vge, vanishes for &=,
(k=<t, k=<7, 1=<)).

Applying the divergence theorem and noting that

do=—[r@=9I"[LI'(O)T,

we obtain

(8.4 I'f(x)=I""4f(x)

1 1
+ V3 SSS(E){-'S‘ !:f (Veye, +Veye, + 06 e) + V(feye, + Fee, + F 5152)}

— e L(Fet Fve+ (Fot Foos, + (Fe+ Feyog, [}

where S(z) is the portion of S included in the retrograde cone D(z),
and dS is the surface area element on S(z). If f(z)is continuous, then
by Theorem 2.1 the left member of (3.4) becomes f(x) when we let
p—0. If 4f(x) is given in Dg(x), and f together with its first and
second derivatives are given on S, then the right member of (3.4) can
be calculated. We are going to show that it yields the solution of
Cauchy’s problem for the differential equation du=*h(x).

It is clear that if « and its first and second derivatives are prescribed
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on S, then these derivatives cannot be prescribed arbitrarily but certain
relations exist between u and its derivatives. Only a complete inde-
pendent set can be prescribed arbitrarily on S. For example, one may
prescribe u and its first and second normal derivatives on S, or one
may prescribe u, ue, and u¢ ¢ on S. It is easily shown that it is always
possible to determine a function g(¢, &, &) which agrees with » on S
and whose derivatives agree with the corresponding derivatives of » on
S. This being the case, it is reasonable to introduce the following
definition :

1
V'3

B 615 [(Fe,+ Fe)ve, + (Fe,+ Fe)vs, + (f£1+fsz)vsg]}ds ,

@5) Lof@= | LSO b o st Fre P

where v is defined by (3.1). We can then write (8.4) in the form
(3.6) I"f(@)=I"4f (@) + I f (=)

If we are to solve the differential equation du=~A(x) subject to the
conditions that » and its first and second derivatives agree with ¢ and
its corresponding derivatives on S, then according to (3.6) and Theorem
2.1 we must have
3.7 w(@)=In(x)+ lim I2*g(x)

n—0
as the solution. We write the limit as p—0 in the second term on the
right because some of the integrals fail to exist if p=0.

4, Lemmas for the evaluation of the surface integrals. The surface
integral in (3.5) which is required for the solution of Cauchy’s problem
converges for &7 (p)>0. In order to find the solution of Cauchy’s
problem according to equation (3.7) we need to show that the limit of
I2*1g(x) exists when p—0. To verify that » and its derivatives assume
the prescribed values on S it is necessary to differentiate (3.7). This
is trivial for the first term on the right but not so simple for the
second term. But if . (p) is sufficiently large the differentiation of
12*g(x) is very easy. The resulting integrals fail to exist near p=0,
and an analytic continuation is required. We wish to show how this
analytic continuation can be accomplished and that instead of differ-
entiating the second term on the right of (8.7) after letting p—0 we
can differentiate I2*'(g) first and then let p—0. We, of course, make
suitable assumptions concerning the differentiability of g¢.

We note that all of the integrals occurring in (3.5) are of the
form
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@1 JMI@

- —L'"“'""SS 2 — £) (1 — £1)P (s — £)7-dS
V?F(a)P(ﬁ)[’(r) s(:c)f(&’ EI, 53)( 1 51) ( 2 _) ( 3 C3) ’
where we assume that f(&, &, &) possesses continuous derivatives up
to the first, second, or third order. We note that the integral in (4.1)
converges when the real parts of «, £, and 7 are greater than zero.

We proceed to a study of this integral, proving a number of lemmas
some of which are of interest in themselves.

The first lemma which we need is similar to one given by Riesz
[3, p. 60].

LEMMA 4.1. Let G(u,v) be a function defined jfor 0<u<a< co,
0<v<b<{oo, and let it have continuous derivatives to the qth order. Then
it may be written in the form

(4.2) G, o) =, )+ S 00) " +I0) +milw, )
where
(4.3) (u, V)= qil q_il g(_r’_”_(_Q’_plu’q)s
7=0 §=0 rls!
and
(4.4) h(®)=0w""), k(u)=0u?), mu,v)=0w"").

Here G™¥(u, v)=0"G(u, v)[/(du"0v°).

Proof. If G(u,v) could be expanded in a Maclaurin’s series for
sufficiently small » and v, the result would be obvious. Since we do
not assume this we proceed as Riesz does. We write

B0 =G0, 0= "3 600,07

$=0

T (¢ . 1)! SZG("“‘”(O, N —N""1d7
—r—1)

and

2) = — & (X)) »uT: ) 1 ] ‘SuG(q’O) ,0 — &) ide .
k) =G, 0= 5670 0,01 = 7| G906 (=g
Then
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m, =G, )=, v) = S o) )~ ko)

~Glu, )=~ 567%(0,0) " =G, 0+ 5, 67°0,0 ")
! =0 !

r=0 r

N (q—12)t S: So GOTR(E, (=) dTdE

The equalities are verified by integrations by parts, and the order

relations are now evident.

Clearly the roles of # and » may be interchanged in equations (4.2)
and (4.4). Moreover, other similar lemmas may be found giving dif-
ferent powers of # and v in the estimate of m(u,v).

The second lemma is an immediate consequehce of equations (2.7)
and (2.8).

LEMMA 4.2. If d=x+x,+25,>0, we have
(4.5) JOPI L =d* B N+ B +7) .

If the real parts of «, B, or 7 are less than or equal to zero, this formula
provides an analytic continuation of the left member.

The next three lemmas provide the principal tools for use in § 5.

LEMMA 4.3. Suppose that f(&, &, &) has continuous derivatives up
to the third order. Let d=ux,+x,+2>0. Then J*P'f(x), defined by
(4.1), can be continued analytically throughout the region R in «, B, 7
space, where R is defined by the fact that ome of the following three
conditions holds :

@  Fl>-2, ZE>-1, FMN>-1,
or

b  R>-1, ZE>-2, FMN>-1,
or

© Fl>-1, ZE@E>-1, FrM>-2.

Moreover, J¥P7f(x) assumes the following special values. (In all cases,
if oy Bo, 70 ts on the boundary of R, the formula s to be interpreted as
meaning the limit as a—c,, B—P, r—70.)

(4.6) rp@=sel| re s, s,
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wn  rere@={"

r—

lf(fl; — & —@, 303)d51 ’
d

@8 rrs@=("

&

d[fﬁs(&' —&—y, ) — [, (61, —&—, @) ]dé,

+f(@—d, v, ) ,

(4.9) JWWM=V

&1 —

d[f§3g3(é17 —E1— @y, @) — 2 f e (61, — E1— 5, )

+ fee, (61 —6— a5, @,)]dé
+2f ¢ (@i —d, Ty T3) — fe (@0 —d, Ty ) — [r(@1—d, 2, T5) .
(4.10)  JY0f (@)= f (2, —d, Ts, T5)=[f(— T — X5, Ta, T3) ,
(4.11) T f @)= Fe(@i—d, Ty @) — e (@ —d, @y 23)
(4.12) J"“’"zf(x)=f§3§3(a:1—d, s, wg)—2f§1§3(xl—d, @y, @) + fp, (00— d, 2, @),
(4.13) Jl'_l'—lf(x)=f§352(90l“dr L2y wS)"fg]g3(w1"d: X, T3)
_fglgz(xl—d, 2y, ocg)-l—fglgl(xl——d, Loy L)
(4.14)  JOf(x)=0,
(4.15) Jov-'f(x)=0,
(4.16) Jo-V1f(x)=0.

Formulas analogous to these can be obtained by permuting the superscripts.
Proof. Since J*P7f(x) is defined by (4.1) and is analytic for

R (a)>0, #(B)>0, F(r)>0, equation (4.6) is immediate. To obtain
equations (4.7), (4.8), and (4.9) we have

1,1, — 1 e  — -1E.
(.17 rorp@= b )T ey,
where
Ly
(4-18) F(53)= S f('fly —51"53; E3)d51 .
—&3— 1

Then (4.17) is an ordinary Riemann-Liouville integral which can be

continued analytically for . (y)>—38 since F(&) has a continuous third
derivative. Also, by (1.7), we have

(4.19) JU f () =F" () , (r=0, -1, =2).

Equation (4.7) follows by setting &=, in (4.18). Also from (4.18) we
have



SOLUTION OF CAUCHY'S PROBLEM FOR A THIRD-ORDER EQUATION 757

X1
(4.20) ili—? =5 [fe6r —6i—6 &) — [ (6, —61—&, &)d&

3 —&3—1

+f(—53‘—w2; L2y 53) ’
and

@F
.21 %~
dg;

X1
=§ [f£3§3(617 ""EI_ES; ES)"’zfgagz(’Ely “‘51"53; ES)'I—fé.)SZ(EI; —EI'—E& SS)Jdél

—&3—xy

+2fé3(—53""w2) Loy 53)'—f§2('—$3—x2y Ly, 53)—.]‘.21(_63*“:2, Xy 53) .

Equations (4.8) and (4.9) follow by setting &=w; in (4.20) and (4.21).

Turning our attention to equations (4.10)-(4.18), we shall express
the integral (4.1) in terms of the variables & and & and use Lemma
4.1 with ¢=8 to expand f(&, &, &) in the form

(4-22) f(’fly & 53):f($1“d, Ly, ws) + (xz“’&)(fgl"‘f&)a‘f' (533-53)(‘]“5"‘,]“53)0

+ (%; gz)‘(f ee,— 2S e, Feph + (%; &) (fee, =2 e, + Freho

+ @ —&) @ — &) (fee,~ Frg,— o, + Feg)ot+ L&, &)

where

(4.23) L(&,, &) =Li(&:) + (25— &) Lu(2) + Li(&5) + Lu(&:, &)
with

(4.24) Li(&)=0((%—-&)) ,  L(&)=0((:—&)) ,

Ls(Es):O((xs—E3)3) ’ L4(Ezy 53)=O((972‘52)(x3—53)2) .

Here the subscript 0 indicates that the values of the derivatives are
calculated at the point (x,—d, x,, ).

Considering the first six terms of (4.22), we deal with the term
involving (z,—&)N@,—&)*/(2! ¢!) where A+ p<2. The contribution to
JUPYf(x) of this term is found to be

LB+ (7 + pyderbrrerre

A TG (@ @+ f+r+a+p)
by Lemma 4.2. We note that this function is analytic for all values
of a, B, 7. When a=1, f=r=0, it reduces to 1 if 2=p=0 and to zero
otherwise. When a=1, f=0, y=—1, it reduces to —1if 2=0, #=1, and
to zero otherwise. When a=1, f=0, y=—2, it reduces to 1 if 1=0,
#=2, and to zero otherwise. When a=1, f=y=—1, it reduces to 1if
A=p=1, and to zero otherwise. Thus these terms yield the values
stated in equations (4.10)-(4.13). We have only to show that the
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contribution of L(&,, &) to J*#7f(x) can be continued analytically through-
out R and reduces to zero when «, 5, r assume the values needed in
(4.10)-(4.13).

We first show that J*®7f(x) can be continued analytically throughout
the region R, where #(a)>2, #(f)> -1, #(y)>—2. We consider
in turn the contributions arising from the four terms of L(¢&, &) given
in (4.23).

We have, for L,(&),

1 L2 %3
(N (B (+ Ly(&) (@, — )P d8, —&) M@+ 6+ &) dEs
L) B (7) S—xl—% (&)@, — &) dg S~€2_ml (@5 — &)Y (@1 + &, + &) * 1 dE

1 Sw -
— T L.(& — £.)B-1 4@+ )2 Id&
/’(ﬂ)P(a+r) o (&) (@, — )P N + 5 &)
on using (2.7) and (2.8). On taking account of (4.24) we see that the
integral is analytic in R,. Moreover, the expression is zero if f=0 or

—1 even when y——2.
The contribution of (x,—&)L,(&,) is similarly

T " L&) (,— &,)P (@, + @5+ £,)*HdE,
F(ﬁ)F(a+r+l) S—xl—xg z(Ez)( 2 §z) ( 1 3 E) 5.. s
which is also analytic in R,. It is also zero if =0 or —1 even when

r=—2.
The contribution of Ls(&;) is

1 s o |
FrGrae) L&) (s~ &) dés ) (a4 £,
L) (B () S—xl—mz 5(s) (w3 —&5) 3 S—Ga—$1 (0, — )P (@ + &+ &5)'dE

= ! " —_ -1 a+B-1J¢
- ' (a+p) S—fﬂl-—:rzLa(&)(xs E) (X + a4 &) dg; .

The integral is again analytic in R,. This contribution is zero if y=0,
—1, or —2 even when f=-—1.

On taking account of (4.24) it is at once evident that the contribution
of L&, &) is analytic in R, and vanishes when =0 or y=—1 even on
the boundary of R..

Thus we have shown that J*#?f(x) can be continued analytically
throughout R;. Since the roles of «, 3, y may be interchanged it can
also be continued analytically throughout five similar regions obtained
by permuting «, 8, r in the definition of R;.

We note that d=(x,—¢&)+ (z,—&)+ (0s—&) on S(x) and we multiply
equation (4.1) through by these expressions to obtain

(4.25)  dJ*P @)=l P @)+ BT @)+ 1T @)
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We use (4.25) to show that J*PYf(x) can be continued analytically
throughout R.

We first suppose that .22 (a)>1. If 2 (B)>0, A7)0, J*P¥f(x)
is clearly analytic on using the integral definition in (4.1). If #Z(B)>1,
Z(r)>—1, then J*VP7f(z) is analytic since (a+1, 3, 7) belongs to R,
JoB+LY £(x) is analytic since («, f+1,7) belongs to a region similar to
R,, and J*®"*f(x) is analytic by (4.1). Thus J*®7f(x) is analytic if
FZP)>1, Z(r)>—1. We proceed in this way using (4.25) to show
the possibility of continuing analytically J*®7f(z) in turn into the
regions Z(H>1, Z@)>-2; ZEH>0, F@G)>-1; F(B)>0,
F(r)>—2; ZP)>—-1, ZG)>—1; ZE)>—-1, F(r)>—2. Atany
stage we remember that the roles of 5 and 7y can be interchanged
where necessary. We conclude that J*P?f(z) can be continued ana-
lytically throughout the region &% (a)>>1, “Z(F)>—1, #()>—2 and
throughout five similar regions obtained by permuting «, 8, 7.

We next suppose 2 (a)>>0, We proceed as before using (4.25) to
show the possibility of continuing J*#?f(x) analytically in turn through-
out the regions .7 (8)>0, 2 (r)>0; Z(F)>0, Z(G)>—1; #(B)>0,
BO)>—2; FBE>-1, FO>-1; BEH>-1, ZG)>—2. We
conclude that J*P7f(x) can be continued analytically throughout the
region .7 (a)>0, # () >—1, #(r)>—2, and throughout five similar
regions obtained by permuting «, f, 7.

We next suppose % (a)>-—1. We have already shown that J*#f(x)
can be continued analytically throughout the region .Z(5)>0,
A (r)>—2. We then use (4.25) to show that J*#7f(x) can be continued
analytically in turn throughout the regions #(B)>-1, F(r)>-1;
A P)> -1, #()>—2. We conclude that J*P?f(2) can be continued
analytically throughout the region % (a)>—1, #(f)>—1, Z(r)>—2,
and throughout the two similar regions obtained by permuting «, 8, 7.
Thus we have shown that J*P?f(x) can be continued analytically
throughout R.

We have yet to show that the contribution of L(&, &) to J*Pf(x)
reduces to zero when «, B, y assume the values needed in (4.10)-(4.13).
If o« were 2 instead of 1, and £ and 7y were as in (4.10)-(4.13), our
analyticity discussion would show that this contribution is zero. If we
apply (4.25) using L instead of f we find that the desired result
follows easily. This completes the proof of formulas (4.10)-(4.13).

The formulas (4.14)-(4.16) follow immediately from equation (4.25).

If f(x) has continuous derivatives up to only the second or first
order we can still get results similar to Lemma 4.3, but the region into
which J*#7f(x) can be continued will be smaller; however, those of
formulas (4.6)-(4.16) which are still valid are unchanged. The method
of proof is the same as for Lemma 4.3 and the results can be expressed
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in the form of two lemmas :

LEmma 4.3.1. If f(&, &, &) has continuous derivatives up to the
second order, then Lzmma 4.3 holds if the region R is replaced by the region
R* in which () 2 ()>—1, 2 (B)>—1, 2F)>—1, or (b) a=p=1,
A()>—2, or (¢) a=r=1, ZP)>-2, or (d) f=r=1, #(a)>-2,
and iof formulas (4.12), (4.13), and (4.16) are deleted.

LEMMA 4.3.2. If f(&, &, &) has continuous derivatives of first order,
then Lemma 4.3 holds if the region R is replaced by the region R** in
which (a) .72 ()>—1, FZ(8)>0, # (r)>0, or (b) Z(1)>0, .7 (F)>—1,
F(r)>0, or (¢) F#(a)>0, #2(P)>0, FZ(r)>—1, andif only formulas
(4.6), (4.7), (4.8), (4.10), and (4.14) are retained.

From equation (4.1) it follows immediately that

(4.26) a@,, JETL8Y £ () = J B (3r)

1

as long as 2 (a)>0, Z2(5)>0, “#(r)>>0. Similar formulas hold, of
course, for derivatives with respect to «, and ;. By analytic continua-
tion the validity of (4.26) follows as long as («, 3, r) lies in the interior
of a region into which J*P'f(x) can be continued analytically. But
even if («a,f3,7) should lie on the boundary of such a region, if it
assumes one of the sets of values occurring in equations (4.6)-(4.16)
then (4.26) remains valid, as is easily verified by carrying out the
appropriate differentiation of the right members of equations (4.6)-
(4.16).

The importance of this lies in the fact that it shows that in
finding the derivative of u(x) as given by (3.7) we may interchange
the order of the limiting procedure p—0 and the differentiation in the
term I2*'g(x). This simplifies materially the task of verifying that
(3.7) gives the solution of Cauchy’s problem for the differential equation
(1.1).

5. The solution of Cauchy’s problem for the equation dJdu=~h(x).
It has already been pointed out in § 3 that if the Cauchy problem for
the differential equation (1.1) is to have a solution, this solution must
be given by (8.7). We are now able to prove the following theorem
which gives the solution of Cauchy’s problem.

THEOREM 5.1. Let h(x) be continuous and let g(x) have continuous
derivatives up to the third order in the region x,+x,+x,2>0. Then, in
the notation of equations (2.9) and (3.5),
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(5.1) w(@)=I'h(@) + lim i g(a)

18, when x,+x,+ x>0, a solution of the equation Adu=h(x); moreover,
when @ +x,+a,=0, we have u(x)=g(x), and all the derivatives of u(x)
of first and second order equal the corresponding derivatives of g(x).

Proof. We first note that

(5.2) I%(x)=SSSD

s(

x; Ty x
)k(s)ds=§ ‘ S S Y b, 6 )dEdEdE
X

—rp =X — a1 J =8y =83
and

(5.3) 117igla)= | L7707 gla) + " gla) + I g @)

+ Jp+1,1)+1,]'+1(gm2m3 + gxa:”] + ga:lx_:)]
1 ’ B
n p [Jp’p+1,p+1(gw2 + gzs) 4 JoLm +1(gm3 + gml) 4 JrHLo+L (gm1+ gmz)] ,

by (8.5), (8.1), and (4.1).
We now verify that (5.1) satisfies the differential equation du=h(x).
We have

(5.4) du=A4I'h(z)+ lim 4I*'g(x)
p—0

on account of the remark at the end of §4. If (5.2) is used, an
elementary calculation shows that 4I'A(x)=h(x). It follows directly
from (3.5) and (3.1) that

(5.5) AL (@) =Lrg (@)

if “#(p)>1, and a suitable analytic continuation as indicated in §3
establishes the validity of (5.5) for 2 (p)>0. If we now let p—0 and
make use of (56.5), (5.3), and (4.14)-(4.16), we find that
(5.6) Iing Al g(x)= lin}) LRg(x)= limlli“g(x):() .

> > -
This completes the verification that (5.1) satisfies the differential
equation du=~h(x).

Next we show that u(x) assumes the correct value g(x) on the
plane S whose equation is @, +,+2;=0. We consider u(x) at the point
x=(2,, s, ¥5), where @, +x,+x;=d>0, and let d—0. From (5.1), (5.3),
and (4.10), we find that

6.7 u@)=Inr)
* é‘[g(wl—dy @y T5) + 9@, 21— d, T5) + 9(21, T, T3—d) + Jl'l'l(gmzrs T Gy, + g"’l’z)]

1
g I, 1 0) TGy 0) + (0, + 0]
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Since A(x) is continuous, equation (5.2) shows that I'2(z)=0(d?). On
account of Lemma 4.2, we see that if f(x) is continuous, and «, f3,
are real and nonnegative, then

(5.8) JHBIf () = O(d?+#+17)

Thus when « approaches S, that is, when d—0, (5.7) shows that
u(@)—g(@).

If it is desired, u(x) can be written explicitly in terms of A(x) and
g(x) and its derivatives by using (4.6) and (4.7).

Next we consider du/ox;. On account of the remark at the end
of §4 we have, from (5.1),

(5.9) ou _oI'M@) |y, OLiMg(@)
3371 ax1 -0 axl

We calculate al2*'g(x)/ox; by differentiating (5.3) and using (4.26). We
then let p—0 and make use of equations (4.14), (4.11), (4.7), (4.8), and
(4.10). On using equation (5.2) it is easily verified that al'k(x)/22,=O0(d?),
and hence tends to zero with d. We also note that the integrals in
(4.7) and (4.8) tend to zero with d. We thus find that au/axlqgml(xl,xz,xs)
when 2« approaches S. In the same way we can consider 2du/ox, and
ou/ows.

In a similar manner we treat 2°/ox} (i=1, 2,3). We have only to
use equations (4.15), (4.12), (4.8), (4.9), and (4.11) and observe that
() [ oxi=0(d).

The treatment of o*u/ox,2w; (¢,7=1,2,3; ¢=<j) is also similar and
makes use of equations (4.15), (4.13), (4.10), (4.11), and (4.14).

This completes the verification of the solution.

In Theorem 2.1 we showed that, if f(x) is continuous, I"f(x) is
analytic for “#(p)>0 and I"f(x)—f(r) when p—0. The following
theorem shows that I”f(x) can be continued analytically when f(a) is
sufficiently differentiable.

THEOREM 5.2. If f(x) has continuous derivatives up to the third
order in the region x,+x,+ x>0 then I°f(x) can be continued analytically
throughout the region .7 (p)>—1, and

(5.10) lim I7 f(a) =4 f ()
-1
if @+, +x;>0.
Proof. We make use of equations (3.6) and (5.8) with g(«) replaced

by f(x). Then if .22 (p)>—1, Theorem 2.1 shows that I**'4f(x) is
analytic, and Lemmas 4.3, 4.3.1, and 4.3.2 show that I2*'f(x) is
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analytic. If we let p——1, equation (5.10) is a consequence of Theorem
2.1 and the last equality in equations (5.6) with f(z) in place of g(x).
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